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Logics

Formal Ontologies

deal with proper representation of conceptual knowledge in a domain

background for many AI techniques, e.g.:

knowledge management – search engines, data integration
multiagent systems – communication between agents
machine learning – language bias

involves many graphical/textual languages ranging from informal to
formal ones, e.g. relational algebra, Prolog, RDFS, OWL, topic maps,
thesauri, conceptual graphs
Most of them are based on some logical calculus.
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Logics

Logics for Ontologies

propositional logic

Example
“John is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example
(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

(propositional) modal logic

Example
�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?
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Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Basics November 22, 2017 4 / 35



Logics

Logics for Ontologies

propositional logic

Example
“John is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example
(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

(propositional) modal logic

Example
�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?
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Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Basics November 22, 2017 4 / 35



Logics

Logics for Ontologies

propositional logic

Example
“John is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example
(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

(propositional) modal logic

Example
�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?
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Logics

Logics for Ontologies (2)

Logics are defined by their
Syntax – to represent concepts (defining symbols)

Semantics – to capture meaning of the syntactic constructs (defining
concepts)
Proof Theory – to enforce the semantics

Logics trade-off
A logical calculus is always a trade-off between expressiveness and
tractability of reasoning.
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Logics

Propositional Logic

Example
How to check satisfiability of the formula A ∨ (¬(B ∧ A) ∨ B ∧ C) ?

syntax – atomic formulas and ¬, ∧, ∨, ⇒

semantics (|=) – an interpretation assigns true/false to each formula.
proof theory (`) – resolution, tableau

complexity – NP-Complete (Cook theorem)
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Logics

First Order Predicate Logic

Example
What is the meaning of this sentence ?

(∀x1)((Student(x1) ∧ (∃x2)(GraduateCourse(x2) ∧ isEnrolledTo(x1, x2)))
⇒ (∀x3)(isEnrolledTo(x1, x3)⇒ GraduateCourse(x3)))

Student u ∃isEnrolledTo.GraduateCourse v ∀isEnrolledTo.GraduateCourse
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Logics

First Order Predicate Logic – quick informal review
syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)
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Logics

Open World Assumption

OWA
FOPL accepts Open World Assumption, i.e. whatever is not known is not
necessarily false.

As a result, FOPL is monotonic, i.e.

monotonicity
No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed
World Assumption.
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Towards Description Logics

1 Towards Description Logics

2 Logics

3 Towards Description Logics

4 ALC Language

5 From ALC to OWL(2)-DL

Towards Description Logics
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Towards Description Logics

Languages sketched so far aren’t enough ?

Why not First Order Predicate Logic ?

/ FOPL is undecidable – many logical consequences cannot be verified in
finite time.
We often do not need full expressiveness of FOL.

Well, we have Prolog – wide-spread and optimized implementation of
FOPL, right ?

/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.
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Towards Description Logics

Languages sketched so far aren’t enough ?

Relational algebra

accepts CWA and supports just finite domains.
Semantic networks and Frames

Lack well defined (declarative) semantics
What is the semantics of a “slot” in a frame (relation in semantic
networks) ? The slot must/might be filled once/multiple times ?
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Towards Description Logics

What are Description Logics ?

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling
terminological incomplete knowledge.

first languages emerged as an
experiment of giving formal
semantics to semantic networks
and frames. First
implementations in 80’s –
KL-ONE, KAON, Classic.
90’s ALC
2004 SHOIN (D) – OWL
2009 SROIQ(D) – OWL 2
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ALC Language

Concepts and Roles

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild

individuals - represent ground terms / individuals, e.g. JOHN
Theory K = (T ,A) (in OWL refered as Ontology) consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN), loves(JOHN,MARY )}

DLs differ in their expressive power (concept/role constructors, axiom
types).
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ALC Language

Semantics, Interpretation

as ALC is a subset of FOPL, let’s define semantics analogously (and
restrict interpretation function where applicable):

Interpretation is a pair I = (∆I , ·I), where ∆I is an interpretation
domain and ·I is an interpretation function.
Having atomic concept A, atomic role R and individual a, then

AI ⊆ ∆I

RI ⊆ ∆I ×∆I

aI ∈ ∆I
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Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Basics November 22, 2017 14 / 35



ALC Language

ALC (= attributive language with complements)
Having concepts C , D, atomic concept A and atomic role R, then for
interpretation I :

concept conceptI description
> ∆I (universal concept)
⊥ ∅ (unsatisfiable concept)
¬C ∆I \ CI (negation)
C1 u C2 CI1 ∩ CI2 (intersection)
C1 t C2 CI1 ∪ CI2 (union)
∀R · C {a | ∀b((a, b) ∈ RI =⇒ b ∈ CI)} (universal restriction)
∃R · C {a | ∃b((a, b) ∈ RI ∧ b ∈ CI)} (existential restriction)

TBOX
axiom I |= axiom iff description
C1 v C2 CI1 ⊆ CI2 (inclusion)
C1 ≡ C2 CI1 = CI2 (equivalence)

ABOX (UNA = unique name assumption1)
axiom I |= axiom iff description
C(a) aI ∈ CI (concept assertion)
R(a1, a2) (aI1 , aI2 ) ∈ RI (role assertion)

1two different individuals denote two different domain elements
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ALC Language

Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T ,A), where
S = T ∪ A) :

Model
I |= S if I |= α for all α ∈ S (I is a model of S, resp. K)

Logical Consequence
S |= β if I |= β whenever I |= S (β is a logical consequence of S, resp. K)

S is consistent, if S has at least one model
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ALC Language

ALC – Example
Example
Consider an information system for genealogical data. Information
integration from various sources is crucial – databases, information
systems with different data models. As an integration layer, let’s use a
description logic theory. Let’s have atomic concepts
Person,Man,GrandParent and atomic role hasChild .

Set of persons that have just men as their descendants, if any ?
(specify a concept)

Person u ∀hasChild ·Man
How to define concept GrandParent ? (specify an axiom)

GrandParent ≡ Person u ∃hasChild · ∃hasChild · >

How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x , y)
∧∃z (hasChild(y , z)))))
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Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Basics November 22, 2017 17 / 35



ALC Language

ALC – Example
Example
Consider an information system for genealogical data. Information
integration from various sources is crucial – databases, information
systems with different data models. As an integration layer, let’s use a
description logic theory. Let’s have atomic concepts
Person,Man,GrandParent and atomic role hasChild .

Set of persons that have just men as their descendants, if any ?
(specify a concept)

Person u ∀hasChild ·Man
How to define concept GrandParent ? (specify an axiom)

GrandParent ≡ Person u ∃hasChild · ∃hasChild · >

How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x , y)
∧∃z (hasChild(y , z)))))
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ALC Language

ALC Example – T

Example

Woman ≡ Person u Female
Man ≡ Person u ¬Woman

Mother ≡ Woman u ∃hasChild · Person
Father ≡ Man u ∃hasChild · Person
Parent ≡ Father tMother

Grandmother ≡ Mother u ∃hasChild · Parent
MotherWithoutDaughter ≡ Mother u ∀hasChild · ¬Woman

Wife ≡ Woman u ∃hasHusband ·Man
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ALC Language

Interpretation – Example

Example
Consider a theory K1 = ({GrandParent ≡
Person u ∃hasChild · ∃hasChild · >}, {GrandParent(JOHN)}). Find
some model.

a model of K1 can be interpretation I1 :

∆I1 = ManI1 = PersonI1 = {John,Phillipe,Martin}
hasChildI1 = {(John,Phillipe), (Phillipe,Martin)}
GrandParentI1 = {John}
JOHNI1 = {John}

this model is finite and has the form of a tree with the root in the
node John :
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ALC Language

Shape of DL Models
The last example revealed several important properties of DL models:

Tree model property (TMP)
Every consistent K = ({}, {C(I)}) has a model in the shape of a rooted
tree.

Finite model property (FMP)
Every consistent K = (T ,A) has a finite model.

Both properties represent important characteristics of ALC that
significantly speed-up reasoning.
In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity.
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ALC Language

Example – CWA × OWA
Example

ABOX
hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS)
Patricide(OEDIPUS) ¬Patricide(THERSANDROS)

Edges represent role assertions of hasChild ; red/green colors distinguish
concepts instances – Patricide a ¬Patricide

JOCASTA //
**

POLYNEIKES // THERSANDROS

OEDIPUS
44

Q1 (∃hasChild · (Patricide u ∃hasChild · ¬Patricide))(JOCASTA),

JOCASTA // • // •

Q2 Find individuals x such that K |= C(x), where C is

¬Patricide u ∃hasChild− · (Patricide u ∃hasChild−) · {JOCASTA}

What is the difference, when considering CWA ?

JOCASTA // • // x
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From ALC to OWL(2)-DL

Extending . . .ALC ...

We have introduced ALC, together with a decision procedure. Its
expressiveness is higher than propositional calculus, still it is
insufficient for many practical applications.

Let’s take a look, how to extend ALC while preserving decidability.
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From ALC to OWL(2)-DL

Extending . . .ALC ... (2)
N (Number restructions) are used for restricting the number of

successors in the given role for the given concept.
syntax (concept) semantics

(≥ n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ ≥ n

}

(≤ n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ ≤ n

}

(= n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ = n

}
Example

Concept Woman u (≤ 3 hasChild) denotes women who have at most 3
children.

What denotes the axiom Car v (≥ 4 hasWheel) ?

... and Bicycle ≡ (= 2 hasWheel) ?
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Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics – Basics November 22, 2017 23 / 35



From ALC to OWL(2)-DL

Extending . . .ALC ... (3)
Q (Qualified number restrictions) are used for restricting the number of

successors of the given type in the given role for the given concept.
syntax (concept) semantics

(≥ n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ ≥ n

}

(≤ n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ ≤ n

}

(= n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ = n

}
Example

Concept Woman u (≥ 3 hasChild Man) denotes women who have at least 3
sons.

What denotes the axiom Car v (≥ 4 hasPart Wheel) ?

Which qualified number restrictions can be expressed in ALC ?
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From ALC to OWL(2)-DL

Extending . . .ALC ... (4)

O (Nominals) can be used for naming a concept elements explicitely.
syntax (concept) semantics
{a1, . . . , an} {aI1 , . . . , aIn }

Example

Concept {MALE ,FEMALE} denotes a gender concept that must be
interpreted with at most two elements. Why at most ?

Continent ≡
{EUROPE ,ASIA,AMERICA,AUSTRALIA,AFRICA,ANTARCTICA} ?
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From ALC to OWL(2)-DL

Extending . . .ALC ... (5)

I (Inverse roles) are used for defining role inversion.
syntax (role) semantics
R− (RI)−1

Example

Role hasChild− denotes the relationship hasParent.

What denotes axiom Person v (= 2 hasChild−) ?

What denotes axiom Person v ∃hasChild− · ∃hasChild · > ?
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From ALC to OWL(2)-DL

Extending . . .ALC ... (6)

·trans (Role transitivity axiom) denotes that a role is transitive. Attention –
it is not a transitive closure operator.

syntax (axiom) semantics
trans(R) RI is transitive

Example
Role isPartOf can be defined as transitive, while role hasParent is not.
What about roles hasPart, hasPart−, hasGrandFather− ?

What is a transitive closure of a relationship ? What is the difference
between a transitive closure of hasDirectBossI and hasBossI .
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From ALC to OWL(2)-DL

Extending . . .ALC ...(7)

H (Role hierarchy) serves for expressing role hierarchies (taxonomies) –
similarly to concept hierarchies.

syntax (axiom) semantics
R v S RI ⊆ SI

Example
Role hasMother can be defined as a special case of the role hasParent.

What is the difference between a concept hierarchy Mother v Parent and
role hierarchy hasMother v hasParent.
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From ALC to OWL(2)-DL

Extending . . .ALC ... (8)

R (role extensions) serve for defining expressive role constructs, like role
chains, role disjunctions, etc.

syntax semantics
R ◦ S v P RI ◦ SI v PI

Dis(R, R) RI ∩ SI = ∅
∃R · Self {a|(a, a) ∈ RI}

Example
How would you define the role hasUncle by means of hasSibling and
hasParent ?

how to express that R is transitive, using a role chain ?

Whom does the following concept denote Person u ∃likes · Self ?
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From ALC to OWL(2)-DL

Global restrictions
Simple roles have no (direct or indirect) subroles that are either
transitive or are defined by means of property chains

hasFather ◦ hasBrother v hasUncle
hasUncle v hasRelative

hasBiologicalFather v hasFather

hasRelative and hasUncle are not simple.
Each concept construct and each axiom from this list contains only
simple roles:

number restrictions – (≥ n R), (= n R), (≤ n R) + their qualified
versions
∃R · Self
specifying functionality/inverse functionality (leads to number
restrictions)
specifying irreflexivity, asymmetry, and disjoint object properties.
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From ALC to OWL(2)-DL

Extending . . .ALC ... – OWL-DL a OWL2-DL

From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

SHOIN is a description logics that backs OWL-DL.
SROIQ is a description logics that backs OWL2-DL.
Both OWL-DL and OWL2-DL are semantic web languages – they
extend the corresponding description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion,
AllDisjoint, etc.

extralogical constructs – imports, annotations
data types – XSD datatypes are used
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From ALC to OWL(2)-DL

Extending ALC – Reasoning

What is the impact of the extensions to the automated reasoning
procedure ? The introduced tableau algorithm for ALC has to be
adjusted as follows:

additional inference rules reflecting the semantics of newly added
constructs (O,N ,Q)
definition of R-neighbourhood of a node in a completion graph.
R-neighbourhood notion generalizes simple tests of two nodes being
connected with an edge, e.g. in ∃-rule. (H,R, I)
new conditions for direct clash detection
more strict blocking conditions (blocking over graph structures).

This results in significant computation blowup – from EXPTIME
(ALC) to

NEXPTIME for SHOIN
N2EXPTIME for SROIQ
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From ALC to OWL(2)-DL

Rules and Description Logics

How to express e.g. that “A cousin is someone whose parent is a
sibling of your parent.” ?

... we need rules, like

hasCousin(?c1, ?c2)← hasParent(?c1, ?p1), hasParent(?c2, ?p2),
Man(?c2), hasSibling(?p1, ?p2)

in general, each variable can bind domain elements; however, such
version is undecidable.

DL-safe rules
DL-safe rules are decidable conjunctive rules where each variable only
binds individuals (not domain elements themselves).
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From ALC to OWL(2)-DL

Other extensions

Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.

Example

(� represents e.g. the ”believe” operator of an agent)

�(Man v Person u ∀hasFather ·Man) (1)

As ALC is a syntactic variant to a multi-modal propositional logic, where each role
represents the accessibility relationa between worlds in Kripke structure, the previous
example can be transformed to the modal logic as:

�(Man =⇒ Person ∧ �hasFather Man) (2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions
Data Types (D) allow integrating a data domain (numbers, strings), e.g. Person u ∃hasAge · 23

represents the concept describing “23-years old persons”.
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