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Time dependent Problemsp

• Time dependent PDEs in conservative form.
Explicit schemes Euler method-Explicit schemes, Euler method.

-What is numerical stability? CFL-condition.y
-Lax, Lax-Wendroff, Leap-Frog, upwind

• Diffusive processes.
-Diffusion equation in conservative form?Diffusion equation in conservative form?
-Explicit and implicit methods.
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Ti d d t blTime dependent problems

Time dependent initial value problems
i Fl ti fin Flux-conservative form:

Where F is the conserved flux. 
For simplicity we study only problems in
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p y y y p
one spatial dimension u=u(x,t) 



Many relevant time dependent problemsMany relevant time dependent problems
can be written in this form

For example the wave equation:

Can be 
written as:written as:                                
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Remember derivation of wave equations
from Maxwell equations. Here: 1D case



MHD in fl conser ati e formMHD in flux conservative form
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MHD in fl conser ati e formMHD in flux conservative form
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Advection Equationq

The method we study used to solve y
this equation can be generalized:
- vectors u(x,y,z,t)( y )
- 2D and 3D spatial dimensions
- Some nonlinear forms for F(u)
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Explicit and Implicit Methodsp p

E li i h• Explicit scheme:

• Implicit scheme:Implicit scheme:

Aim: Find
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More afford necessary for implicit scheme.



W l hi i i hWe try to solve this equation with
discretisation in space and time:

Forward in time

Centered in spaceCentered in space
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Euler method, FTCS
Forward in Time Centered in SpaceForward in Time Centered in Space
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Euler method, FTCS
Forward in Time Centered in Space

Show: demo advection proShow: demo_advection.pro

This is an IDL-program top g
solve the advection equation
with different numerical schemeswith different numerical schemes.
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Euler method FTCSEuler method, FTCS

• Explicit scheme and easy to derive.
• Needs little storage and executes fast• Needs little storage and executes fast.
• Big disadvantage:

FTCS M th d i b i ll l !

Leonard Euler
1707-1783

FTCS-Method is basically useless!
• Why?
• Algorithm is numerical unstable.
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What is numerical stability?y
Say we have to add 100 numbers of array a[i] using
a computer with only 2 significant digits.

sum = 0 

p y g g

for i = 1 to 100 do sum = sum + a[i] 

- Looks reasonable, doesn’t it?
- But imagine a[0]=1.0 and all other a[i]=0.01g [ ] [ ]
- Our two-digit computer gets: sum=1.0
- Better algorithm: Sort first a[i] by absolute valuesBetter algorithm: Sort first a[i] by absolute values
- Two-digit comp gets: sum=2.0, which is a much

better approximation of the true solution 1.99
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Can we check if a numerical scheme isCan we check if a numerical scheme is 
stable without computation? YES:

Von Neumann stability analysis

• Analyze if (or for which conditions) a 
numerical scheme is stable or unstable

John von Neumann
1903-1957

numerical scheme is stable or unstable.
• Makes a local analysis, coefficients of PDE are

d l l ( l )assumed to vary slowly (our example: constant).
• How will unavoidable errors (say rounding errors)

evolve in time?
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Von Neumann stability analysisVon Neumann stability analysis

Ansatz: 

Wave number k and amplification factor: 

A numerical scheme is unstable if:
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Von Neumann stability analysisy y
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Von Neumann stability analysisy y
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Von Neumann stability analysisy y
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Lax method
A simple way to stabilize the FTCS method
h b d b P Lhas been proposed by Peter Lax:  

Peter Lax, born 1926

This leads to

19



Von Neumann stability analysisy y
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Von Neumann stability analysisy y
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Von Neumann stability analysisy y
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Lax equivalence principle
L Ri ht thor Lax Richtmyer theorem

A finite difference approximation converges
(towards the solution of PDE) if and only if:( ) y

• The scheme is consistent (for dt->0 and
dx >0 the difference scheme agrees withdx->0 the difference-scheme agrees with 
original Differential equation.)
A d th diff h i stable• And the difference scheme is stable.

Strictly proven only for linear initial value problem, but 
assumed to remain valid also for more general cases.

23



Courant Friedrichs Levy condition (1928)

CFL-condition
Courant numberCourant number

Famous stability condition in numerical mathematicsFamous stability condition in numerical mathematics
Valid for many physical applications, also in
inhomogenous nonlinear cases like:inhomogenous nonlinear cases like:
- Hydrodynamics (with v as sound speed)
- MHD (with v as Alfven velocity)
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- MHD (with v as Alfven velocity)



CFL-condition

Value at a certain point depends on information
within some area (shaded) as defined by the PDE.
(say advection speed v, wave velocity or speed of light.)
These physical points of dependency must be inside the 
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computational used grid points for a stable method.



Unstable

Why?y

St blStable
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Lax method

We write the terms a bit different: 

and translate the difference equation back 
i t PDE i i th FTCS hinto a PDE in using the FTCS-scheme:

Diff i t
27

Original PDE Diffusion term



Lax MethodLax Method
• Stable numerical scheme (if CFL fulfilled)
• But it solves the wrong PDE!
• How bad is that?How bad is that?
• Answer: Not that bad.

The dissipative term mainly damps smallThe dissipative term mainly damps small
spatial structures on grid resolution, which we are 
not interested in => Numerical dissipationnot interested in. => Numerical dissipation

• The unstable FTCS-method blows this small scale 
t t d il th l tistructures up and spoils the solution.
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Sorry to Leonard Eulery

• We should not refer to Euler entirely negative• We should not refer to Euler entirely negative 
for developing an unstable numerical scheme.
H li d b t 200 b f t• He lived about 200 years before computers
have been developed and the performance

f h h b i ti t dof schemes has been investigated.
• Last but not least:

h l h i i d d blThe Euler-scheme is indeed stable for some
other applications, e.g. the Diffusion equation.
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Phase Errors
• We rewrite the stability condition:

• A wave packet is a superposition of many
waves with different wave numbers kwaves with different wave numbers k.

• Numerical scheme multiplies modes with
different phase factorsdifferent phase factors.

• => Numerical dispersion.
• The method is exact if CFL is fulfilled exactly:

(Helps here but not in
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inhomogenous media.)



Lax methodLax method

Show: demo advection proShow: demo_advection.pro

This is an IDL-program top g
solve the advection equation
with different numerical schemeswith different numerical schemes.
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Nonlinear instabilities
• Occur only for nonlinear PDEs like:

• Von Neumann stability analysis linearizes• Von Neumann stability analysis linearizes
the nonlinear term and suggests stability.
F fil ( h k f i ) h li• For steep profiles (shock formation) the nonlinear term 
can transfer energy from long to small wavelength.

• Can be controlled (stabilized) by numerical viscosity.
• Not appropriate if you actually want to study shocks.
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Lax-Wendroff Method 

• 2 step method based on Lax Method.p
• Apply first one step “Lax step” but

advance only half a time step.advance only half a time step.
• Compute fluxes at this points tn+1/2

N d t t tn+1 b i• Now advance to step  tn+1 by using
points at tn and tn+1/2

• Intermediate Results at tn+1/2 not needed anymore.
• Scheme is second order in space and time.p
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Lax-Wendroff Method 
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Lax-Wendroff Method
Lax step

Compute Fluxes at n+1/2 and then:

- Stable if  CFL-condition fulfilled.
- Still diffusive, but here this is only  4th order in k,
compared to 2th order for Lax method.
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=> Much smaller effect.



Leap-Frog Methodp g

Children playing leapfrog  
Harlem, ca. 1930.

Scheme uses second
order central
differences in
space and time.

One of the most important classical methods
36

One of the most important classical methods.
Commonly used to solve MHD-equations.



Leap-Frog methodp g

• Requires storage of previous time step.
• Von Neumann analysis shows stability under• Von Neumann analysis shows stability under

CFL-condition.

• We get 
• Big advantage of Leap-Frog method:

No amplitude diffusion.
37
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Leap-Frog methodp g
• Popular in fluid dynamics and MHD.
• No diffusion in the Leap-Frog scheme.
• For nonlinear problems the method can becomep

unstable if sharp gradients form.
• This is mainly because the two grids are uncoupledThis is mainly because the two grids are uncoupled.
• Cure: Couple grids by adding artificial viscosity.

This is also how nature damps shocks/discontinuities:
producing viscosity or resistivity by micro-instabilities.
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Upwind method: A more physical approach
to the transport problemto the transport problem.
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Upwind method: A more physical approach
to the transport problem

• Up ind methods take into consideration the flo

to the transport problem.

• Upwind methods take into consideration the flow 
direction (different from central schemes).

l fi d i d i• Here: only first order accuracy in space and time.
• CFL-stable for upwind direction; 

downwind direction unstable.
• Upwind methods can be generalized to higherp g g

order and combined with other methods:
-use high order central schemes for smooth flowsg
-upwind methods in regions with shocks.
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Exercise: Leap-FrogExercise: Leap Frog, 
Lax-Wendroff, Upwind

l t d ti d ftlecture_advection_draft.pro
hi i d fThis is a draft IDL-program to

solve the advection equation. 
i ff iTask: implement Leap-Frog, Lax-Wendroff, Upwind

Can be used also for other equations
in conservative form, e.g.
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the nonlinear Burgers equation (see exercises)



Time dependent PDEs
Summary

• Very simple numerical schemes often do notVery simple numerical schemes often do not 
work, because of numerical instabilities.

• Lax: Consistency + stability = convergence• Lax: Consistency + stability = convergence.
• CFL-condition (or Courant number) limits

i ll d imaximum allowed time step. 
• Important are second order accurate schemes:p

-Leap-Frog method.
-Lax-Wendroff scheme.
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Diffusive processes.p

• One derivation of diffusion equation• One derivation of diffusion equation.
• Diffusion equation in conservative form?q
• Try to solve diffusion equation with our

explicit solvers from last sectionexplicit solvers from last section.
• Application to a nonlinear equation:pp q

(Diffusive Burgers equation)
• Implicit methods: Crank Nicolson scheme• Implicit methods: Crank-Nicolson scheme.
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Parabolic PDEs: Diffusion equationq

In principle we know already how to solve 
this equation in the conservative form:
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Application: Wave breaking,  
B rgers eq ationBurgers equation
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Diffusion equation and 
diff i B E tidiffusive Burgers Equation

d d idemo_advection.pro

• Apply our methods and check stability for:
(Euler Leap Frog upwind Lax Lax Wendroff):(Euler, Leap-Frog, upwind, Lax, Lax-Wendroff):

• Diffusion equation:

• Diffusive Burgers equation:
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Euler-method FTCS

• Euler method is conditional stable for

• Time step way more demanding (has to• Time step way more demanding (has to 
be very small) compared to hyperbolic equations.
B i i if hi h i l• Becomes even more restrictive if higher spatial
derivatives are on the right hand side.
dt (d )n f th ’th ti l d i ti

48
dt ~ (dx)n for the n’th spatial derivative.



Time step restrictionsp

• We have to resolve the diffusion time
across a spatial scale

A d i li it h h t l• And in our explicit scheme we have to resolve
the smallest present spatial scale, which is
th id l tithe grid resolution. 

• Often we are only interested in scales
• It takes about                     steps until 

these scales are effected.
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Implicit schemesp

• Looks very similar as FTCS-method, but
contains new (t+dt) step on right side.contains new (t dt) step on right side.

• This is called ‘fully implicit’ or 
‘backward in time’ schemebackward in time  scheme.

• Disadvantage: We do not know the terms
th i ht id b t t t bt i thon the right side, but want to obtain them.

• Advantages of the method? 
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Do a stability analysis!



Implicit schemep

• Von Neumann stability analysis:

• Fully implicit method is unconditional stable• Fully implicit method is unconditional stable.
No restrictions on timestep.
S bl d Th h d• Stable does not mean accurate. The method
is only first order accurate.
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How to use an implicit scheme?p

can be rewritten to

and at every time step one has to solve a systemand at every time step one has to solve a system
of linear equations to find         . This is a large
extra afford but pays off by allowing an
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extra afford, but pays off by allowing an 
unrestricted time step. 



Crank-Nicolson scheme

John Crank Phyllis Nicolson
Now lets average between
the FTCS and the f llJohn Crank

1916-2006
y

1917-1968the FTCS and the fully
implicit scheme:

The Crank-Nicolson method is unconditionalThe Crank Nicolson method is unconditional
stable and second order accurate. 
(Because it is a centered scheme
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(Because it is a centered scheme
in space and time.)
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Diffusive Equations, Generalizationq

55(Crank-Nicolson)



Crank-Nicolson scheme

• Scheme is unconditional stable• Scheme is unconditional stable.
• This allows using long time steps. 
• Method has second order accuracy.
• Implicit scheme: One has to solve system

of equation to advance in time.
• This is straight forward for linear PDEs.g
• Method works also for nonlinear PDEs.
• But this requires to solve a system of• But this requires to solve a system of 

nonlinear coupled algebraic equations,
which can be tricky
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which can be tricky.



Parabolic (diffusive) PDEs
Summary

• Explicit Euler-scheme is stable, but withExplicit Euler scheme is stable, but with
severe restrictions on time step.

• Doubling the spatial grid resolution requires• Doubling the spatial grid resolution requires
reduction of time step by a factor 4 for
explicit schemesexplicit schemes.

• The implicit Crank-Nicolson scheme is 
unconditional stable.

• Implicit codes are more difficult to implement.
57
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