1 Description Logics # 1.1 Inference Problems # Inference Problems in TBOX We have introduced syntax and semantics of the language \mathcal{ALC} . Now, let's look on automated reasoning. Having a \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts $C_{(i)}$, we want to decide whether (unsatisfiability) concept C is unsatisfiable, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept C_1 subsumes concept C_2 , i.e. $\mathcal{T} \models C_2 \sqsubseteq C_1$? (equivalence) two concepts C_1 and C_2 are equivalent, i.e. $\mathcal{T} \models C_1 \equiv C_2$? (disjoint) two concepts C_1 and C_2 are disjoint, i.e. $\mathcal{T} \models C_1 \sqcap C_2 \sqsubseteq \bot$? All these tasks can be reduced to unsatisfiability checking of a single concept ... # Reducting Subsumption to Unsatisfiability #### Example These reductions are straighforward – let's show, how to reduce subsumption checking to unsatisfiability checking. Reduction of other inference problems to unsatisfiability is analogous. $$(\mathcal{T} \models C_1 \sqsubseteq C_2) \qquad \text{iff}$$ $$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \qquad \mathcal{I} \models C_1 \sqsubseteq C_2) \qquad \text{iff}$$ $$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \qquad C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}) \qquad \text{iff}$$ $$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \qquad C_1^{\mathcal{I}} \cap (\Delta^{\mathcal{I}} \setminus C_2^{\mathcal{I}}) \subseteq \emptyset \qquad \text{iff}$$ $$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \qquad \mathcal{I} \models C_1 \sqcap \neg C_2 \sqsubseteq \bot \qquad \text{iff}$$ $$(\mathcal{T} \models C_1 \sqcap \neg C_2 \sqsubseteq \bot)$$ ## Inference Problems for ABOX ... and for ABOX \mathcal{A} , axiom α , concept C, role R and individuals $a_{(i)}$ we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent). (instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$? (role checking) $$\mathcal{T} \cup \mathcal{A} \models R(a_1, a_2)$$? (instance retrieval) find all individuals a, for which $\mathcal{T} \cup \mathcal{A} \models C(a)$. **realization** find the most specific concept C from a set of concepts, such that $\mathcal{T} \cup \mathcal{A} \models C(a)$. All these tasks, as well as concept unsatisfiability checking, can be reduced to consistency checking. Under which condition and how? # Reduction of concept unsatisfiability to theory consistency Example Consider an \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, a concept C and a fresh individual a_f not occurring in \mathcal{K} : $$(\mathcal{T} \models C \sqsubseteq \bot) \qquad \text{iff}$$ $$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow \mathcal{I} \models C \sqsubseteq \bot) \qquad \text{iff}$$ $$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \Longrightarrow C^{\mathcal{I}} \subseteq \emptyset) \qquad \text{iff}$$ $$\neg \left[(\exists \mathcal{I})(\mathcal{I} \models \mathcal{T} \land C^{\mathcal{I}} \not\subseteq \emptyset) \right] \qquad \text{iff}$$ $$\neg \left[(\exists \mathcal{I})(\mathcal{I} \models \mathcal{T} \land a_f^{\mathcal{I}} \in C^{\mathcal{I}}) \right] \qquad \text{iff}$$ $$(\mathcal{T}, \{C(a_f)\}) \qquad \text{is inconsistent}$$ Note that for more expressive description logics than \mathcal{ALC} , the ABOX has to be taken into account as well due to its interaction with TBOX. # 1.2 Inference Algorithms Inference Algorithms in Description Logics **Structural Comparison** is polynomial, but complete just for some simple DLs without full negation, e.g. \mathcal{ALN} , see [dlh2003]. **Tableaux Algorithms** represent the State of Art for complex DLs – sound, complete, finite **other** ... – e.g. resolution-based, transformation to finite automata, etc. We will introduce tableau algorithms. #### **Tableaux Algorithms** - Tableaux Algorithms (TAs) serve for checking theory consistency in a simple manner: "Consistency of the given ABOX \mathcal{A} w.r.t. TBOX \mathcal{T} (resp. consistency of theory \mathcal{K}) is proven if we succeed in constructing a model of $\mathcal{T} \cup \mathcal{A}$." (resp. theory \mathcal{K}) - Each TA can be seen as a production system: - state of TA (\sim data base) is made up by a set of completion graphs (see next slide), - inference rules (\sim production rules) implement semantics of particular constructs of the given language, e.g. \exists , \sqcap , etc. and serve to modify the completion graphs according to - choosen *strategy* for rule application - TAs are not new in DL they were known for FOL as well. #### **Completion Graphs** **completion graph** is a labeled oriented graph $G = (V_G, E_G, L_G)$), where each node $x \in V_G$ is labeled with a set $L_G(x)$ of concepts and each edge $\langle x, y \rangle \in E_G$ is labeled with a set of edges $L_G(\langle x, y \rangle)^1$ **direct clash** occurs in a completion graph $G = (V_G, E_G, L_G)$), if $\{A, \neg A\} \subseteq L_G(x)$, or $\bot \in L_G(x)$, for some atomic concept A and a node $x \in V_G$ **complete completion graph** is a completion graph $G = (V_G, E_G, L_G)$), to which no completion rule from the set of TA completion rules can be applied. Do not mix with notion of *complete graphs* known from graph theory. #### Completion Graphs (2) We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_G$, where \mathcal{A}_G is an ABOX constructed from G, as follows - C(a) for each node $a \in V_G$ and each concept $C \in L_G(a)$ and - $R(a_1, a_2)$ for each edge $\langle a_1, a_2 \rangle \in E_G$ and each role $R \in L_G(a_1, a_2)$ ¹Next in the text the notation is often shortened as $L_G(x,y)$ instead of $L_G(\langle x,y\rangle)$. # 1.2.1 Tableau Algorithm for \mathcal{ALC} # Tableau Algorithm for \mathcal{ALC} with empty TBOX let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T} = \emptyset$. - 0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg (C_1 \sqcap C_2)$ is equivalent (de Morgan rules) to $\neg C_1 \sqcup \neg C_2$). - 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows: - for each $C(a) \in \mathcal{A}$ put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$ - for each $R(a_1, a_2) \in \mathcal{A}$ put $\langle a_1, a_2 \rangle \in E_{G_0}$ and $R \in L_{G_0}(a_1, a_2)$ - Sets $V_{G_0}, E_{G_0}, L_{G_0}$ are smallest possible with these properties. # Tableau algorithm for ALC without TBOX (2) . . . - 2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT" - 3 (Model Check) Let's choose one $G \in S$ that doesn't contain a direct clash. If G is complete w.r.t. rules shown next, the algorithm terminates with result "CONSISTENT" - 4 (Rule Application) Find a rule that is applicable to G and apply it. As a result, we obtain from the state S a new state S'. Jump to step 2. #### TA for \mathcal{ALC} without TBOX – Inference Rules if $(\forall R \cdot C) \in L_G(a_1)$ and there exists $a_2 \in V_G$ such that $R \in L_G(a, a_1)$ and at the same time $C \notin L_G(a_2)$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a_2) = L_G(a_2) \cup \{C\}$ and otherwise is the same as L_G . # TA Run Example Example 1. Let's check consistency of the ontology $\mathcal{K}_2 = (\emptyset, \mathcal{A}_2)$, where $\mathcal{A}_2 = \{(\exists maDite \cdot Muz \sqcap \exists maDite \cdot Prarodic \sqcap \neg \exists maDite \cdot (Muz \sqcap Prarodic))(JAN)\}\}$. - Let's transform the concept into NNF: $\exists maDite \cdot Muz \sqcap \exists maDite \cdot Prarodic \sqcap \forall maDite \cdot (\neg Muz \sqcup \neg Prarodic)$ - Initial state G_0 of the TA is ``` "JAN" ((∀ maDite - (¬Muz ⊔ ¬Prarodic)) ⊓ (∃ maDite - Prarodic) ⊓ (∃ maDite - Muz)) ``` # TA Run Example (2) Example 2. ... - Now, four sequences of steps 2,3,4 of the TA are performed. TA state in step 4, evolves as follows: - $\{G_0\} \xrightarrow{\sqcap\text{-rule}} \{G_1\} \xrightarrow{\exists\text{-rule}} \{G_2\} \xrightarrow{\exists\text{-rule}} \{G_3\} \xrightarrow{\forall\text{-rule}} \{G_4\}$, where G_4 is #### TA Run Example (3) Example 3. ... • By now, we applied just deterministic rules (we still have just a single completion graph). At this point no other deterministic rule is applicable. #### 1 Description Logics • Now, we have to apply the \sqcup -rule to the concept $\neg Muz \sqcup \neg Rodic$ either in the label of node "0", or in the label of node "1". Its application e.g. to node "1" we obtain the state $\{G_5, G_6\}$ $(G_5 \text{ left}, G_6 \text{ right})$ # TA Run Example (4) Example 4. ... • We see that G_5 contains a direct clash in node "1". The only other option is to go through the graph G_6 . By application of \sqcup -rule we obtain the state $\{G_5, G_7, G_8\}$, where G_7 (left), G_8 (right) are derived from G_6 : • G_7 is complete and without direct clash. #### TA Run Example (5) Example 5. ... A canonical model \mathcal{I}_2 can be created from G_7 . Is it the only model of \mathcal{K}_2 ? - $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},\$ - $maDite^{\mathcal{I}_2} = \{\langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle\},\$ - $Prarodic^{\mathcal{I}_2} = \{i_1\},$ - $Muz^{\mathcal{I}_2} = \{i_2\},$ - " $JAN''^{\mathcal{I}_2} = Jan$, " $0''^{\mathcal{I}_2} = i_2$, " $1''^{\mathcal{I}_2} = i_1$, #### **Finiteness** Finiteness of the TA is an easy consequence of the following: - \mathcal{K} is finite - in each step, TA state can be enriched at most by one completion graph (only by application of \rightarrow_{\sqcup} rule). Number of disjunctions (\sqcup) in \mathcal{K} is finite, i.e. the \sqcup can be applied just finite number of times. - for each completion graph $G = (V_G, E_G, L_G)$ it holds that number of nodes in V_G is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A} . - after application of any of the following rules →_□, →_∃, →_∀ graph G is either enriched with a new node, new edge, or labeling of an existing node/edge is enriched. All these operations are finite. #### Soundness - Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_\exists rule: - Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a_1)$ held for $a_1 \in V_{G_i}$. - As a result $a_1^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$. - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a_1^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$. - By application of \to_\exists a new node a_2 was created in G_{i+1} and the label of edge $\langle a_1, a_2 \rangle$ and node a_2 has been adjusted. - It is enough to place $i=a_2^{\mathcal{I}}$ to see that after rule application the domain element (necessary present in any interpretation because of \exists construct semantics) has been "materialized". As a result, the rule is correct. - For other rules, the soundness is shown in a similar way. # Completeness - To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows: - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of G. - for each atomic concept A let's define $A^{\mathcal{I}} = \{a \mid A \in L_G(a)\}$ - for each atomic role R let's define $R^{\mathcal{I}} = \{ \langle a_1, a_2 \rangle \mid R \in L_G(a_1, a_2) \}$ - Observe that \mathcal{I} is a model of \mathcal{A}_G . A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A} . #### A few remarks on TAs - Why we need completion graphs? Aren't ABOXes enough to maintain the state for TA? - indeed, for \mathcal{ALC} they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX. - What about complexity of the algorithm? - P-SPACE (between NP and EXP-TIME). #### **General Inclusions** We have presented the tableau algorithm for consistency checking of $\mathcal{K} = (\emptyset, \mathcal{A})$. How the situation changes when $\mathcal{T} \neq \emptyset$? • consider \mathcal{T} containing axioms of the form $C_i \sqsubseteq D_i$ for $1 \le i \le n$. Such \mathcal{T} can be transformed into a single axiom $$\top \sqsubseteq \top_C$$ where \top_C denotes a concept $(\neg C_1 \sqcup D_1) \sqcap \ldots \sqcap (\neg C_n \sqcup D_n)$ • for each model \mathcal{I} of the theory \mathcal{K} , each element of $\Delta^{\mathcal{I}}$ must belong to $\top_{C}^{\mathcal{I}}$. How to achieve this? #### General Inclusions (2) What about this? $\rightarrow_{\sqsubseteq}$ rule if $\top_C \notin L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, a $L_{G'}(a) = L_G(a) \cup \{\top_C\}$ and otherwise is the same as L_G . Example Consider $K_3 = (\{Muz \sqsubseteq \exists maRodice \cdot Muz\}, A_2)$. Then \top_C is $\neg Muz \sqcup \exists maRodice \cdot Muz$. Let's use the introduced TA enriched by $\rightarrow_{\sqsubseteq}$ rule. Repeating several times the application of rules $\rightarrow_{\sqsubseteq}$, \rightarrow_{\sqcup} , \rightarrow_{\exists} to G_7 (that is not complete w.r.t. to $\rightarrow_{\sqsubseteq}$ rule) from the previous example we get ... # General Inclusions (3) Example \dots this algorithm doesn't necessarily terminate \odot . # Blocking in TA - TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph. - $\bullet\,$ The mechanism that enforces finite representation is called blocking. - Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently". - For \mathcal{ALC} it can be shown that so called *subset blocking* is enough: ### 1 Description Logics - In completion graph G a node x (not present in ABOX A) is blocked by node y, if there is an oriented path from y to x and $L_G(x) \subseteq L_G(y)$. - exists- rule is only applicable if the node a_1 in its definition is not blocked by another node. # Blocking in TA (2) - In the previous example, the blocking ensures that node "2" is blocked by node "0" and no other expansion occurs. Which model corresponds to such graph? - Introduced TA with subset blocking is sound, complete and finite decision procedure for \mathcal{ALC} . # Let's play ... • http://kbss.felk.cvut.cz/tools/dl #### References # **Bibliography** - [1] * Vladimír Mařík, Olga Štěpánková, and Jiří Lažanský. *Umělá inteligence 6 [in czech], Chapters 2-4.* Academia, 2013. - [2] * Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors. *The Description Logic Handbook, Theory, Implementation and Applications, Chapters 2-4.* Cambridge, 2003. - [3] * Enrico Franconi. Course on Description Logics. http://www.inf.unibz.it/ franconi/dl/course/, cit. 22.9.2013.