
Data Integration Using OWL and Rules

Petr Křemen

December 14, 2018

Ex. 1 — Download the ZIP archive from the web site and unpack data1.ttl, data2.ttl
and ontology.ttl.

Ex. 2 — Take a look at each of the files in Protege.

Ex. 3 — Create a new OWL ontology in Protege, import all three ontologies in it and
save it along with the other as integration.ttl.

Answer (Ex. 3) — Two files containing the integration task are attached:

•integration.ttl – defensive mapping using mainly sub-classing (we infer data com-
pliant with our integration ontology from the original sources)

•solution.ttl – strong mapping using mainly equivalent classes (we infer data compli-
ant with our integration ontology from the original sources and also infer relation-
ships from the other data source. For example, see the additional dbo:parent
links for the d1:wenceslas-iv)

Ex. 4 — Align the classes and Object Properties of data1.ttl and data2.ttl with on-
tology.ttl. For example, you might want to say that d1:parent is a subclass of
(or equivalent class of) o:parent, or that d1:is-child-of is a subproperty of
inverse(o:has-child). Try to be as precise as possible.

Ex. 5 — Define characteristics (transitivity, functionality, etc.) of the object proper-
ties.

Ex. 6 — Define a SWRL rule that infers o:has-mother property assertions using
the o:woman class and o:has-parent property.

Ex. 7 — Define a SWRL rule that infers o:has-step-mother property assertions
out of the existing data (e.g. d1:wenceslas-iv has three step mothers (we neglect
that they need not have lived during Wenceslas’ life).

Ex. 8 — Define the class mother-with-at-least-two-children. Which in-
stances belong to it?

1



Ex. 9 — Open the SPARQL Query Tab (You will need to have SNAP Plugin installed)
and construct a query that retrieves all pairs of step siblings (with the same logic as the
SWRL rule in ontology.ttl).

Answer (Ex. 9) — The query might look like

PREFIX o: <http://onto.fel.cvut.cz/ontologies/osw2018/s11/ontology/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT *
WHERE {

?f o:has-child ?c1 ;
o:has-child ?c2 .

?m1 o:has-child ?c1 ;
o:has-spouse ?f .

?m2 o:has-child ?c2 ;
o:has-spouse ?f .

?m1 owl:differentFrom ?m2 .
?c1 owl:differentFrom ?c2 .
FILTER(str(?m1)>str(?m2))

}

Ex. 10 — Take the resulting artifact and upload it into GraphDB. Compare the in-
ferences to those in Protege.

1 References

1. https://www.w3.org/Submission/SWRL

2


