Basics of Description Logic \mathcal{ALC}

Petr Křemen, Miroslav Blaško

November 21, 2019

1 Understanding ALC

Consider the following \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \{\})$, where \mathcal{T} contains the following axioms:

 $Man \sqsubseteq Person$ $Woman \sqsubseteq Person \sqcap \neg Man$ $Father \equiv Man \sqcap \exists hasChild \cdot Person$ $GrandFather \equiv \exists hasChild \cdot \exists hasChild \cdot \top$ $Sister \equiv Person \sqcap \neg Man \sqcap \exists hasSibling \cdot Person$

Ex. 1 — What is the meaning of these particular axioms? Do they reflect your understanding of reality? Formulate them in natural language.

Answer (Ex. 1) — For example, the third axiom defines a concept Father as any Man that has some Person as a child. The fourth axiom is not well defined – it allows grandfathers to be women. More precise version of the fourth axiom might be e.g. $GrandFather \equiv Man \sqcap \exists hasChild \cdot \exists hasChild \cdot \top$.

Ex. 2 — Rewrite the last axiom into the semantically equivalent FOPL formula.

Answer (Ex. 2) — Each TBox axiom corresponds to a universally closed FOPL formula. Notice that two different variables are enough for encoding of any \mathcal{ALC} axiom. The encoding of the last axiom is:

$$(\forall x)(Sister(x) \equiv Person(x) \land \neg Man(x) \land (\exists y)(hasSibling(x,y) \land Person(y)))$$

Ex. 3 — Consider the following interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \bullet^{\mathcal{I}})$:

$$\Delta^{\mathcal{I}} = Person^{\mathcal{I}} = \{B, A\}$$

$$Man^{\mathcal{I}} = \{B\}$$

$$Woman^{\mathcal{I}} = \{A\}$$

$$Father^{\mathcal{I}} = GrandFather^{\mathcal{I}} = \{B\}$$

$$hasChild^{\mathcal{I}} = \{(B, B)\}$$

 $hasSibling^{\mathcal{I}} = \{\}$
 $Sister^{\mathcal{I}} = \{B\}$ (1)

- 1. Is \mathcal{I} a model \mathcal{K} ? If yes, decide, whether \mathcal{I} reflects reality.
- 2. We know that \mathcal{ALC} has the tree model property and finite model property. In case \mathcal{I} is a model, is \mathcal{I} tree-shaped? If not, find a model that is tree-shaped.

Answer (Ex. 3) — \mathcal{I} is not a model of \mathcal{K} , as it does not satisfy the last axiom: $Sister^{\mathcal{I}} \neq Person^{\mathcal{I}} \cap (\Delta^{\mathcal{I}} \setminus Man^{\mathcal{I}}) \cap \{x \in \Delta^{\mathcal{I}} | (\exists y \in \Delta^{\mathcal{I}})((x,y) \in hasSibling^{\mathcal{I}} \land y \in Person^{\mathcal{I}})\}$

Ex. 4 — How does the situation change when we consider the same \mathcal{I} , except that $Sister^{\mathcal{I}} = \{\}$?

Answer (Ex. 4) — Now, \mathcal{I} is a model of \mathcal{K} as it satisfies all axioms. However, it does not reflect the reality well, as it states that a person B is his/her own child. This interpretation is finite, yet not tree-shaped. A tree-shaped model ensured by the *tree-model property* of \mathcal{ALC} is e.g. the following infinite model $\mathcal{I} = (\Delta^{\mathcal{I}}, \bullet^{\mathcal{I}})$, where

$$\Delta^{\mathcal{I}} = Person^{\mathcal{I}} = Man^{\mathcal{I}} = Father^{\mathcal{I}} = GrandFather^{\mathcal{I}} = \{A_1, A_2, \ldots\}_{i=1...\infty}$$

$$Woman^{\mathcal{I}} = Sister^{\mathcal{I}} = \{\}$$

$$hasChild^{\mathcal{I}} = \{(A_i, A_{i+1})\}_{i=1...\infty}$$

$$hasSibling^{\mathcal{I}} = \{\}$$

$$(2)$$

Ex. 5 — Using the vocabulary from \mathcal{K} , define the concept "A father having just sons."

Answer (Ex. 5) — $FatherOfBoys \equiv Father \cap \forall hasChild \cdot Man$

Ex. 6 — Using the vocabulary from K, define the concept "A man who has no brother, but at least one sister with at least one child."

Answer (Ex. 6) — $HappyUncle \equiv Man \sqcap \exists hasSibling \cdot (Woman \sqcap \exists hasChild \cdot \top) \sqcap \forall hasSibling \cdot \neg Man$

Ex. 7 — During knowledge modeling, it is often necessary to specify:

global domain and range of given role, e.g. "By *hasChild* (role) we always connect a *Person* (domain) with another *Person* (range)".

local range of given role, e.g. "Every father having only sons (domain) can be connected by hasChild (role) just with a Man (range)".

Show, in which way it is possible to model global domain and range of these roles in \mathcal{ALC} .

Answer (Ex. 7) — Global domain and range can be modeled as:

$$\exists hasChild \cdot \top \sqsubseteq Person$$
$$\top \sqsubseteq \forall hasChild \cdot Person \tag{3}$$

Local range is similar and only replaces the top concepts in the global range axiom:

$$\exists hasChild \cdot FatherOfSons \sqsubseteq Person$$

$$FatherOfSons \sqsubseteq \forall hasChild \cdot Man \tag{4}$$

2 Using Protégé

- 1. Go through the Protégé Crash Course on the tutorial web pages.
- 2. Create a new ontology in Protégé 4 and insert there all the definitions from Section 1. Verify correctness of your solution of the previous task (e.g. in the DL query tab).

3 Suggested excercise for the semestral work

- 1. For each of your RDF datasets that are final output of CP1 create a separate ontology describing schema of that data (you will need to use TBox axioms mostly).
- 2. Modify each of your RDF datasets to include statement importing related schema created in previous task. Hint: use *owl:imports*.
- 3. Create an ontology that imports all your datasets.
- 4. Open the ontology of all datasets in Protege to browse all your data.