Advanced RDF(S)

Petr Kremen, Miroslav Blasko

October 31, 2019

1 Introduction

Today, we explore two more advanced features of the RDF(S) stack:
e RDFS reasoning — to infer new knowledge, and
e RDF validation — to check RDF data w.r.t. some constraints

Remark: In this document, we use the following prefixes:
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>
@prefix : <http://onto.fel.cvut.cz/ontologies/shacl-example/>
@prefix sh: <http://www.w3.org/ns/shacl#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
@prefix skos: <http://www.w3.0rg/2004/02/skos/core#>
@prefix dc: <http://purl.org/dc/terms/>

2 RDF(S) Reasoning

RDF(S) is used to describe data schemas and infer new knowledge. In GraphDB, RDFS
inference is performed using forward chaining. Given an RDF graph G (e.g. the content
of a GraphDB repository), the reasoner takes original RDF triples {ot;} = G and a set
of inference rules to generate new RDF triples {nt;}. Then, the given SPARQL query is
evaluated on G’ = {ot;} U {nt;}. In GraphDB the reasoner is executed upon data
insert /update.

2.1 Exercises
Ex. 1 — What is the output of a reasoner using RDF'S entailment on the RDF Snippet:

:John :hasWife :Sue
:John a :Man
:hasWife rdfs:domain :MarriedMan



Answer (Ex. 1) — The reasoner entails a new triple : John a :MarriedMan .

Ex. 2 — What is the output of a reasoner using RDF'S entailment on the RDF Snippet:

:John :hasRelative :Sue
:hasWife rdfs:subPropertyOf :hasRelative
:hasWife rdfs:range :MarriedWoman

Answer (Ex. 2) — The reasoner entails no new triple about :Sue .

Ex. 3 — What is the output of a reasoner using RDF'S entailment on the RDF Snippet:

:John :hasWife :Sue
:hasWife rdfs:subPropertyOf :hasRelative
:hasWife rdfs:range :MarriedWoman

Answer (Ex. 3) — The reasoner entails several new triples, like :Sue a :MarriedWoman,
or :John :hasRelative :Sue.

However, validation capabilities of RDF'S are limited. How to check that each :MarriedMan
has exactly one :hasWife property ?

3 Intro to SHACL

SHACL! is a W3C recommendation aiming at validation of RDF data using so called
shapes. Shapes are expressed in RDF, e.g.:

:MarriedManShape
a sh:NodeShape ;
sh:targetClass :MarriedMan ;
sh:property [
sh:path :hasWife ;
sh:minCount 1 ;
sh:maxCount 1 ;

]

Shapes are class-centric. Here, we define a shape for the RDFS class :MarriedMan.
This shape checks that each instance of this class is explicitely related to exactly one
other instance through the property :haswWife. Validating the RDF snippet

:John a :MarriedMan

against the shape produces a validation error, as : John has no explicitely stated :hasWife
relation, while validating the RDF snippet

:John a :MarriedMan ;
:hasWife :Sue

"https://www.w3.org/TR,/shacl/



against the shape passes. You can test both examples e.g. at http://shacl.org/
playground/.

Refer to the SHACL specification https://www.w3.0rg/TR/shacl/ for details
and other constructs

3.1 Exercises

Ex. 4 — The following SHACL constraints can be used for validating SKOS vocabu-
lary you created in the previous seminar. However, there are two bugs in the shapes,
find them and correct them. When you use the corrected version for validation of the
the s5-animals—6 repository content (download it and paste it into the SHACL play-
ground), it should pass.

: SkosConceptShape
a sh:NodeShape ;
sh:targetClass skos:Concept ;
sh:property [
sh:path skos:inScheme ;
sh:minCount 1 ;
1
sh:property [
sh:path dc:created ;
sh:minCount 2 ;
sh:datatype xsd:dateTime
17
sh:property [
sh:path skos:inscheme ;
sh:minCount 1 ;
sh:class skos:ConceptScheme
1
sh:property [
sh:path skos:preflabel ;
sh:minCount 1 ;

: SkosConceptSchemeShape
a sh:NodeShape ;
sh:targetClass skos:ConceptScheme ;
sh:property [
sh:path skos:preflabel ;
sh:minCount 1 ;

Answer (Ex. 4) — The corrected SHACL shapes are as follows:

schema : SkosConceptShape



a sh:NodeShape ;
sh:targetClass skos:Concept ;
sh:property [
sh:path skos:inScheme ;
sh:minCount 1 ;
13
sh:property [
sh:path dc:created ;
sh:minCount 1 ;
sh:datatype xsd:dateTime
I
sh:property [
sh:path skos:inScheme ;
sh:minCount 1 ;
sh:class skos:ConceptScheme
17
sh:property [
sh:path skos:preflabel ;
sh:minCount 1 ;

schema : SkosConceptSchemeShape
a sh:NodeShape ;
sh:targetClass skos:ConceptScheme ;
sh:property [
sh:path skos:preflabel ;
sh:minCount 1 ;

Ex. 5 — Extend the corrected shapes to require each skos:ConceptScheme to have
at least two skos:hasTopConcept relations.

Answer (Ex. 5) — The corrected SHACL shapes are as follows:

schema : SkosConcept SchemeShape

a sh:NodeShape ;

sh:targetClass skos:ConceptScheme ;

sh:property [
sh:path skos:preflabel ;
sh:minCount 1 ;

1i

sh:property [
sh:path skos:hasTopConcept ;
sh:minCount 2 ;



Ex. 6 — Use the extended version of shapes to validate your SKOS vocabulary from
the previous section. Correct the failing data in your vocabulary.

Ex. 7 — Design a simple SHACL specification for FOAF — consider the 5 most im-
portat properties only and validate your FOAF profile .

4 RDFS Entailment Rules

RDFS-entailment w.r.t D interprets most RDF and RDFS vocabulary.

In the table

below, G denotes an RDF graph, D denotes the set of datatypes.

rule ‘ G contains

t;, s.t. G }:RDFS—D t;

rdfsl | any IRI dIRI € D in G (dIRI,rdf : type,rdfs : Datatype)
rdfs2 | (s,p,o0), (p,rdfs : domain, w) s,rdf : type,w)
rdfs3 | (s,p,0), (p,rdfs : range, w) o,rdf : type,w)

rdfs4

5,P,0)

s,rdf : type,rdfs : Resource)
o,rdf : type, rdfs : Resource)

rdfsh

p1,rdfs : subProperty0f, po

p1,rdfs : subProperty0f, p3)

rdfs6

rdf : type, rdf : Property

p,rdfs : subProperty0f, p)

rdfs7

)
po2, rdfs : subProperty0f, p3)
)
)

p1,rdfs : subProperty0f, ps

rdfs&

s,rdf : type,rdfs : Class)

s,rdfs : subClassOf, rdfs : Resource)

rdfs9

c1,rdfs : subClassOf, c2)
s, rdf : type,c1)

s,rdf : type, c2)

rdfs10

¢, rdf : type,rdfs : Class)

¢, rdfs : subClassOf, ¢)

rdfs11

c1,rdfs : subClassOf, c2)
co, rdfs : subClassOf, c3)

¢1,rdfs : subClassOf, c3)

rdfs12

(
(
(
(
(
(P,
(
(S P1,0 )
(s,
(
(
(
(
(
(

p,rdf : type,
rdfs : ContainerMembershipProperty)

(s,
(
(
(
(
(
(S p2,0 )
(
(
(
(
(

p,rdfs : subProperty0f,
rdfs : member)

rdfs13

(d,rdf : type,rdfs : Datatype)

(d,rdfs : subClassOf, rdfs : Literal)




