Logical reasoning and programming, task I

(October 14, 2018)

Problem

Your task is to solve a slightly modified ${ }^{1}$ version of the open job scheduling problem using a SAT solver.

We have t units of time (makespan), m machines, n standard jobs plus a machine maintenance job, and an $(m \times(n+1))$ matrix of non-negative integer weights $W=\left(w_{i j}\right)$ where $w_{i j}$ is the amount of uninterrupted time units job j requires on machine i (possibly zero) and job $n+1$ is the machine maintenance job. The problem is to decide whether you can schedule all the jobs on machines according to W in such a way that they are completed in t units of time. Moreover, the following two conditions must be satisfied

- each machine can process only one job at a time and
- each job may be processed only by one machine at a time, the only exception is the machine maintenance job that can be processed simultaneously on more machines.

Example

For $t=12, m=3, n=3$, and

$$
W=\left[\begin{array}{llll}
7 & 0 & 2 & 3 \\
1 & 6 & 2 & 2 \\
2 & 3 & 5 & 2
\end{array}\right]
$$

is the answer yes, because there exists a schedule, e.g.,

Job 4			Job 3					Job 1	
Job 3	Job 4	Job 1				Job 2			
Job 1	Job 2				Job 3			Job 4	

where Job 4 is the maintenance job. There exists no schedule for $t=11$.

Program

You should upload an archive to BRUTE that contains an executable script openshop that expects an input string on stdin and produces a solution to stdout.

It is expected that you use Python (use python2 or python3), but MATLAB 9.2 (use matlab) should also work. You may use

[^0]- PycoSAT in Python, import pycosat,
- MiniSat, command minisat,
- PicoSAT, command picosat,
as SAT solvers. You are allowed to use another solver included in your archive.
Every input has a maximum execution time attached, however, the given time should be enough for solving the problem using a SAT solver with a decent (non-optimized) encoding.

Non-standard settings can be discussed individually.

Input

It is a string containing a sequence of non-negative integers separated by commas. In our example, it is

$$
12,3,3,7,0,2,3,1,6,2,2,2,3,5,2
$$

where the meaning is $t, m, n, w_{11}, w_{12}, \ldots, w_{m(n+1)}$. Hence the sequence contains $3+(m *(n+1))$ numbers.

Output

It is a string of $m *(n+1)$ non-negative integers separated by commas s_{11}, s_{12}, $\ldots, s_{m(n+1)}$, where $s_{i j}$ says that job j starts on machine i at time $0 \leq s_{i j}<t$. If $w_{i j}=0$, then $s_{i j}=0$ or any other value.
In our example, you are supposed to produce, e.g.,

$$
5,0,3,0,4,6,0,2,0,2,5,10
$$

If no solution is possible, then just produce string

[^0]: ${ }^{1}$ Our version contains a machine maintenance.

