Inference in Description Logic \mathcal{ALC}

Petr Křemen

December 6, 2018

1 Inference Procedures

Ex. 1 — Why inconsistency of an ontology is a problem ? What is its consequence ?

Ex. 2 — Show that disjointness of two concepts can be reduced to unsatisfiability of a single concept.

Ex. 3 — A concept *C* is satisfiable w.r.t. \mathcal{K} iff it is interpreted as a non-empty set in at least one model of \mathcal{K} . Is it possible to find out that *C* is interpreted as a non-empty set in all models of \mathcal{K} ?

2 Tableaux Algorithm for \mathcal{ALC}

Ex. 4 — Decide, whether the \mathcal{ALC} concept $\exists hasChild \cdot (Student \sqcap Employee) \sqcap \neg (\exists hasChild \cdot Student \sqcap \exists hasChild \cdot Employee)$ is satisfiable (w.r.t. an empty TBox). Show the run of the tableau algorithm in detail.

Ex. 5 — Decide, whether the theory/ontology $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent. Show the run of the tableau algorithm in detail.

$$\bullet \mathcal{T} = \{ \exists hasChild \cdot \top \equiv Parent \} \\ \bullet \mathcal{A} = \{ hasChild(JOHN, MARY), Woman(MARY) \} \\$$

Ex. 6 — Decide and show, whether the ontology

$$\mathcal{K}_1 = (\mathcal{T} \cup \{Parent \sqsubseteq \forall hasChild \cdot \neg Woman\}, \mathcal{A})$$

is consistent.

Ex. 7 — Decide and show, whether the ontology

 $\mathcal{K}_2 = (\mathcal{T} \cup \{Parent \sqsubseteq \exists hasChild \cdot Parent\}, \mathcal{A})$

is consistent.

3 Practically in Protégé

Ex. 8 — Model the previous ontology in Protégé and check (using the Pellet/HermiT reasoner) whether your solutions in the previous tasks were correct.

Ex. 9 — Adjust the Pizza ontology introduced in the previous seminar, so that the class IceCream and CheeseyVegetableTopping become satisfiable.

 $\mathbf{Ex.}~\mathbf{10}$ — Explain, why the Pizza ontology is consistent, although it contains unsatisfiable classes.