
Inference in Description Logic ALC
Petr Křemen

December 14, 2017

1 Inference Procedures
Ex. 1 — Why inconsistency of an ontology is a problem ? What is its consequence ?

Answer (Ex. 1) — The logical calculus of ALC is based on first order logic. Thus, an
inconsistent ontology entails all axioms.

Ex. 2 — Show that disjointness of two concepts can be reduced to unsatisfiability of
a single concept.

Answer (Ex. 2) — Let’s reproduce the flow of equivalent operations for this simple
transformation:

K |= C v ¬D (1)

(∀I)(I |= K)⇒ (I |= (C v ¬D)) (2)

(∀I)(I |= K)⇒ (CI ⊆ ∆I \DI)) (3)

(∀I)(I |= K)⇒ (CI ∩DI ⊆ (∆I \DI) ∩DI = {})) (4)

(∀I)(I |= K)⇒ (I |= (C uD v ⊥)) (5)

K |= C uD v ⊥ (6)

K |= (C uD) is unsatisfiable (7)

Ex. 3 — A concept C is satisfiable w.r.t. K iff it is interpreted as a non-empty set in
at least one model of K. Is it possible to find out that C is interpreted as a non-empty
set in all models of K ?

Answer (Ex. 3) — If K ∪ (C v ⊥) is inconsistent for consistent K, then CI 6= {} for
each model I of K.

2 Tableaux Algorithm for ALC
Ex. 4 — Decide, whether theALC concept ∃hasChild·(Student u Employee)u¬(∃hasChild·
Student u ∃hasChild · Employee) is satisfiable (w.r.t. an empty TBox). Show the run
of the tableau algorithm in detail.

1

Ex. 5 — Decide, whether the theory/ontology K = (T ,A) is consistent. Show the run
of the tableau algorithm in detail.

•T = {∃hasChild · > ≡ Parent}
•A = {hasChild(JOHN,MARY),Woman(MARY)}

Ex. 6 — Decide and show, whether the ontology

K1 = (T ∪ {Parent v ∀hasChild · ¬Woman},A)

is consistent.

Ex. 7 — Decide and show, whether the ontology

K2 = (T ∪ {Parent v ∃hasChild · Parent},A)

is consistent.

Answer (Ex. 7) — To check the consistency, we will use the tableau algorithm for
ALC. To keep description compact, we shorten Parent,hasChild, Woman as P, h,W
First, we need to internalize the TBOX

{∃h · > ≡ P,

P v ∃h · P}

into the single axiom > v >C , such that >C is:

(¬(∃h · >) t P) u (¬P t ∃h · >) u (¬P t ∃h · P) (8)

Now, we transform all concepts in K2 (here only >C) into negational normal form. TC :

(∀h · ⊥ t P) u (¬P t ∃h · >) u (¬P t ∃h · P) (9)

The initial state S0 = {G0} of the algorithm contains a single completion graph G0

representing the input ABOX

G0 does not contain a direct clash (there is neither ⊥, nor A and ¬A in the label of
a single node). G0 is not complete w.r.t ALC completion rules, as the v −rule is ap-
plicable. Applying the rule on the node JOHN we get a new tableau algorithm state
S1 = {G1} where G1 is

2

G1 is clash-free and not complete as well. Two rules are applicable – the v −rule and
the u−rule. We apply the latter one (as a heuristic, we expect the clash to be found
earlier using the u− rule) and get the state S2 = {G2} where G2 is

From now on we will proceed more quickly forward and show only tableau reasoner state
with the information about rule application and clashing graphs. Whenever more rules
are applicable, the one that is applied is marked in green, as well as the chosen graph.
Graphs containing a clash are no more shown in the algorithm state.

3

applicable
rules

state
before
applying
the rule

state after applying the rule

v, t {G2}

v, t,∀ {G2.1, G2.2}

G2.1.1 contains a direct clash.

v, t {G2.2}

G2.2.1 contains a direct clash.

4

applicable
rules

state
before
applying
the rule

state after applying the rule

v, t, ∃ {G2.2.2}

v, t {G2.2.2.1}

G2.2.2.1.1 contains a direct clash.

5

applicable
rules

state
before
applying
the rule

state after applying the rule

v, ∃ {G2.2.2.1.2}

a1 is blocked by JOHN as the label of a0 is a subset of
the label of JOHN .

Now, applying the sequence of rules (v,t, t, t) for MARY , a0 and a1, we get the
graph1

1We do not depict the whole algorithm state, as it contains several graphs of the similar size like G3

due to the fact that the presence of the label ∀h · ⊥ in the node a0 and MARY does lead to a clash,
contrary to the case of JOHN . This fact generates several alternative disjuncts for each node. Also
notice that we chose one set of disjuncts for a1 and another set of disjuncts for MARY and a0 in
order to avoid clash.

6

In this graph, a1 is blocked by JOHN and thus, the ∃ rules do note apply. Therefore,
this graph is complete and clash-free. The ontology K2 is consistent.

3 Practically in Protégé

Ex. 8 — Model the previous ontology in Protégé and check (using the Pellet/HermiT
reasoner) whether your solutions in the previous tasks were correct.

Ex. 9 — Adjust the Pizza ontology introduced in the previous seminar, so that the
class IceCream and CheeseyV egetableTopping become satisfiable.

Ex. 10 — Explain, why the Pizza ontology is consistent, although it contains unsat-
isfiable classes.

7

