## Description Logics – Basics

Petr Křemen

petr.kremen@fel.cvut.cz

November 14, 2018





- Towards Description Logics
- 2 Towards Description Logics
- $\bigcirc$   $\mathcal{ALC}$  Language
- 4 From ALC to OWL(2)-DL





Towards Description Logics



From  $\mathcal{ALC}$  to OWL(2)-E

# **Towards Description Logics**



Petr Křemen (petr.kremen@fel.cvut.cz)

Description Logics – Basic

• deal with proper representation of conceptual knowledge in a domain



- deal with proper representation of conceptual knowledge in a domain
- background for many AI techniques, e.g.:



- deal with proper representation of conceptual knowledge in a domain
- background for many AI techniques, e.g.:
  - knowledge management search engines, data integration



- deal with proper representation of conceptual knowledge in a domain
- background for many AI techniques, e.g.:
  - knowledge management search engines, data integration
  - multiagent systems communication between agents



- deal with proper representation of conceptual knowledge in a domain
- background for many AI techniques, e.g.:
  - knowledge management search engines, data integration
  - multiagent systems communication between agents
  - machine learning language bias



- deal with proper representation of conceptual knowledge in a domain
- background for many AI techniques, e.g.:
  - knowledge management search engines, data integration
  - multiagent systems communication between agents
  - machine learning language bias
- involves many graphical/textual languages ranging from informal to formal ones, e.g. *relational algebra*, *Prolog*, *RDFS*, *OWL*, *topic maps*, *thesauri*, *conceptual graphs*



- deal with proper representation of conceptual knowledge in a domain
- background for many AI techniques, e.g.:
  - knowledge management search engines, data integration
  - multiagent systems communication between agents
  - machine learning language bias
- involves many graphical/textual languages ranging from informal to formal ones, e.g. *relational algebra*, *Prolog*, *RDFS*, *OWL*, *topic maps*, *thesauri*, *conceptual graphs*
- Most of them are based on some logical calculus.



- Logics for Ontologies
  - propositional logic



propositional logic

#### Example

"John is clever."  $\Rightarrow \neg$  "John fails at exam."



propositional logic

### Example

"John is clever."  $\Rightarrow \neg$  "John fails at exam."

• first order predicate logic



propositional logic

### Example

"John is clever."  $\Rightarrow \neg$  "John fails at exam."

• first order predicate logic

#### Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$$



propositional logic

### Example

"John is clever."  $\Rightarrow \neg$  "John fails at exam."

• first order predicate logic

#### Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$$

• (propositional) modal logic



propositional logic

### Example

"John is clever."  $\Rightarrow \neg$  "John fails at exam."

• first order predicate logic

#### Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$$

• (propositional) modal logic

#### Example

$$\Box((\forall x)(\mathit{Clever}(x) \Rightarrow \Diamond \neg((\exists y)(\mathit{Exam}(y) \land \mathit{Fails}(x,y))))).$$



propositional logic

### Example

"John is clever."  $\Rightarrow \neg$  "John fails at exam."

• first order predicate logic

#### Example

$$(\forall x)(Clever(x) \Rightarrow \neg((\exists y)(Exam(y) \land Fails(x, y)))).$$

• (propositional) modal logic

#### Example

$$\Box((\forall x)(\mathit{Clever}(x) \Rightarrow \Diamond \neg((\exists y)(\mathit{Exam}(y) \land \mathit{Fails}(x,y))))).$$

• ... what is the meaning of these formulas ?



Logics are defined by their

• Syntax - to represent concepts (defining symbols)

#### Logics trade-off

A logical calculus is always a trade-off between *expressiveness* and *tractability of reasoning*.



Logics are defined by their

- Syntax to represent concepts (defining symbols)
- Semantics to capture meaning of the syntactic constructs (*defining* concepts)

#### Logics trade-off

A logical calculus is always a trade-off between *expressiveness* and *tractability of reasoning*.



Logics are defined by their

- Syntax to represent concepts (defining symbols)
- Semantics to capture meaning of the syntactic constructs (*defining* concepts)
- Proof Theory to enforce the semantics

#### Logics trade-off

A logical calculus is always a trade-off between *expressiveness* and *tractability of reasoning*.



Example

How to check satisfiability of the formula  $A \lor (\neg (B \land A) \lor B \land C)$ ?

syntax – atomic formulas and  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\Rightarrow$ 



#### Example

How to check satisfiability of the formula  $A \lor (\neg (B \land A) \lor B \land C)$ ?

syntax – atomic formulas and  $\neg$ ,  $\land,$   $\lor,$   $\Rightarrow$ 

semantics ( $\models$ ) – an interpretation assigns true/false to each formula.



#### Example

How to check satisfiability of the formula  $A \lor (\neg (B \land A) \lor B \land C)$ ?

syntax – atomic formulas and  $\neg$ ,  $\land$ ,  $\lor$ ,  $\Rightarrow$ semantics ( $\models$ ) – an interpretation assigns true/false to each formula. proof theory ( $\vdash$ ) – resolution, tableau



#### Example

How to check satisfiability of the formula  $A \lor (\neg (B \land A) \lor B \land C)$ ?

syntax – atomic formulas and  $\neg$ ,  $\land$ ,  $\lor$ ,  $\Rightarrow$ semantics ( $\models$ ) – an interpretation assigns true/false to each formula. proof theory ( $\vdash$ ) – resolution, tableau complexity – NP-Complete (Cook theorem)



## First Order Predicate Logic

#### Example

What is the meaning of this sentence ?

 $(\forall x_1)((Student(x_1) \land (\exists x_2)(GraduateCourse(x_2) \land isEnrolledTo(x_1, x_2)))$  $\Rightarrow (\forall x_3)(isEnrolledTo(x_1, x_3) \Rightarrow GraduateCourse(x_3)))$ 

 $Student \sqcap \exists isEnrolledTo.GraduateCourse \sqsubseteq \forall isEnrolledTo.GraduateCourse$ 



syntax - constructs involve



syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN))



syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with  $\neg$ ,  $\land$ ,  $\lor$ ,  $\Rightarrow$ ,  $\forall$ , $\exists$ )



syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with  $\neg$ ,  $\land$ ,  $\lor$ ,  $\Rightarrow$ ,  $\forall$ , $\exists$ ) universally closed formula formula without free variable  $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$ 



syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with  $\neg$ ,  $\land$ ,  $\lor$ ,  $\Rightarrow$ ,  $\forall$ , $\exists$ ) universally closed formula formula without free variable  $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$ 

semantics – an interpretation (with valuation) assigns:



syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with  $\neg$ ,  $\land$ ,  $\lor$ ,  $\Rightarrow$ ,  $\forall$ , $\exists$ ) universally closed formula formula without free variable  $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$ semantics – an interpretation (with valuation) assigns:

domain element to each term



syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with  $\neg$ ,  $\land$ ,  $\lor$ ,  $\Rightarrow$ ,  $\forall$ , $\exists$ ) universally closed formula formula without free variable  $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$ semantics – an interpretation (with valuation) assigns: domain element to each term

true/false to each closed formula



syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms *fatherOf(JOHN)*) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with  $\neg$ ,  $\land$ ,  $\lor$ ,  $\Rightarrow$ ,  $\forall$ , $\exists$ ) universally closed formula formula without free variable  $((\forall x)(\exists y)$ hasFather $(x, y) \land Person(y))$ semantics – an interpretation (with valuation) assigns: domain element to each term true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem, Completeness Theorem



syntax - constructs involve

term (variable x, constant symbol JOHN, function symbol applied to terms fatherOf(JOHN)) axiom/formula (predicate symbols applied to terms hasFather(x, JOHN), possibly glued together with  $\neg$ ,  $\land$ ,  $\lor$ ,  $\Rightarrow$ ,  $\forall$ , $\exists$ ) universally closed formula formula without free variable  $((\forall x)(\exists y)hasFather(x, y) \land Person(y))$ semantics – an interpretation (with valuation) assigns:

domain element to each term true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem, Completeness Theorem

complexity – undecidable (Goedel)



### **Open World Assumption**

#### OWA

FOPL accepts Open World Assumption, i.e. whatever is not known is not necessarily false.

As a result, FOPL is monotonic, i.e.

#### monotonicity

No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed World Assumption.











# **Towards Description Logics**


• Why not First Order Predicate Logic ?



- Why not First Order Predicate Logic ?
  - ③ FOPL is undecidable many logical consequences cannot be verified in finite time.



- Why not First Order Predicate Logic ?
  - ③ FOPL is undecidable many logical consequences cannot be verified in finite time.
  - We often do not need full expressiveness of FOL.



- Why not First Order Predicate Logic ?
  - FOPL is undecidable many logical consequences cannot be verified in finite time.
  - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?



- Why not First Order Predicate Logic ?
  - ③ FOPL is undecidable many logical consequences cannot be verified in finite time.
  - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?
  - Prolog is not an implementation of FOPL OWA vs. CWA, negation as failure, problems in expressing disjunctive knowledge, etc.







Description Logics – Basic

Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.





Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.

 first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.



FOPL



Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.

- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*



FOPL



Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.

- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*
- 2004  $\mathcal{SHOIN}(\mathcal{D})$  OWL



FOPL



Description logics (DLs) are (almost exclusively) decidable subsets of FOPL aimed at modeling *terminological incomplete knowledge*.

- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's *ALC*
- 2004  $\mathcal{SHOIN}(\mathcal{D})$  OWL
- 2009 SROIQ(D) OWL 2





Towards Description Logics

Towards Description Logics

3 ALC Language

From *ALC* to OWL(2)

# ${\cal ALC}$ Language



• Basic building blocks of DLs are :



• Basic building blocks of DLs are :

(atomic) concepts - representing (named) *unary predicates* / classes, e.g. *Parent*, or *Person* □ ∃*hasChild* · *Person*.



Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person □ ∃hasChild · Person. (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild



 Basic building blocks of DLs are :

 (atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person □ ∃hasChild · Person.
 (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild
 individuals - represent ground terms / individuals, e.g. JOHN



- Basic building blocks of DLs are :

   (atomic) concepts representing (named) unary predicates / classes, e.g. Parent, or Person □ ∃hasChild · Person.
   (atomic) roles represent (named) binary predicates / relations, e.g. hasChild
   individuals represent ground terms / individuals, e.g. JOHN
- Theory  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$  (in OWL refered as Ontology) consists of a



Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person □∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g. hasChild

individuals - represent ground terms / individuals, e.g. JOHN

Theory K = (T, A) (in OWL refered as Ontology) consists of a

TBOX T - representing axioms generally valid in the domain, e.g. T = {Man ⊑ Person}



Basic building blocks of DLs are : (atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person  $\sqcap \exists hasChild \cdot Person$ . (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild individuals - represent ground terms / individuals, e.g. JOHN • Theory  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$  (in OWL refered as Ontology) consists of a TBOX  $\mathcal{T}$  - representing axioms generally valid in the domain, e.g.  $\mathcal{T} = \{Man \sqsubset Person\}$ ABOX  $\mathcal{A}$  - representing a particular relational structure (data), e.g.  $\mathcal{A} = \{Man(JOHN), loves(JOHN, MARY)\}$ 



- Basic building blocks of DLs are : (atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or Person  $\sqcap \exists hasChild \cdot Person$ . (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild individuals - represent ground terms / individuals, e.g. JOHN • Theory  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$  (in OWL refered as Ontology) consists of a TBOX T - representing axioms generally valid in the domain, e.g.  $\mathcal{T} = \{Man \sqsubset Person\}$ ABOX  $\mathcal{A}$  - representing a particular relational structure (data), e.g.  $\mathcal{A} = \{Man(JOHN), loves(JOHN, MARY)\}$  DLs differ in their expressive power (concept/role constructors, axiom)
  - <u>A</u>

types).

### Semantics, Interpretation

• as  $\mathcal{ALC}$  is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):



#### Semantics, Interpretation

- as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ , where  $\Delta^{\mathcal{I}}$  is an interpretation domain and  $\cdot^{\mathcal{I}}$  is an interpretation function.



### Semantics, Interpretation

- as ALC is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ , where  $\Delta^{\mathcal{I}}$  is an interpretation domain and  $\cdot^{\mathcal{I}}$  is an interpretation function.
- Having atomic concept A, atomic role R and individual a, then

$$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$$
$$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$$
$$a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$$



# ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation  ${\mathcal I}$  :

| concept             | $concept^{\mathcal{I}}$                                                           | description               |
|---------------------|-----------------------------------------------------------------------------------|---------------------------|
| Т                   | $\Delta^{\mathcal{I}}$                                                            | (universal concept)       |
| $\perp$             | Ø                                                                                 | (unsatisfiable concept)   |
| $\neg C$            | $\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$                                  | (negation)                |
| $C_1 \sqcap C_2$    | $\mathcal{C}_1^\mathcal{I}\cap\mathcal{C}_2^\mathcal{I}$                          | (intersection)            |
| $C_1 \sqcup C_2$    | $C_1^\mathcal{I} \cup C_2^\mathcal{I}$                                            | (union)                   |
| $\forall R \cdot C$ | $\{a \mid \forall b((a, b) \in R^{\mathcal{I}} \implies b \in C^{\mathcal{I}})\}$ | (universal restriction)   |
| $\exists R \cdot C$ | $\{a \mid \exists b((a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}})\}$     | (existential restriction) |



<sup>1</sup>two different individuals denote two different domain elements

# ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation  ${\cal I}$  :

|      | concept               | $concept^{\mathcal{I}}$                                                                                                  | description               |
|------|-----------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------|
|      | Т                     | $\Delta^{\mathcal{I}}$                                                                                                   | (universal concept)       |
|      | $\perp$               | Ø                                                                                                                        | (unsatisfiable concept)   |
|      | $\neg C$              | $\Delta^\mathcal{I} \setminus C^\mathcal{I}$                                                                             | (negation)                |
|      | $C_1 \sqcap C_2$      | $C_1^\mathcal{I}\cap C_2^\mathcal{I}$                                                                                    | (intersection)            |
|      | $C_1 \sqcup C_2$      | $C_1^\mathcal{I} \cup C_2^\mathcal{I}$                                                                                   | (union)                   |
|      | $\forall R \cdot C$   | $\{a \mid \forall b((a, b) \in R^{\mathcal{I}} \implies b \in C^{\mathcal{I}})\}$                                        | (universal restriction)   |
|      | $\exists R \cdot C$   | $\{ \texttt{a} \mid \exists \texttt{b}((\texttt{a},\texttt{b}) \in R^\mathcal{I} \land \texttt{b} \in C^\mathcal{I}) \}$ | (existential restriction) |
|      | axiom                 | $\mathcal{I} \models axiom \ iff  description$                                                                           |                           |
| TBOX | $C_1 \sqsubseteq C_2$ | $C_{1}^{\mathcal{I}} \subseteq C_{2}^{\mathcal{I}}$ (inclusion)                                                          |                           |
|      | $C_1 \equiv C_2$      | $C_1^{\mathcal{I}} = C_2^{\mathcal{I}}$ (equivalence)                                                                    |                           |



<sup>1</sup>two different individuals denote two different domain elements

# ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation  ${\cal I}$  :

|      | concept               | $concept^{\mathcal{I}}$                                  |                                                     | description               |
|------|-----------------------|----------------------------------------------------------|-----------------------------------------------------|---------------------------|
|      | Т                     | $\Delta^{\mathcal{I}}$                                   |                                                     | (universal concept)       |
|      | $\perp$               | Ø                                                        |                                                     | (unsatisfiable concept)   |
|      | $\neg C$              | $\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$         |                                                     | (negation)                |
|      | $C_1 \sqcap C_2$      | $\mathcal{C}_1^\mathcal{I}\cap\mathcal{C}_2^\mathcal{I}$ |                                                     | (intersection)            |
|      | $C_1 \sqcup C_2$      | $C_1^\mathcal{I} \cup C_2^\mathcal{I}$                   |                                                     | (union)                   |
|      | $\forall R \cdot C$   | $\{a \mid \forall b((a,b) \in$                           | $R^{\mathcal{I}} \implies b \in C^{\mathcal{I}})\}$ | (universal restriction)   |
|      | $\exists R \cdot C$   | $\{a \mid \exists b((a,b) \in$                           | $R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}}) \}$  | (existential restriction) |
|      | axiom                 | $\mathcal{I} \models axiom iff$                          | description                                         |                           |
| твох | $C_1 \sqsubseteq C_2$ | $C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$          | (inclusion)                                         |                           |
|      | $C_1 \equiv C_2$      | $C_{1}^{L} = C_{2}^{L}$                                  | (equivalence)                                       |                           |
| ABOX | (UNA = un             | ique name assum                                          | ption <sup>1</sup> )                                |                           |
|      | axiom                 | $\mathcal{I} \models axiom iff$                          | description                                         | _                         |
|      | C(a)                  | $a^\mathcal{I} \in \mathcal{C}^\mathcal{I}$              | (concept assertion)                                 | _                         |
|      | $R(a_1,a_2)$          | $(a_1^\mathcal{I},a_2^\mathcal{I})\in R^\mathcal{I}$     | (role assertion)                                    |                           |

<sup>1</sup>two different individuals denote two different domain elements

For an arbitrary set S of axioms (resp. theory  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ , where  $S = \mathcal{T} \cup \mathcal{A}$ ) :



For an arbitrary set S of axioms (resp. theory  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ , where  $S = \mathcal{T} \cup \mathcal{A}$ ) :





For an arbitrary set S of axioms (resp. theory  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ , where  $S = \mathcal{T} \cup \mathcal{A}$ ) :





For an arbitrary set S of axioms (resp. theory  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ , where  $S = \mathcal{T} \cup \mathcal{A}$ ) :

Model  
$$\mathcal{I} \models S$$
 if  $\mathcal{I} \models \alpha$  for all  $\alpha \in S$  ( $\mathcal{I}$  is a model of  $S$ , resp.  $\mathcal{K}$ )

#### Logical Consequence

 $S \models \beta$  if  $\mathcal{I} \models \beta$  whenever  $\mathcal{I} \models S$  ( $\beta$  is a logical consequence of S, resp.  $\mathcal{K}$ )



For an arbitrary set S of axioms (resp. theory  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ , where  $S = \mathcal{T} \cup \mathcal{A}$ ) :

Model  
$$\mathcal{I} \models S$$
 if  $\mathcal{I} \models \alpha$  for all  $\alpha \in S$  ( $\mathcal{I}$  is a model of  $S$ , resp.  $\mathcal{K}$ )

#### Logical Consequence

 $S \models \beta$  if  $\mathcal{I} \models \beta$  whenever  $\mathcal{I} \models S$  ( $\beta$  is a logical consequence of S, resp.  $\mathcal{K}$ )

#### • S is consistent, if S has at least one model

#### Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

• Set of persons that have just men as their descendants, if any ? (specify a *concept*)

#### Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

- Set of persons that have just men as their descendants, if any ? (specify a *concept*)
  - Person  $\sqcap \forall hasChild \cdot Man$

#### Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

- Set of persons that have just men as their descendants, if any ? (specify a *concept*)
  - Person  $\sqcap \forall hasChild \cdot Man$
- How to define concept GrandParent ? (specify an axiom)

#### Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

- Set of persons that have just men as their descendants, if any ? (specify a *concept*)
  - Person  $\sqcap \forall hasChild \cdot Man$
- How to define concept GrandParent ? (specify an axiom)
  - GrandParent  $\equiv$  Person  $\sqcap \exists hasChild \cdot \exists hasChild \cdot \top$

#### Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

- Set of persons that have just men as their descendants, if any ? (specify a *concept*)
  - Person  $\sqcap \forall hasChild \cdot Man$
- How to define concept GrandParent ? (specify an axiom)
  - GrandParent  $\equiv$  Person  $\sqcap \exists$  hasChild  $\cdot \exists$  hasChild  $\cdot \top$
- How does the previous axiom look like in FOPL ?

 $\forall x (GrandParent(x) \equiv (Person(x) \land \exists y (hasChild(x, y)) \land \exists z (hasChild(y, z))))$
$$\mathcal{ALC} \text{ Example} - \mathcal{T}$$

#### Example

| $Woman \equiv Person \sqcap Female$ |  |
|-------------------------------------|--|
|-------------------------------------|--|

- $Man \equiv Person \sqcap \neg Woman$
- Mother  $\equiv$  Woman  $\sqcap \exists$  hasChild  $\cdot$  Person
- Father  $\equiv$  Man  $\sqcap \exists$  hasChild  $\cdot$  Person
- $Parent \equiv Father \sqcup Mother$
- *Grandmother*  $\equiv$  *Mother*  $\sqcap \exists hasChild \cdot Parent$
- $MotherWithoutDaughter \equiv Mother \sqcap \forall hasChild \cdot \neg Woman$

*Wife*  $\equiv$  *Woman*  $\sqcap \exists$  hasHusband  $\cdot$  *Man* 



#### Example

 Consider a theory K<sub>1</sub> = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.



- Consider a theory K<sub>1</sub> = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- a model of  $\mathcal{K}_1$  can be interpretation  $\mathcal{I}_1$  :



- Consider a theory K<sub>1</sub> = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- $\bullet$  a model of  $\mathcal{K}_1$  can be interpretation  $\mathcal{I}_1$  :

• 
$$\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$$



- Consider a theory K<sub>1</sub> = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- a model of  $\mathcal{K}_1$  can be interpretation  $\mathcal{I}_1$  :
  - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
  - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$



- Consider a theory K<sub>1</sub> = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- a model of  $\mathcal{K}_1$  can be interpretation  $\mathcal{I}_1$  :
  - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
  - $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
  - GrandParent<sup> $I_1$ </sup> = {John}



### Example

 Consider a theory K<sub>1</sub> = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.

• a model of  $\mathcal{K}_1$  can be interpretation  $\mathcal{I}_1$  :

- $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
- $hasChild^{\mathcal{I}_1} = \{(John, Phillipe), (Phillipe, Martin)\}$

• 
$$GrandParent^{\mathcal{I}_1} = \{John\}$$

• 
$$JOHN^{\mathcal{I}_1} = \{John\}$$



- Consider a theory K<sub>1</sub> = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}). Find some model.
- a model of  $\mathcal{K}_1$  can be interpretation  $\mathcal{I}_1$  :
  - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
  - $hasChild^{I_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
  - GrandParent<sup> $I_1$ </sup> = {John}
  - $JOHN^{\mathcal{I}_1} = \{John\}$
- this model is finite and has the form of a tree with the root in the node *John* :





The last example revealed several important properties of DL models:



The last example revealed several important properties of DL models:



The last example revealed several important properties of DL models:

### Tree model property (TMP)

Every consistent  $\mathcal{K} = (\{\}, \{C(I)\})$  has a model in the shape of a *rooted tree*.



The last example revealed several important properties of DL models:

### Tree model property (TMP)

Every consistent  $\mathcal{K} = (\{\}, \{C(I)\})$  has a model in the shape of a *rooted tree*.



The last example revealed several important properties of DL models:

### Tree model property (TMP)

Every consistent  $\mathcal{K} = (\{\}, \{C(I)\})$  has a model in the shape of a *rooted tree*.

#### Finite model property (FMP)

Every consistent  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$  has a *finite model*.



The last example revealed several important properties of DL models:

### Tree model property (TMP)

Every consistent  $\mathcal{K} = (\{\}, \{C(I)\})$  has a model in the shape of a *rooted tree*.

#### Finite model property (FMP)

Every consistent  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$  has a *finite model*.

Both properties represent important characteristics of  $\mathcal{ALC}$  that significantly speed-up reasoning.



The last example revealed several important properties of DL models:

### Tree model property (TMP)

Every consistent  $\mathcal{K} = (\{\}, \{C(I)\})$  has a model in the shape of a *rooted tree*.

#### Finite model property (FMP)

Every consistent  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$  has a *finite model*.

Both properties represent important characteristics of  $\mathcal{ALC}$  that significantly speed-up reasoning.

In particular (generalized) TMP is a characteristics that is shared by most DLs and significantly reduces their computational complexity.

### $\mathsf{Example} - \mathsf{CWA} \, \times \, \mathsf{OWA}$

### Example

ABOX

hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

### Example – CWA $\times$ OWA

#### Example

ABOX

hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

Edges represent role assertions of *hasChild*; red/green colors distinguish concepts instances – *Patricide* a  $\neg$ *Patricide* 

$$JOCASTA \longrightarrow POLYNEIKES \longrightarrow THERSANDROS$$

### $\mathsf{Example} - \mathsf{CWA} \, \times \, \mathsf{OWA}$

#### Example

ABOX hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

Edges represent role assertions of *hasChild*; red/green colors distinguish concepts instances – *Patricide* a  $\neg$ *Patricide* 



Q1  $(\exists hasChild \cdot (Patricide \sqcap \exists hasChild \cdot \neg Patricide))(JOCASTA),$ 

 $JOCASTA \longrightarrow \bullet \longrightarrow \bullet$ 

### $\mathsf{Example}-\mathsf{CWA}\,\times\,\mathsf{OWA}$

### Example

ABOX

hasChild(JOCASTA, OEDIPUS) hasChild(OEDIPUS, POLYNEIKES) Patricide(OEDIPUS) hasChild(JOCASTA, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) ¬Patricide(THERSANDROS)

Edges represent role assertions of *hasChild*; red/green colors distinguish concepts instances – *Patricide* a  $\neg$ *Patricide* 



Q1  $(\exists hasChild \cdot (Patricide \sqcap \exists hasChild \cdot \neg Patricide))(JOCASTA),$ 

 $JOCASTA \longrightarrow \bullet \longrightarrow \bullet$ 

Q2 Find individuals x such that  $\mathcal{K} \models C(x)$ , where C is

 $\neg$ *Patricide*  $\sqcap \exists$ *hasChild*<sup>-</sup> · (*Patricide*  $\sqcap \exists$ *hasChild*<sup>-</sup>) · {*JOCASTA*}

What is the difference, when considering CWA ?

 $JOCASTA \longrightarrow \bullet \longrightarrow x$ 

Petr Křemen (petr.kremen@fel.cvut.cz)

Description Logics – Basics

Towards Description Logics

Towards Description Logics

3 ALC Languag



# From ALC to OWL(2)-DL



Extending  $\dots \mathcal{ALC} \dots$ 

• We have introduced ALC, together with a decision procedure. Its expressiveness is higher than propositional calculus, still it is insufficient for many practical applications.



Extending  $\dots \mathcal{ALC} \dots$ 

- We have introduced *ALC*, together with a decision procedure. Its expressiveness is higher than propositional calculus, still it is insufficient for many practical applications.
- Let's take a look, how to extend ALC while preserving decidability.



# Extending $\dots \mathcal{ALC} \dots (2)$

 ${\cal N}$  (Number restructions) are used for restricting the number of successors in the given role for the given concept.

| syntax (concept) | semantics                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------|
| $(\geq n R)$     | $\left\{ \left. a \right   \left  \left\{ b \mid (a,b) \in R^{\mathcal{I}} \right\} \right  \ge n \right\}$ |
| $(\leq n R)$     | $\left\{ \left. a \right   \left  \{ b \mid (a,b) \in R^{\mathcal{I}} \} \right  \leq n \right\}$           |
| (= n R)          | $\left\{ a \middle   \left  \{ b \mid (a, b) \in R^{\mathcal{I}} \} \right  = n \right\}$                   |

### Example

Concept Woman □ (≤ 3 hasChild) denotes women who have at most 3 children.

# Extending $\dots \mathcal{ALC} \dots (2)$

 ${\cal N}$  (Number restructions) are used for restricting the number of successors in the given role for the given concept.

| syntax (concept) | semantics                                                                                        |   |
|------------------|--------------------------------------------------------------------------------------------------|---|
| $(\geq n R)$     | $\left\{ \left. a \right   \left  \{b \mid (a,b) \in R^{\mathcal{I}} \} \right  \geq n \right\}$ |   |
| $(\leq n R)$     | $\left\{ \left. a \right   \left  \{b \mid (a,b) \in R^{\mathcal{I}} \} \right  \leq n \right\}$ |   |
| (= n R)          | $\left\{ a \middle   \left  \{ b \mid (a, b) \in R^{\mathcal{I}} \} \right  = n \right\}$        | • |

- Concept Woman □ (≤ 3 hasChild) denotes women who have at most 3 children.
- What denotes the axiom  $Car \sqsubseteq (\geq 4 hasWheel)$ ?

# Extending $\dots \mathcal{ALC} \dots (2)$

 ${\cal N}$  (Number restructions) are used for restricting the number of successors in the given role for the given concept.

| syntax (concept) | semantics                                                                                   |
|------------------|---------------------------------------------------------------------------------------------|
| $(\geq n R)$     | $\left\{ a \middle   \left  \{ b \mid (a,b) \in R^{\mathcal{I}} \} \right  \geq n \right\}$ |
| $(\leq n R)$     | $\left\{ a \middle   \left  \{b \mid (a,b) \in R^{\mathcal{I}} \} \right  \leq n \right\}$  |
| (= n R)          | $\left\{ a \middle   \left  \{ b \mid (a,b) \in R^{\mathcal{I}} \} \right  = n \right\}$    |

- Concept  $Woman \sqcap (\leq 3 hasChild)$  denotes women who have at most 3 children.
- What denotes the axiom  $Car \sqsubseteq (\geq 4 hasWheel)$ ?

• ... and 
$$Bicycle \equiv (= 2 hasWheel)$$
?

# Extending $\dots ALC \dots (3)$

 $\mathcal{Q}$  (Qualified number restrictions) are used for restricting the number of successors of the given type in the given role for the given concept.

syntax (concept) semantics

$$\begin{array}{c|c} (\geq n R C) \\ (\leq n R C) \\ (= n R C) \\ (= n R C) \end{array} \begin{cases} a \left| \begin{array}{c} \left| \left\{ b \mid (a, b) \in R^{\mathcal{I}} \wedge b^{\mathcal{I}} \in C^{\mathcal{I}} \right\} \right| \geq n \\ a \left| \begin{array}{c} \left\{ b \mid (a, b) \in R^{\mathcal{I}} \wedge b^{\mathcal{I}} \in C^{\mathcal{I}} \right\} \right| \leq n \\ a \left| \begin{array}{c} \left\{ b \mid (a, b) \in R^{\mathcal{I}} \wedge b^{\mathcal{I}} \in C^{\mathcal{I}} \right\} \right| = n \end{array} \end{cases} \end{cases}$$

### Example

Concept Woman □ (≥ 3 hasChild Man) denotes women who have at least 3 sons.

# Extending $\dots ALC \dots (3)$

 $\mathcal{Q}$  (Qualified number restrictions) are used for restricting the number of successors of the given type in the given role for the given concept.

syntax (concept) semantics

- Concept Woman □ (≥ 3 hasChild Man) denotes women who have at least 3 sons.
- What denotes the axiom  $Car \sqsubseteq (\geq 4 hasPart Wheel)$ ?

# Extending $\dots ALC \dots (3)$

 $\mathcal{Q}$  (Qualified number restrictions) are used for restricting the number of successors of the given type in the given role for the given concept.

syntax (concept) semantics

$$\begin{array}{c|c} (\geq n R C) \\ (\leq n R C) \\ (= n R C) \\ (= n R C) \end{array} \begin{cases} a \left| \begin{array}{c} \left| \left\{ b \mid (a, b) \in R^{\mathcal{I}} \land b^{\mathcal{I}} \in C^{\mathcal{I}} \right\} \right| \geq n \\ a \left| \begin{array}{c} \left| \left\{ b \mid (a, b) \in R^{\mathcal{I}} \land b^{\mathcal{I}} \in C^{\mathcal{I}} \right\} \right| \leq n \\ a \left| \begin{array}{c} \left| \left\{ b \mid (a, b) \in R^{\mathcal{I}} \land b^{\mathcal{I}} \in C^{\mathcal{I}} \right\} \right| = n \end{array} \right\} \end{cases}$$

### Example

- Concept Woman □ (≥ 3 hasChild Man) denotes women who have at least 3 sons.
- What denotes the axiom  $Car \sqsubseteq (\geq 4 hasPart Wheel)$ ?
- Which qualified number restrictions can be expressed in  $\mathcal{ALC}$  ?

Description Logics – Basics

Extending  $\dots \mathcal{ALC} \dots (4)$ 

 $\bigcirc \ \frac{(\text{Nominals}) \text{ can be used for naming a concept elements explicitely.}}{\frac{\text{syntax (concept) semantics}}{\{a_1, \dots, a_n\}} \quad \{a_1^{\mathcal{I}}, \dots, a_n^{\mathcal{I}}\}}$ 

### Example

• Concept {*MALE*, *FEMALE*} denotes a gender concept that must be interpreted with at most two elements. Why at most ?



Extending  $\dots \mathcal{ALC} \dots (4)$ 

 $\bigcirc \ \frac{(\text{Nominals}) \text{ can be used for naming a concept elements explicitely.}}{\frac{\text{syntax (concept) semantics}}{\{a_1, \dots, a_n\}} \quad \{a_1^{\mathcal{I}}, \dots, a_n^{\mathcal{I}}\}}$ 

- Concept {*MALE*, *FEMALE*} denotes a gender concept that must be interpreted with at most two elements. Why at most ?
- Continent ≡ {EUROPE, ASIA, AMERICA, AUSTRALIA, AFRICA, ANTARCTICA} ?



Extending  $\dots \mathcal{ALC} \dots (5)$ 

 $\mathcal{I}$  (Inverse roles) are used for defining role inversion.

 $\frac{\text{syntax (role)}}{R^{-}} \qquad \frac{\text{semantics}}{(R^{\mathcal{I}})^{-1}}$ 

### Example

• Role *hasChild*<sup>-</sup> denotes the relationship *hasParent*.



Extending  $\dots \mathcal{ALC} \dots (5)$ 

 $\mathcal I$  (Inverse roles) are used for defining role inversion.

 $\frac{\text{syntax (role)}}{R^{-}} \qquad \frac{\text{semantics}}{(R^{\mathcal{I}})^{-1}}$ 

- Role *hasChild*<sup>-</sup> denotes the relationship *hasParent*.
- What denotes axiom Person  $\sqsubseteq$  (= 2 hasChild<sup>-</sup>) ?



Extending  $\dots \mathcal{ALC} \dots (5)$ 

 $\mathcal{I}$  (Inverse roles) are used for defining role inversion.

syntax (role)semantics $R^ (R^T)^{-1}$ 

- Role *hasChild*<sup>-</sup> denotes the relationship *hasParent*.
- What denotes axiom Person  $\sqsubseteq$  (= 2 hasChild<sup>-</sup>)?
- What denotes axiom *Person*  $\sqsubseteq \exists hasChild^- \cdot \exists hasChild \cdot \top$ ?



Extending  $\dots \mathcal{ALC} \dots (6)$ 

 trans (Role transitivity axiom) denotes that a role is transitive. Attention – it is not a transitive closure operator.

syntax (axiom)semanticstrans(R) $R^{\mathcal{I}}$  is transitive

#### Example

• Role *isPartOf* can be defined as transitive, while role *hasParent* is not. What about roles *hasPart*, *hasPart*<sup>-</sup>, *hasGrandFather*<sup>-</sup>?



Extending  $\dots \mathcal{ALC} \dots (6)$ 

 trans (Role transitivity axiom) denotes that a role is transitive. Attention – it is not a transitive closure operator.

syntax (axiom)semanticstrans(R) $R^{\mathcal{I}}$  is transitive

- Role *isPartOf* can be defined as transitive, while role *hasParent* is not. What about roles *hasPart*, *hasPart<sup>-</sup>*, *hasGrandFather<sup>-</sup>*?
- What is a transitive closure of a relationship ? What is the difference between a transitive closure of *hasDirectBoss*<sup>I</sup> and *hasBoss*<sup>I</sup>.



Extending  $\ldots ALC \ldots (7)$ 

 ${\cal H}$  (Role hierarchy) serves for expressing role hierarchies (taxonomies) – similarly to concept hierarchies.

syntax (axiom)semantics $R \sqsubseteq S$  $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$ 

### Example

• Role hasMother can be defined as a special case of the role hasParent.
Extending  $\ldots ALC \ldots (7)$ 

 ${\cal H}$  (Role hierarchy) serves for expressing role hierarchies (taxonomies) – similarly to concept hierarchies.

syntax (axiom)semantics $R \sqsubseteq S$  $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$ 

#### Example

- Role hasMother can be defined as a special case of the role hasParent.
- What is the difference between a concept hierarchy *Mother* ⊑ *Parent* and role hierarchy *hasMother* ⊑ *hasParent*.



# Extending $\dots \mathcal{ALC} \dots (8)$

 ${\cal R}\,$  (role extensions) serve for defining expressive role constructs, like role chains, role disjunctions, etc.

| syntax                    | semantics                                                           |
|---------------------------|---------------------------------------------------------------------|
| $R \circ S \sqsubseteq P$ | $R^{\mathcal{I}} \circ S^{\mathcal{I}} \sqsubseteq P^{\mathcal{I}}$ |
| Dis(R,R)                  | $R^{\mathcal{I}} \cap S^{\mathcal{I}} = \emptyset$                  |
| $\exists R \cdot Self$    | $\{ {\it a}   ({\it a}, {\it a}) \in {\it R}^{\mathcal{I}} \}$      |

#### Example

• How would you define the role *hasUncle* by means of *hasSibling* and *hasParent* ?



Extending  $\dots \mathcal{ALC} \dots (8)$ 

 $\mathcal{R}$  (role extensions) serve for defining expressive role constructs, like role chains, role disjunctions, etc.

| syntax                    | semantics                                                                 |
|---------------------------|---------------------------------------------------------------------------|
| $R \circ S \sqsubseteq P$ | $R^{\mathcal{I}} \circ S^{\mathcal{I}} \sqsubseteq P^{\mathcal{I}}$       |
| Dis(R,R)                  | $R^{\mathcal{I}} \cap S^{\mathcal{I}} = \emptyset$                        |
| $\exists R \cdot Self$    | $\{ \textit{a}   (\textit{a},\textit{a}) \in \textit{R}^{\mathcal{I}} \}$ |

#### Example

- How would you define the role *hasUncle* by means of *hasSibling* and *hasParent* ?
- how to express that R is transitive, using a role chain ?



Extending  $\dots \mathcal{ALC} \dots (8)$ 

 $\mathcal{R}$  (role extensions) serve for defining expressive role constructs, like role chains, role disjunctions, etc.

| syntax                    | semantics                                                                 |
|---------------------------|---------------------------------------------------------------------------|
| $R \circ S \sqsubseteq P$ | $R^{\mathcal{I}} \circ S^{\mathcal{I}} \sqsubseteq P^{\mathcal{I}}$       |
| Dis(R,R)                  | $R^{\mathcal{I}} \cap S^{\mathcal{I}} = \emptyset$                        |
| $\exists R \cdot Self$    | $\{ \textit{a}   (\textit{a},\textit{a}) \in \textit{R}^{\mathcal{I}} \}$ |

#### Example

- How would you define the role *hasUncle* by means of *hasSibling* and *hasParent* ?
- how to express that R is transitive, using a role chain ?
- Whom does the following concept denote *Person* ⊓ ∃*likes* · *Self* ?



## **Global restrictions**

- *Simple roles* have no (direct or indirect) subroles that are either *transitive* or are defined by means of property chains
  - $hasFather \circ hasBrother \sqsubseteq hasUncle$ 
    - $hasUncle \sqsubseteq hasRelative$
    - $has Biological Father \sqsubseteq has Father$

hasRelative and hasUncle are not simple.

- Each concept construct and each axiom from this list contains only *simple roles*:
  - number restrictions  $(\ge n R)$ , (= n R),  $(\le n R)$  + their qualified versions
  - $\exists R \cdot Self$
  - specifying functionality/inverse functionality (leads to number restrictions)
  - specifying irreflexivity, asymmetry, and disjoint object properties.



• From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:



- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
  - $\bullet~\mathcal{SHOIN}$  is a description logics that backs OWL-DL.



- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
  - $\bullet~\mathcal{SHOIN}$  is a description logics that backs OWL-DL.
  - $\mathcal{SROIQ}$  is a description logics that backs OWL2-DL.



- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
  - $\bullet~\mathcal{SHOIN}$  is a description logics that backs OWL-DL.
  - $\mathcal{SROIQ}$  is a description logics that backs OWL2-DL.
  - Both OWL-DL and OWL2-DL are semantic web languages they extend the corresponding description logics by:



- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
  - $\bullet~\mathcal{SHOIN}$  is a description logics that backs OWL-DL.
  - $\mathcal{SROIQ}$  is a description logics that backs OWL2-DL.
  - Both OWL-DL and OWL2-DL are semantic web languages they extend the corresponding description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.



- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
  - $\bullet~\mathcal{SHOIN}$  is a description logics that backs OWL-DL.
  - $\mathcal{SROIQ}$  is a description logics that backs OWL2-DL.
  - Both OWL-DL and OWL2-DL are semantic web languages they extend the corresponding description logics by:
    - syntactic sugar axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.

extralogical constructs - imports, annotations



- From the previously introduced extensions, two prominent decidable supersets of *ALC* can be constructed:
  - $\bullet~\mathcal{SHOIN}$  is a description logics that backs OWL-DL.
  - $\mathcal{SROIQ}$  is a description logics that backs OWL2-DL.
  - Both OWL-DL and OWL2-DL are semantic web languages they extend the corresponding description logics by:
    - syntactic sugar axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.
    - extralogical constructs imports, annotations
      - data types XSD datatypes are used



• What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for  $\mathcal{ALC}$  has to be adjusted as follows:



- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for  $\mathcal{ALC}$  has to be adjusted as follows:
  - additional inference rules reflecting the semantics of newly added constructs ( $\mathcal{O},\mathcal{N},\mathcal{Q})$



- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for  $\mathcal{ALC}$  has to be adjusted as follows:
  - additional inference rules reflecting the semantics of newly added constructs ( $\mathcal{O},\mathcal{N},\mathcal{Q})$
  - definition of *R*-neighbourhood of a node in a completion graph.
    R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)



- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for  $\mathcal{ALC}$  has to be adjusted as follows:
  - additional inference rules reflecting the semantics of newly added constructs ( $\mathcal{O},\mathcal{N},\mathcal{Q})$
  - definition of *R*-neighbourhood of a node in a completion graph.
    R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
  - new conditions for direct clash detection



- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for  $\mathcal{ALC}$  has to be adjusted as follows:
  - additional inference rules reflecting the semantics of newly added constructs ( $\mathcal{O},\mathcal{N},\mathcal{Q})$
  - definition of *R*-neighbourhood of a node in a completion graph.
    R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
  - new conditions for direct clash detection
  - more strict blocking conditions (blocking over graph structures).



- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for  $\mathcal{ALC}$  has to be adjusted as follows:
  - additional inference rules reflecting the semantics of newly added constructs ( $\mathcal{O},\mathcal{N},\mathcal{Q})$
  - definition of *R*-neighbourhood of a node in a completion graph.
    R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
  - new conditions for direct clash detection
  - more strict blocking conditions (blocking over graph structures).
- This results in significant computation blowup from EXPTIME  $(\mathcal{ALC})$  to



- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for  $\mathcal{ALC}$  has to be adjusted as follows:
  - additional inference rules reflecting the semantics of newly added constructs ( $\mathcal{O},\mathcal{N},\mathcal{Q})$
  - definition of *R*-neighbourhood of a node in a completion graph.
    R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
  - new conditions for direct clash detection
  - more strict blocking conditions (blocking over graph structures).
- This results in significant computation blowup from EXPTIME  $(\mathcal{ALC})$  to
  - NEXPTIME for  $\mathcal{SHOIN}$



- What is the impact of the extensions to the automated reasoning procedure ? The introduced tableau algorithm for  $\mathcal{ALC}$  has to be adjusted as follows:
  - additional inference rules reflecting the semantics of newly added constructs ( $\mathcal{O},\mathcal{N},\mathcal{Q})$
  - definition of *R*-neighbourhood of a node in a completion graph.
    R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in ∃-rule. (*H*, *R*, *I*)
  - new conditions for direct clash detection
  - more strict blocking conditions (blocking over graph structures).
- This results in significant computation blowup from EXPTIME  $(\mathcal{ALC})$  to
  - NEXPTIME for  $\mathcal{SHOIN}$
  - N2EXPTIME for *SROIQ*

• How to express e.g. that "A cousin is someone whose parent is a sibling of your parent." ?



- How to express e.g. that "A cousin is someone whose parent is a sibling of your parent." ?
- ... we need rules, like

 $\begin{aligned} \text{hasCousin}(?c_1,?c_2) \leftarrow \quad \text{hasParent}(?c_1,?p_1), \text{hasParent}(?c_2,?p_2), \\ & Man(?c_2), \text{hasSibling}(?p_1,?p_2) \end{aligned}$ 



- How to express e.g. that "A cousin is someone whose parent is a sibling of your parent." ?
- ... we need rules, like

 $\begin{array}{ll} \textit{hasCousin}(?c_1,?c_2) \leftarrow &\textit{hasParent}(?c_1,?p_1),\textit{hasParent}(?c_2,?p_2),\\ &\textit{Man}(?c_2),\textit{hasSibling}(?p_1,?p_2) \end{array}$ 

• in general, each variable can bind **domain elements**; however, such version is *undecidable*.



- How to express e.g. that "A cousin is someone whose parent is a sibling of your parent." ?
- ... we need rules, like

 $\begin{array}{ll} \textit{hasCousin}(?c_1,?c_2) \leftarrow &\textit{hasParent}(?c_1,?p_1),\textit{hasParent}(?c_2,?p_2),\\ &\textit{Man}(?c_2),\textit{hasSibling}(?p_1,?p_2) \end{array}$ 

• in general, each variable can bind **domain elements**; however, such version is *undecidable*.

#### DL-safe rules

DL-safe rules are decidable conjunctive rules where each variable **only binds individuals** (not domain elements themselves).



Modal Logic introduces modal operators - possibility/necessity, used in multiagent systems.



Modal Logic introduces modal operators - possibility/necessity, used in multiagent systems.

Example



Modal Logic introduces modal operators - possibility/necessity, used in multiagent systems.





Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.



Vague Knowledge - fuzzy, probabilistic and possibilistic extensions



Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.



Vague Knowledge - fuzzy, probabilistic and possibilistic extensions

Data Types (D) allow integrating a data domain (numbers, strings), e.g. *Person*  $\sqcap \exists hasAge \cdot 23$  represents the concept describing "23-years old persons".



## References I

- \* Vladimír Mařík, Olga Štěpánková, and Jiří Lažanský. Umělá inteligence 6 [in czech], Chapters 2-4. Academia, 2013.
- \* Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors. The Description Logic Handbook, Theory, Implementation and Applications, Chapters 2-4.
   Cambridge, 2003.
- \* Enrico Franconi.
  Course on Description Logics.
  http://www.inf.unibz.it/ franconi/dl/course/, cit. 22.9.2013.

