Basics of Description Logic \mathcal{ALC}

Petr Křemen, Miroslav Blaško

November 21, 2019

1 Understanding \mathcal{ALC}

Consider the following \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \{\})$, where \mathcal{T} contains the following axioms:

$$\begin{array}{rcl} Man &\sqsubseteq Person \\ Woman &\sqsubseteq Person \sqcap \neg Man \\ Father &\equiv Man \sqcap \exists hasChild \cdot Person \\ GrandFather &\equiv \exists hasChild \cdot \exists hasChild \cdot \top \\ Sister &\equiv Person \sqcap \neg Man \sqcap \exists hasSibling \cdot Person \end{array}$$

Ex. 1 — What is the meaning of these particular axioms ? Do they reflect your understanding of reality ? Formulate them in natural language.

Ex. 2 — Rewrite the last axiom into the semantically equivalent FOPL formula.

Ex. 3 — Consider the following interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \bullet^{\mathcal{I}})$:

$$\Delta^{\mathcal{I}} = Person^{\mathcal{I}} = \{B, A\}$$

$$Man^{\mathcal{I}} = \{B\}$$

$$Woman^{\mathcal{I}} = \{A\}$$

$$Father^{\mathcal{I}} = GrandFather^{\mathcal{I}} = \{B\}$$

$$hasChild^{\mathcal{I}} = \{(B, B)\}$$

$$hasSibling^{\mathcal{I}} = \{\}$$

$$Sister^{\mathcal{I}} = \{B\}$$
(1)

1. Is \mathcal{I} a model \mathcal{K} ? If yes, decide, whether \mathcal{I} reflects reality.

2. We know that \mathcal{ALC} has the tree model property and finite model property. In case \mathcal{I} is a model, is \mathcal{I} tree-shaped? If not, find a model that is tree-shaped.

Ex. 4 — How does the situation change when we consider the same \mathcal{I} , except that $Sister^{\mathcal{I}} = \{\}$?

Ex. 5 — Using the vocabulary from \mathcal{K} , define the concept "A father having just sons."

Ex. 6 — Using the vocabulary from \mathcal{K} , define the concept "A man who has no brother, but at least one sister with at least one child."

- Ex. 7 During knowledge modeling, it is often necessary to specify:
- **global domain and range** of given role, e.g. "By *hasChild* (role) we always connect a *Person* (domain) with another *Person* (range)".
- **local range** of given role, e.g. "Every father having only sons (domain) can be connected by *hasChild* (role) just with a *Man* (range)".

Show, in which way it is possible to model global domain and range of these roles in \mathcal{ALC} .

2 Using Protégé

- 1. Go through the Protégé Crash Course on the tutorial web pages.
- 2. Create a new ontology in Protégé 4 and insert there all the definitions from Section 1. Verify correctness of your solution of the previous task (e.g. in the DL query tab).

3 Suggested excercise for the semestral work

- 1. For each of your RDF datasets that are final output of CP1 create a separate ontology describing schema of that data (you will need to use TBox axioms mostly).
- 2. Modify each of your RDF datasets to include statement importing related schema created in previous task. Hint: use *owl:imports*.
- 3. Create an ontology that imports all your datasets.
- 4. Open the ontology of all datasets in Protege to browse all your data.