
Description Logics – Querying

Petr Křemen

petr.kremen@fel.cvut.cz

December 13, 2018

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 1 / 49

Outline

1 What if OWL is not enough?

2 Complex Queries
Evaluation of Conjunctive Queries in ALC

3 Modeling Error Explanation
Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 2 / 49

Problems

What if OWL is not enough?
What if more complex queries than consistency checking are
necessary?
What to do if an ontology is inconsistent?

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 3 / 49

What if OWL is not enough?

1 What if OWL is not enough?

2 Complex Queries
Evaluation of Conjunctive Queries in ALC

3 Modeling Error Explanation
Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

What if OWL is not enough?

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 4 / 49

What if OWL is not enough?

SROIQ (OWL) Revision

Man v Person
Man v ¬Woman
Man u ∃hasChild ·Man v FatherOfSons
hasSon v hasChild
hasParent ◦ hasBrother v hasUncle
trans(hasDescendant)
sym(hasSpouse)
fun(hasMother)
hasWife v hasHusband−

How to express hasStepSibling?

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 4 / 49

What if OWL is not enough?

How to express hasStepSibling?

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 5 / 49

What if OWL is not enough?

How to express hasStepSibling?

hasSpouse(?m1, ?f), hasSpouse(?m2, ?f),
hasChild(?m1, ?c1), hasChild(?m2, ?c2),

hasChild(?f , ?c1), hasChild(?f , ?c2), ?c1! =?c2
→hasStepSibling(?c1, ?c2)

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 6 / 49

What if OWL is not enough?

OWL2-DL + rules undecidable

... unless variables in rules are restricted to match named individuals only.

DL-safe Rules
A rule is DL-safe, if its variables are distinguished, i.e. thet can only match
named individuals in the ontology. Consistency checking of OWL2-DL +
DL-safe rules is decidable.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 7 / 49

Complex Queries

1 What if OWL is not enough?

2 Complex Queries
Evaluation of Conjunctive Queries in ALC

3 Modeling Error Explanation
Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

Complex Queries

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 8 / 49

Complex Queries

What if we need to answer a complex query?

Consistency checking is not enough. What if we would like to ask
more, e.g. ... How many czech writers died in the Czech
Republic according to DBPedia ?

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dcterms: <http://purl.org/dc/terms/>
SELECT COUNT(?x)
{
?x dbo:deathPlace dbr:Czech_Republic ;

dcterms:subject dbr:Category:Czech_writers .
}

at the following endpoint:
http://dbpedia-live.openlinksw.com/sparql/

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 8 / 49

http://dbpedia-live.openlinksw.com/sparql/

Complex Queries

Conjunctive Queries

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 9 / 49

Complex Queries

Metaqueries

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 10 / 49

Complex Queries

Query Types
Conjunctive (ABox) queries – queries asking for individual tuples

complying with a graph-like pattern.

Example
“Find all mothers and their daughters having at least one brother.” :

Q(?x , ?z) ← Woman(?x), hasChild(?x , ?y), hasChild(?x , ?z),
Man(?y),Woman(?z)

Metaqueries – queries asking for individual/concept/role tuples. There are
several languages for metaqueries, e.g. SPARQL-DL,
OWL-SAIQL, etc.

Example
“Find all people together with their type.” in SPARQL-DL:

Q(?x , ?c)← TYPE (?x , ?c),SUBCLASSOF (?c,Person)

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 11 / 49

Complex Queries

Query Types
Conjunctive (ABox) queries – queries asking for individual tuples

complying with a graph-like pattern.
Example
“Find all mothers and their daughters having at least one brother.” :

Q(?x , ?z) ← Woman(?x), hasChild(?x , ?y), hasChild(?x , ?z),
Man(?y),Woman(?z)

Metaqueries – queries asking for individual/concept/role tuples. There are
several languages for metaqueries, e.g. SPARQL-DL,
OWL-SAIQL, etc.

Example
“Find all people together with their type.” in SPARQL-DL:

Q(?x , ?c)← TYPE (?x , ?c),SUBCLASSOF (?c,Person)

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 11 / 49

Complex Queries

Query Types
Conjunctive (ABox) queries – queries asking for individual tuples

complying with a graph-like pattern.
Example
“Find all mothers and their daughters having at least one brother.” :

Q(?x , ?z) ← Woman(?x), hasChild(?x , ?y), hasChild(?x , ?z),
Man(?y),Woman(?z)

Metaqueries – queries asking for individual/concept/role tuples. There are
several languages for metaqueries, e.g. SPARQL-DL,
OWL-SAIQL, etc.

Example
“Find all people together with their type.” in SPARQL-DL:

Q(?x , ?c)← TYPE (?x , ?c),SUBCLASSOF (?c,Person)

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 11 / 49

Complex Queries

Query Types
Conjunctive (ABox) queries – queries asking for individual tuples

complying with a graph-like pattern.
Example
“Find all mothers and their daughters having at least one brother.” :

Q(?x , ?z) ← Woman(?x), hasChild(?x , ?y), hasChild(?x , ?z),
Man(?y),Woman(?z)

Metaqueries – queries asking for individual/concept/role tuples. There are
several languages for metaqueries, e.g. SPARQL-DL,
OWL-SAIQL, etc.

Example
“Find all people together with their type.” in SPARQL-DL:

Q(?x , ?c)← TYPE (?x , ?c),SUBCLASSOF (?c,Person)

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 11 / 49

Complex Queries

Conjunctive (ABox) queries

Conjunctive (ABox) queries are analogous to database
SELECT-PROJECT-JOIN queries.

Conjunctive Query

Q(?x1, . . . , ?xD)← t1, . . . tT ,

where each ti is either
C(yk) (where C is a concept)
R(yk , yl) (where R is a role)

and yi is either (i) an individual, or (ii) variable from a new set V
(variables will be differentiated from individuals by the prefix “?”). We
need all ?xi to be present also in one of ti .

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 12 / 49

Complex Queries

Conjunctive ABox Queries – Semantics

Conjunctive queries of the form Q() are called boolean – such queries
only test existence of a relational structure in each model I of the
ontology K.
Consider any interpretation I = (∆I , ·I). Evaluation η is a function
from the set of individuals and variables into ∆I that coincides with
I on individuals.
Then I |=η Q(), iff

η(yk) ∈ CI for each atom C(yk) from Q() and
〈η(yk), η(yl)〉 ∈ RI for each atom R(yk , yl) from Q()

Interpretation I is a model of Q(), iff I |=η Q() for some η.
Next, K |= Q() (Q() is satisfiable in K) iff I |= Q() whenever I |= K

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 13 / 49

Complex Queries

Conjunctive ABox Queries – Variables

Queries without variables are not practically interesting. For queries
with variables we define semantics as follows. An N-tuple 〈i1, . . . , in〉
is a solution to Q(?x1, . . . , ?xn) in theory K, whenever K |= Q′(), for
a boolean query Q′ obtained from Q by replacing all occurences of
?x1 in all tk by an individual i1, etc.

In conjunctive queries two types of variables can be defined:

distinguished occur in the query head as well as body, e.g. ?x , ?z in
the previous example. These variables are evaluated as
domain elements that are necessarily interpretations of
some individual from K. That individual is the binding
to the distinguished variable in the query result.

undistinguished occur only in the query body, e.g. ?y in the previous
example. Their can be interpretated as any domain
elements.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 14 / 49

Complex Queries

Conjunctive ABox Queries – Variables

Queries without variables are not practically interesting. For queries
with variables we define semantics as follows. An N-tuple 〈i1, . . . , in〉
is a solution to Q(?x1, . . . , ?xn) in theory K, whenever K |= Q′(), for
a boolean query Q′ obtained from Q by replacing all occurences of
?x1 in all tk by an individual i1, etc.
In conjunctive queries two types of variables can be defined:

distinguished occur in the query head as well as body, e.g. ?x , ?z in
the previous example. These variables are evaluated as
domain elements that are necessarily interpretations of
some individual from K. That individual is the binding
to the distinguished variable in the query result.

undistinguished occur only in the query body, e.g. ?y in the previous
example. Their can be interpretated as any domain
elements.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 14 / 49

Complex Queries

Conjunctive ABox Queries – Variables

Queries without variables are not practically interesting. For queries
with variables we define semantics as follows. An N-tuple 〈i1, . . . , in〉
is a solution to Q(?x1, . . . , ?xn) in theory K, whenever K |= Q′(), for
a boolean query Q′ obtained from Q by replacing all occurences of
?x1 in all tk by an individual i1, etc.
In conjunctive queries two types of variables can be defined:
distinguished occur in the query head as well as body, e.g. ?x , ?z in

the previous example. These variables are evaluated as
domain elements that are necessarily interpretations of
some individual from K. That individual is the binding
to the distinguished variable in the query result.

undistinguished occur only in the query body, e.g. ?y in the previous
example. Their can be interpretated as any domain
elements.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 14 / 49

Complex Queries

Conjunctive ABox Queries – Variables

Queries without variables are not practically interesting. For queries
with variables we define semantics as follows. An N-tuple 〈i1, . . . , in〉
is a solution to Q(?x1, . . . , ?xn) in theory K, whenever K |= Q′(), for
a boolean query Q′ obtained from Q by replacing all occurences of
?x1 in all tk by an individual i1, etc.
In conjunctive queries two types of variables can be defined:
distinguished occur in the query head as well as body, e.g. ?x , ?z in

the previous example. These variables are evaluated as
domain elements that are necessarily interpretations of
some individual from K. That individual is the binding
to the distinguished variable in the query result.

undistinguished occur only in the query body, e.g. ?y in the previous
example. Their can be interpretated as any domain
elements.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 14 / 49

Complex Queries

Conjunctive Queries – Examples

Example
Let’s have a theory K4 = (∅, {(∃R1 · C1)(i1),R2(i1, i2),C2(i2)}).

Does K |= Q1() hold for Q1()← R1(?x1, ?x2) ?
What are the solutions of the query Q2(?x1)← R1(?x1, ?x2) for K ?
What are the solutions of the query Q3(?x1, ?x2)← R1(?x1, ?x2) for
K ?

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 15 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Evaluation of Conjunctive Queries
in ALC

1 What if OWL is not enough?

2 Complex Queries
Evaluation of Conjunctive Queries in ALC

3 Modeling Error Explanation
Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 16 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Satisfiability of ALC Boolean Queries

Satisfiability of the boolean query Q() having a tree shape can be
checked by means of the rolling-up technique.

=⇒

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 17 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Rolling-up Technique

Each two atoms C1(yk) and C2(yk) can be replaced by a single query
atom of the form (C1 u C2)(yk).

Each query atom of the form R(yk , yl) can be replaced by the term
(∃R · X)(yk), if yl occurs in at most one other query atom of the
form C(yl) (if there is no C(yl) atom in the query, consider w.l.o.g.
that C is >). X equals to

(i) C , whenever yl is a variable,
(ii)C u Yl , whenever yl is an individual. Yl is a representative concept
of individual yl occuring neither in K nor in Q. For each yl it is
necessary to extend ABox of K with concept assertion Yl (yl).

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 18 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Rolling-up Technique

Each two atoms C1(yk) and C2(yk) can be replaced by a single query
atom of the form (C1 u C2)(yk).
Each query atom of the form R(yk , yl) can be replaced by the term
(∃R · X)(yk), if yl occurs in at most one other query atom of the
form C(yl) (if there is no C(yl) atom in the query, consider w.l.o.g.
that C is >). X equals to

(i) C , whenever yl is a variable,
(ii)C u Yl , whenever yl is an individual. Yl is a representative concept
of individual yl occuring neither in K nor in Q. For each yl it is
necessary to extend ABox of K with concept assertion Yl (yl).

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 18 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Rolling-up Technique

Each two atoms C1(yk) and C2(yk) can be replaced by a single query
atom of the form (C1 u C2)(yk).
Each query atom of the form R(yk , yl) can be replaced by the term
(∃R · X)(yk), if yl occurs in at most one other query atom of the
form C(yl) (if there is no C(yl) atom in the query, consider w.l.o.g.
that C is >). X equals to

(i) C , whenever yl is a variable,

(ii)C u Yl , whenever yl is an individual. Yl is a representative concept
of individual yl occuring neither in K nor in Q. For each yl it is
necessary to extend ABox of K with concept assertion Yl (yl).

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 18 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Rolling-up Technique

Each two atoms C1(yk) and C2(yk) can be replaced by a single query
atom of the form (C1 u C2)(yk).
Each query atom of the form R(yk , yl) can be replaced by the term
(∃R · X)(yk), if yl occurs in at most one other query atom of the
form C(yl) (if there is no C(yl) atom in the query, consider w.l.o.g.
that C is >). X equals to

(i) C , whenever yl is a variable,
(ii)C u Yl , whenever yl is an individual. Yl is a representative concept
of individual yl occuring neither in K nor in Q. For each yl it is
necessary to extend ABox of K with concept assertion Yl (yl).

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 18 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Satisfiability of ALC Boolean Queries (2)

. . . after rolling-up the query we obtain the query Q()′ ← C(y), that is
satisfied in K, iff Q() is satisfied in K:

If y is an individual, then Q′() is satisfied, whenever K |= C(y)
(i.e. K ∪ {(¬C)(y)} is inconsistent)

If y is a variable, then Q′() is satisfied, whenever K∪ {C v ⊥} is
inconsistent. Why ?

Example
Consider a query Q4()← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3). This query
can be rolled-up into the query Q′4 ← (∃R1 · >u∃R2 ·C2)(?x1). This query
is satisfiable in K4, as K4 ∪ {(∃R1 · > u ∃R2 · C2) v ⊥} is inconsistent.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 19 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Satisfiability of ALC Boolean Queries (2)

. . . after rolling-up the query we obtain the query Q()′ ← C(y), that is
satisfied in K, iff Q() is satisfied in K:

If y is an individual, then Q′() is satisfied, whenever K |= C(y)
(i.e. K ∪ {(¬C)(y)} is inconsistent)
If y is a variable, then Q′() is satisfied, whenever K∪ {C v ⊥} is
inconsistent. Why ?

Example
Consider a query Q4()← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3). This query
can be rolled-up into the query Q′4 ← (∃R1 · >u∃R2 ·C2)(?x1). This query
is satisfiable in K4, as K4 ∪ {(∃R1 · > u ∃R2 · C2) v ⊥} is inconsistent.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 19 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Satisfiability of Boolean Queries in ALC (3)

... and what to do with queries with distinguished variables ?
Let’s consider just queries that form “connected component” and
contain for some variable yk at least two query atoms of the form
R1(y1, yk) and R2(y2, yk).

Question: Why is it enough to take just one connected component?
Let’s make use of the tree model property of ALC. Each pair of
atoms R1(y1, yk) and R2(y2, yk) can be satisfied only if yk is
interpreted as a domain element, that is an interpretation of an
individual – yk can be treated as distinguished. Why (see next
slide) ?
For SHOIN and SROIQ there is no sound and complete decision
procedure for general boolean queries.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 20 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Satisfiability of Boolean Queries in ALC (3)

... and what to do with queries with distinguished variables ?
Let’s consider just queries that form “connected component” and
contain for some variable yk at least two query atoms of the form
R1(y1, yk) and R2(y2, yk).
Question: Why is it enough to take just one connected component?

Let’s make use of the tree model property of ALC. Each pair of
atoms R1(y1, yk) and R2(y2, yk) can be satisfied only if yk is
interpreted as a domain element, that is an interpretation of an
individual – yk can be treated as distinguished. Why (see next
slide) ?
For SHOIN and SROIQ there is no sound and complete decision
procedure for general boolean queries.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 20 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Satisfiability of Boolean Queries in ALC (3)

... and what to do with queries with distinguished variables ?
Let’s consider just queries that form “connected component” and
contain for some variable yk at least two query atoms of the form
R1(y1, yk) and R2(y2, yk).
Question: Why is it enough to take just one connected component?
Let’s make use of the tree model property of ALC. Each pair of
atoms R1(y1, yk) and R2(y2, yk) can be satisfied only if yk is
interpreted as a domain element, that is an interpretation of an
individual – yk can be treated as distinguished. Why (see next
slide) ?

For SHOIN and SROIQ there is no sound and complete decision
procedure for general boolean queries.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 20 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Satisfiability of Boolean Queries in ALC (3)

... and what to do with queries with distinguished variables ?
Let’s consider just queries that form “connected component” and
contain for some variable yk at least two query atoms of the form
R1(y1, yk) and R2(y2, yk).
Question: Why is it enough to take just one connected component?
Let’s make use of the tree model property of ALC. Each pair of
atoms R1(y1, yk) and R2(y2, yk) can be satisfied only if yk is
interpreted as a domain element, that is an interpretation of an
individual – yk can be treated as distinguished. Why (see next
slide) ?
For SHOIN and SROIQ there is no sound and complete decision
procedure for general boolean queries.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 20 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

ALC Model Example

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 21 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Queries with Distinguished Variables – naive pruning
Consider arbitrary query Q(?x1, . . . , ?xD). How to evaluate it ?

naive way: Replace each distinguished variable xi with each
individual occuring in K. Solutions are those D-tuples 〈i1, . . . , iD〉, for
which a boolean query created from Q by replacing each xk with ik is
satisfiable.

Remind that K4 = (∅, {(∃R1 · C1)(i1),R2(i1, i2),C2(i2)}). The query

Q5(?x1)← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3)

has solution 〈i1〉 as

Q′5()← R1(i1, ?x2),R2(i1, ?x3),C2(?x3)

can be rolled into Q′′5 () for which K4 |= Q′′5 :

Q′′5 ()← (∃R1 · > u ∃R2 · C2)(i1)

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 22 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Queries with Distinguished Variables – naive pruning
Consider arbitrary query Q(?x1, . . . , ?xD). How to evaluate it ?

naive way: Replace each distinguished variable xi with each
individual occuring in K. Solutions are those D-tuples 〈i1, . . . , iD〉, for
which a boolean query created from Q by replacing each xk with ik is
satisfiable.

Remind that K4 = (∅, {(∃R1 · C1)(i1),R2(i1, i2),C2(i2)}). The query

Q5(?x1)← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3)

has solution 〈i1〉 as

Q′5()← R1(i1, ?x2),R2(i1, ?x3),C2(?x3)

can be rolled into Q′′5 () for which K4 |= Q′′5 :

Q′′5 ()← (∃R1 · > u ∃R2 · C2)(i1)

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 22 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Queries with Distinguished Variables – naive pruning
... another example

The query

Q6(?x1, ?x3)← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3)

has solution 〈i1, i2〉 as

Q′6()← R1(i1, ?x2),R2(i1, i2),C2(i2)

can be rolled into Q′′6 for which K4∪{I2(i2)} |= Q′′6 .

Q′′6 ()← (∃R1 · > u ∃R2 · (C2 u I2))(i1).

Similarly Q7(?x1, ?x2)← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3) has no
solution.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 23 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Queries with Distinguished Variables – iterative pruning

... a bit more clever strategy than replacing all variables: First,
let’s replace just the first variable ?x1 with each individual from K,
resulting in Q2. If the subquery of Q2 containing all query atoms from
Q2 without distinguished variables is not a logical consequence of K,
then we do not need to test potential bindings for other variables.

Many other optimizations are available.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 24 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Queries with Distinguished Variables – iterative pruning

... a bit more clever strategy than replacing all variables: First,
let’s replace just the first variable ?x1 with each individual from K,
resulting in Q2. If the subquery of Q2 containing all query atoms from
Q2 without distinguished variables is not a logical consequence of K,
then we do not need to test potential bindings for other variables.
Many other optimizations are available.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 24 / 49

Complex Queries Evaluation of Conjunctive Queries in ALC

Queries with Distinguished Variables – iterative pruning

For the query Q6(?x1, ?x3), the naive strategy needs to check four different
bindings (resulting in four tableau algorithm runs)

〈i1, i1〉,
〈i1, i2〉,
〈i2, i1〉,
〈i2, i2〉.

Out of them only 〈i1, i2〉 is a solution for Q6. Consider only partial binding
〈i2〉 for ?x1. Applying this binding to Q6 we get
Q7(?x3) = R1(i2, ?x2),R2(i2, ?x3),C2(?x3). Its distinguished-variable-free
subquery is Q′7() = R1(i2, ?x2) and K4 2 Q′7. Because of monotonicity of
ALC, we do not need to check the two bindings for ?x3 in this case which
saves us one tableau algorithm run.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 25 / 49

Modeling Error Explanation

1 What if OWL is not enough?

2 Complex Queries
Evaluation of Conjunctive Queries in ALC

3 Modeling Error Explanation
Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

Modeling Error Explanation

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 26 / 49

Modeling Error Explanation

Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do with it
?

We can start iterating through all axioms in the theory and look,
“what went wrong”.
... but hardly in case we have hundred thousand axioms
A solution might be to ask the computer to localize the axioms
causing the problem for us.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 26 / 49

Modeling Error Explanation

Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do with it
?
We can start iterating through all axioms in the theory and look,
“what went wrong”.

... but hardly in case we have hundred thousand axioms
A solution might be to ask the computer to localize the axioms
causing the problem for us.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 26 / 49

Modeling Error Explanation

Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do with it
?
We can start iterating through all axioms in the theory and look,
“what went wrong”.
... but hardly in case we have hundred thousand axioms

A solution might be to ask the computer to localize the axioms
causing the problem for us.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 26 / 49

Modeling Error Explanation

Motivation

When an inference engine claims inconsistency of an (ALC)
theory/unsatisfiability of an (ALC) concept, what can we do with it
?
We can start iterating through all axioms in the theory and look,
“what went wrong”.
... but hardly in case we have hundred thousand axioms
A solution might be to ask the computer to localize the axioms
causing the problem for us.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 26 / 49

Modeling Error Explanation

DNA

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 27 / 49

Modeling Error Explanation

MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal
set of axioms responsible for concept unsatisfiability.

Example
Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,
α2 : Man v ¬Woman,
α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 28 / 49

Modeling Error Explanation

MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal
set of axioms responsible for concept unsatisfiability.

Example
Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,
α2 : Man v ¬Woman,
α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 28 / 49

Modeling Error Explanation

MUPS – example

Minimal unsatisfiability preserving subterminology (MUPS) is a minimal
set of axioms responsible for concept unsatisfiability.

Example
Consider theory K5 = ({α1, α2, α3}, ∅)

α1 : Person v ∃hasParent · (Man uWoman) u ∀hasParent · ¬Person,
α2 : Man v ¬Woman,
α3 : Man tWoman v Person.

Unsatisfiability of Person comes independently from two axiom sets
(MUPSes), namely {α1, α2} and {α1, α3}. Check it yourself !

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 28 / 49

Modeling Error Explanation

MUPS

Currently two approaches exist for searching all MUPSes for given
concept:
black-box methods perform many satisfiability tests using existing

inference engine.
, flexible and easily reusable for another (description) logic
/ time consuming

glass-box methods all integrated into an existing reasoning (typically
tableau) algorithm.

, efficient
/ hardly reusable for another (description) logic.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 29 / 49

Modeling Error Explanation

Glass-box methods

For ALC there exists a complete algorithm with the following idea:
tableau algorithm for ALC is extended in such way that it “remembers
which axioms were used during completion graph construction”.
for each completion graph containing a clash, the axioms that were
used during its construction can be transformed into a MUPS.

Unfortunately, complete glass-box methods do not exist for OWL-DL
and OWL2-DL. The same idea (tracking axioms used during
completion graph construction) can be used also for these logics, but
only as a preprocessing reducing the set of axioms used by a
black-box algorithm.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 30 / 49

Modeling Error Explanation Black-box methods

Black-box methods
1 What if OWL is not enough?

2 Complex Queries
Evaluation of Conjunctive Queries in ALC

3 Modeling Error Explanation
Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 31 / 49

Modeling Error Explanation Black-box methods

Task formulation

Let’s have a set of axioms X of given DL and reasoner R for given
DL. We want to find MUPSes for :

1 concept unsatisfiability, ‘
2 theory (ontology) inconsistency,
3 arbitrary entailment.

It can be shown (see [0]) that w.l.o.g. we can deal only with concept
unsatisfiability.
MUPS: Let’s denote MUPS(C ,Y) a minimal subset
MUPS(C ,Y) ⊆ Y ⊆ X causing unsatisfiability of C .
Diagnose: Let’s denote DIAG(C ,Y) a minimal subset
DIAG(C ,Y) ⊆ Y ⊆ X , such that if DIAG(C ,Y) is removed from Y ,
the concept C becomes satisfiable.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 32 / 49

Modeling Error Explanation Black-box methods

Task formulation (2)

Let’s focus on concept C unsatisfiability. Denote

R(C ,Y) =
{

true iffY 2 (C v ⊥)
false iffY |= (C v ⊥))

}
.

There are many methods (see [0]). We introduce just two of them:
Algorithms based on CS-trees.
Algorithm for computing a single MUPS[0] + Reiter algorithm [0].

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 33 / 49

Modeling Error Explanation Algorithms based on CS-trees

Algorithms based on CS-trees
1 What if OWL is not enough?

2 Complex Queries
Evaluation of Conjunctive Queries in ALC

3 Modeling Error Explanation
Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 34 / 49

Modeling Error Explanation Algorithms based on CS-trees

CS-trees

A naive solution: test for each set of axioms from T ∪ A for
K = (T ,A), whether the set causes unsatisfiability – minimal sets of
this form are MUPSes.
Conflict-set trees (CS-trees) systematize exploration of all these
subsets of T ∪ A. The main gist :

If we found a set of axioms X that do not cause unsatisfiability of
C (i.e. X 2 C v ⊥), then we know (and thus can avoid asking
reasoner) that Y 2 C v ⊥ for each Y ⊆ X.

CS-tree is a representation of the state space, where each state s has
the form (D,P), where

D is a set of axioms that necessarily has to be part of all MUPSes
found while exploring the subtree of s.
P is a set of axioms that might be part of some MUPSes found while
exploring the subtree of s.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 35 / 49

Modeling Error Explanation Algorithms based on CS-trees

CS-tree Exploration – Example
Example
A CS-tree for unsatisfiability of Person (abbr. Pe, not to be mixed with
the set P) in K5 = {α1, α2, α3}:

Pe v ∃hP · (M uW) u ∀hP · ¬Pe︸ ︷︷ ︸
α1

, M v ¬W︸ ︷︷ ︸
α2

, M tW v Pe︸ ︷︷ ︸
α3

.

In gray states, the concept
Person is satisfiable
(R(Pe,D ∪ P) = true). States
with a dotted border are pruned
by the algorithm.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 36 / 49

Modeling Error Explanation Algorithms based on CS-trees

CS-tree Exploration
The following algorithm is exponential in the number of tableau algorithm
runs.

1 (Init) The root of the tree is an initial state s0 = (∅,K) – apriori, we
don’t know any axiom being necessarily in a MUPS (Ds0 = ∅), but
potentially all axioms can be there (Ps0 = T ∪ A). Next, we define
Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration. Otherwise
pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can cause
unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and remove
from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For Ps = α1, . . . , αN we
push to Z a new state (Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we
continue with step 2.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 37 / 49

Modeling Error Explanation Algorithms based on CS-trees

CS-tree Exploration
The following algorithm is exponential in the number of tableau algorithm
runs.

1 (Init) The root of the tree is an initial state s0 = (∅,K) – apriori, we
don’t know any axiom being necessarily in a MUPS (Ds0 = ∅), but
potentially all axioms can be there (Ps0 = T ∪ A). Next, we define
Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration. Otherwise
pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can cause
unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and remove
from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For Ps = α1, . . . , αN we
push to Z a new state (Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we
continue with step 2.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 37 / 49

Modeling Error Explanation Algorithms based on CS-trees

CS-tree Exploration
The following algorithm is exponential in the number of tableau algorithm
runs.

1 (Init) The root of the tree is an initial state s0 = (∅,K) – apriori, we
don’t know any axiom being necessarily in a MUPS (Ds0 = ∅), but
potentially all axioms can be there (Ps0 = T ∪ A). Next, we define
Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration. Otherwise
pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can cause
unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and remove
from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For Ps = α1, . . . , αN we
push to Z a new state (Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we
continue with step 2.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 37 / 49

Modeling Error Explanation Algorithms based on CS-trees

CS-tree Exploration
The following algorithm is exponential in the number of tableau algorithm
runs.

1 (Init) The root of the tree is an initial state s0 = (∅,K) – apriori, we
don’t know any axiom being necessarily in a MUPS (Ds0 = ∅), but
potentially all axioms can be there (Ps0 = T ∪ A). Next, we define
Z = (s0) and R = ∅

2 (Depth First Search) If Z is empty, stop the exploration. Otherwise
pop the first element s from Z .

3 (Test) If R(C ,Ds ∪ Ps) = true then no subset of Ds ∪ Ps can cause
unsatisfiability – we continue with step 2.

4 (Finding an unsatisfiable set) We add Ds ∪ Ps into R and remove
from R all s ′ ∈ R such that Ds ∪ Ps ⊆ s ′. For Ps = α1, . . . , αN we
push to Z a new state (Ds ∪ {α1, . . . , αi−1},Ps \ {α1, . . . , αi}) – we
continue with step 2.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 37 / 49

Modeling Error Explanation Algorithms based on CS-trees

CS-tree Exploration (2)

Soundness : Step 4 is important – here, we cover all possibilities. It
always holds that Ds ∪ Ps differs to D′s ∪ P ′s by just one element,
where s ′ is a successor of s.

Finiteness : Set Ds ∪ Ps is finite at the beginning and gets smaller
with the tree depth. Furthermore, in step 4 we generate only finite
number of states.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 38 / 49

Modeling Error Explanation Algorithms based on CS-trees

CS-tree Exploration (2)

Soundness : Step 4 is important – here, we cover all possibilities. It
always holds that Ds ∪ Ps differs to D′s ∪ P ′s by just one element,
where s ′ is a successor of s.
Finiteness : Set Ds ∪ Ps is finite at the beginning and gets smaller
with the tree depth. Furthermore, in step 4 we generate only finite
number of states.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 38 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Algorithm based on Reiter’s
Algorithm

1 What if OWL is not enough?

2 Complex Queries
Evaluation of Conjunctive Queries in ALC

3 Modeling Error Explanation
Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 39 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Another Approach – Reiter’s Algorithm

There is an alternative to CS-trees:
1 Find a single (arbitrary) MUPS (singleMUPS in the next slides).
2 “remove the source of unsatisfiability provided by MUPS” (Reiter’s

algorithm in the next slides) from the set of axioms go explore the
remaining axioms in the same manner.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 40 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Algorithm based on Reiter’s
Algorithm

1 What if OWL is not enough?

2 Complex Queries
Evaluation of Conjunctive Queries in ALC

3 Modeling Error Explanation
Black-box methods
Algorithms based on CS-trees
Algorithm based on Reiter’s Algorithm
Algorithm based on Reiter’s Algorithm

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 41 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding a single MUPS(C , Y) – example

Example
The run of singleMUPS(Person,K5) introduced next.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 42 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding a single MUPS(C , Y) – example

Example
The run of singleMUPS(Person,K5) introduced next.

1.PHASE :
K5 = {α1, α2, α3} R(Person, {α1}) = true
S = {α1}

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 42 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding a single MUPS(C , Y) – example

Example
The run of singleMUPS(Person,K5) introduced next.

1.PHASE :
K5 = {α1, α2, α3} R(Person, {α1, α2}) = false
S = {α1, α2}

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 42 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding a single MUPS(C , Y) – example

Example
The run of singleMUPS(Person,K5) introduced next.

1.PHASE :
K5 = {α1, α2, α3} R(Person, {α1, α2}) = false
S = {α1, α2}

2.PHASE :
S = {α1, α2} R(Person, {α1, α2} − {α1}) = true
K = {α1}

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 42 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding a single MUPS(C , Y) – example

Example
The run of singleMUPS(Person,K5) introduced next.

1.PHASE :
K5 = {α1, α2, α3} R(Person, {α1, α2}) = false
S = {α1, α2}

2.PHASE :
S = {α1, α2} R(Person, {α1, α2} − {α2}) = true
K = {α1, α2}

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 42 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

singleMUPS(C , Y) – finding a single MUPS

The following algorithm is polynomial in the number of tableau algorithm
applications – the computational complexity stems from the complexity of
tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅

2 (Finding superset of MUPS) While R(C , S) = false, then
S = S ∪ {α} for some α ∈ Y \ S.

3 (Pruning found set) For each α ∈ S \K evaluate R(C ,S \ {α}). If the
result is false, then K = K ∪ {α}. The resulting K is itself a MUPS.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 43 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

singleMUPS(C , Y) – finding a single MUPS

The following algorithm is polynomial in the number of tableau algorithm
applications – the computational complexity stems from the complexity of
tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅
2 (Finding superset of MUPS) While R(C , S) = false, then

S = S ∪ {α} for some α ∈ Y \ S.

3 (Pruning found set) For each α ∈ S \K evaluate R(C ,S \ {α}). If the
result is false, then K = K ∪ {α}. The resulting K is itself a MUPS.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 43 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

singleMUPS(C , Y) – finding a single MUPS

The following algorithm is polynomial in the number of tableau algorithm
applications – the computational complexity stems from the complexity of
tableau algorithm itself.

1 (Initialization) Denote S = ∅, K = ∅
2 (Finding superset of MUPS) While R(C , S) = false, then

S = S ∪ {α} for some α ∈ Y \ S.
3 (Pruning found set) For each α ∈ S \K evaluate R(C ,S \ {α}). If the

result is false, then K = K ∪ {α}. The resulting K is itself a MUPS.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 43 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding all MUPSes – Reiter Algorithm, example

Example (continued)

The algorithm ends up with two MUPSes {α1, α2} a {α1, α3}. “For
free” we got diagnoses {α1} a {α2, α3}.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 44 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding all MUPSes – Reiter Algorithm, example

Example (continued)

The algorithm ends up with two MUPSes {α1, α2} a {α1, α3}. “For
free” we got diagnoses {α1} a {α2, α3}.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 44 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding all MUPSes – Reiter Algorithm

Reiter algorithm runs singleMUPS(C ,Y) multiple times to construct
so called “Hitting Set Tree”, nodes of which are pairs (Ki ,Mi), where
Ki lacks some axioms comparing to K and Mi = singleMUPS(C ,Ki),
or Mi = “SAT ′′, if C is satisfiable w.r.t. Ki .

Paths from the root to leaves build up diagnoses (i.e. minimal sets of
axioms, each of which removed from K causes satisfiability of C).
Number of singleMUPS(C ,Y) calls is at most exponential w.r.t. the
initial axioms count. Why ?

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 45 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding all MUPSes – Reiter Algorithm

Reiter algorithm runs singleMUPS(C ,Y) multiple times to construct
so called “Hitting Set Tree”, nodes of which are pairs (Ki ,Mi), where
Ki lacks some axioms comparing to K and Mi = singleMUPS(C ,Ki),
or Mi = “SAT ′′, if C is satisfiable w.r.t. Ki .
Paths from the root to leaves build up diagnoses (i.e. minimal sets of
axioms, each of which removed from K causes satisfiability of C).

Number of singleMUPS(C ,Y) calls is at most exponential w.r.t. the
initial axioms count. Why ?

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 45 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding all MUPSes – Reiter Algorithm

Reiter algorithm runs singleMUPS(C ,Y) multiple times to construct
so called “Hitting Set Tree”, nodes of which are pairs (Ki ,Mi), where
Ki lacks some axioms comparing to K and Mi = singleMUPS(C ,Ki),
or Mi = “SAT ′′, if C is satisfiable w.r.t. Ki .
Paths from the root to leaves build up diagnoses (i.e. minimal sets of
axioms, each of which removed from K causes satisfiability of C).
Number of singleMUPS(C ,Y) calls is at most exponential w.r.t. the
initial axioms count. Why ?

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 45 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in K, and construct the root
s0 = (K, singleMUPS(C ,K)) of the hitting set tree. Next, set
Z = (s0).

2 (Depth First Search) If Z is empty, STOP.
3 (Test) Otherwise pop an element from Z and denote it as

si = (Ki ,Mi). If Mi = “SAT ′′, then go to step 2.
4 (Decomposition) For each α ∈ Mi insert into Z a new node

(Ki \ {α}, singleMUPS(Ki \ {α},C)). Go to step 2.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 46 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in K, and construct the root
s0 = (K, singleMUPS(C ,K)) of the hitting set tree. Next, set
Z = (s0).

2 (Depth First Search) If Z is empty, STOP.

3 (Test) Otherwise pop an element from Z and denote it as
si = (Ki ,Mi). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C)). Go to step 2.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 46 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in K, and construct the root
s0 = (K, singleMUPS(C ,K)) of the hitting set tree. Next, set
Z = (s0).

2 (Depth First Search) If Z is empty, STOP.
3 (Test) Otherwise pop an element from Z and denote it as

si = (Ki ,Mi). If Mi = “SAT ′′, then go to step 2.

4 (Decomposition) For each α ∈ Mi insert into Z a new node
(Ki \ {α}, singleMUPS(Ki \ {α},C)). Go to step 2.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 46 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Finding all MUPSes – Reiter Algorithm (2)

1 (Initialization) Find a single MUPS for C in K, and construct the root
s0 = (K, singleMUPS(C ,K)) of the hitting set tree. Next, set
Z = (s0).

2 (Depth First Search) If Z is empty, STOP.
3 (Test) Otherwise pop an element from Z and denote it as

si = (Ki ,Mi). If Mi = “SAT ′′, then go to step 2.
4 (Decomposition) For each α ∈ Mi insert into Z a new node

(Ki \ {α}, singleMUPS(Ki \ {α},C)). Go to step 2.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 46 / 49

Modeling Error Explanation Algorithm based on Reiter’s Algorithm

Modeling Error Explanation – Summary

finding MUPSes is the most common way for explaining modeling
errors.
black-box vs. glass box methods. Other methods involve e.g.
incremental methods [0].
the goal is to find MUPSes (and diagnoses) – what to do in order to
solve a modeling problem (unsatisfiability,inconsistency).
above mentioned methods are quite universal – they can be used for
many other problems that are not related with description logics.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Querying December 13, 2018 47 / 49

	What if OWL is not enough?
	Complex Queries
	Evaluation of Conjunctive Queries in ALC

	Modeling Error Explanation
	Black-box methods
	Algorithms based on CS-trees
	Algorithm based on Reiter's Algorithm
	Algorithm based on Reiter's Algorithm

