
Logical reasoning and programming
Answer set programming

Karel Chvalovský

CIIRC CTU

These slides are mainly based on Eiter 2016 and Gebser et al. 2012.

Types of problem solving we have discussed

We have seen two possible approaches how to solve a problem:

SAT (SMT)
Input: a specification of the problem
Output: a model of the specification
Weakness: a limited language (no general rules like in Prolog)

Prolog
Input: a specification of the problem + query
Output: a derivation of the query from the specification
Weakness: slower and not fully declarative (e.g. the order matters)

ASP = LP + SAT + . . .

Note that logic programming (LP) ̸= Prolog.

1 / 37

ASP based problem solving

We combine the expressive power of logic programming (language)
with solving similar to SAT.

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Specifying Interpreting

Solving

source: Gebser et al. 2012

2 / 37

Notation

We shall write rules like

𝑝(𝑋)← 𝑞(𝑋), 𝑟(𝑋). (1)

that rightly resembles

p(X) :- q(X), r(X). (2)

in Prolog. However, the order of elements in the body of (1) is not
important, unlike in (2), because we want to be fully declarative
now. Hence (1) faithfully means

𝑞(𝑋) ∧ 𝑟(𝑋)→ 𝑝(𝑋).

3 / 37

Example: graph 𝑛-coloring

We shall be able to express that a graph is 𝑛-colorable
(NP-complete problem for 𝑛 > 2) as

{𝑐𝑜𝑙𝑜𝑟(𝑋, 1..𝑛)} = 1← 𝑛𝑜𝑑𝑒(𝑋).
← 𝑒𝑑𝑔𝑒(𝑋, 𝑌), 𝑐𝑜𝑙𝑜𝑟(𝑋, 𝐶), 𝑐𝑜𝑙𝑜𝑟(𝑌, 𝐶).

and we look for a model for this program provided that a graph is
encoded using 𝑛𝑜𝑑𝑒/1 and 𝑒𝑑𝑔𝑒/2.

4 / 37

Naïve grounding
We would like to use the language of logic programming
(first-order), but also methods developed for SAT (propositional).
We can use the naïve grounding—substitute all possible terms:

𝑔𝑖𝑎𝑛𝑡(𝑗𝑜ℎ𝑛). 𝑔𝑖𝑎𝑛𝑡(𝑗𝑜ℎ𝑛).
𝑒𝑙𝑓(𝑏𝑜𝑏). 𝑒𝑙𝑓(𝑏𝑜𝑏).
𝑡𝑎𝑙𝑙(𝑋)← 𝑔𝑖𝑎𝑛𝑡(𝑋). 𝑡𝑎𝑙𝑙(𝑗𝑜ℎ𝑛)← 𝑔𝑖𝑎𝑛𝑡(𝑗𝑜ℎ𝑛).

⇒ 𝑡𝑎𝑙𝑙(𝑏𝑜𝑏)← 𝑔𝑖𝑎𝑛𝑡(𝑏𝑜𝑏).
𝑠𝑚𝑎𝑙𝑙(𝑋)← 𝑒𝑙𝑓(𝑋). 𝑠𝑚𝑎𝑙𝑙(𝑗𝑜ℎ𝑛)← 𝑒𝑙𝑓(𝑗𝑜ℎ𝑛).

𝑠𝑚𝑎𝑙𝑙(𝑏𝑜𝑏)← 𝑒𝑙𝑓(𝑏𝑜𝑏).
Both programs are equivalent and ground atoms behave like
propositional atoms.

From now on, if not otherwise specified, we assume that
everything is grounded. Moreover, we assume that we have finite
logic programs with no function symbols (lead to infinite naïve
grounding).

5 / 37

Herbrand models (recap)
Let 𝑃 be any logic program and 𝑃 ′ be a finite logic program that
contains only constants and no function symbols. Recall that:

The Herbrand universe of 𝑃 , 𝐻𝑈(𝑃), is the set of ground terms in
𝑃 . Hence 𝐻𝑈(𝑃 ′) is the finite set of all constants occurring in 𝑃 ′.

{𝑗𝑜ℎ𝑛, 𝑏𝑜𝑏}

The Herbrand base of 𝑃 , 𝐻𝐵(𝑃), is the set of ground atoms in 𝑃 .
Hence 𝐻𝐵(𝑃 ′) is also finite.

{𝑔𝑖𝑎𝑛𝑡(𝑗𝑜ℎ𝑛), 𝑔𝑖𝑎𝑛𝑡(𝑏𝑜𝑏), 𝑒𝑙𝑓(𝑗𝑜ℎ𝑛), 𝑒𝑙𝑓(𝑏𝑜𝑏),
𝑡𝑎𝑙𝑙(𝑗𝑜ℎ𝑛), 𝑡𝑎𝑙𝑙(𝑏𝑜𝑏), 𝑠𝑚𝑎𝑙𝑙(𝑗𝑜ℎ𝑛), 𝑠𝑚𝑎𝑙𝑙(𝑏𝑜𝑏)}

A Herbrand interpretation 𝑀 of 𝑃 , 𝑀 ⊆ 𝐻𝐵(𝑃), is a set of
ground atoms in 𝑃 that are considered true.

{𝑔𝑖𝑎𝑛𝑡(𝑗𝑜ℎ𝑛), 𝑒𝑙𝑓(𝑏𝑜𝑏), 𝑡𝑎𝑙𝑙(𝑗𝑜ℎ𝑛), 𝑠𝑚𝑎𝑙𝑙(𝑏𝑜𝑏)}

6 / 37

Positive logic programs
A positive logic rule (also called definite logic rule) 𝑟 is of the form

ℎ← 𝑏1, . . . , 𝑏𝑛.

where ℎ, 𝑏1, . . . , 𝑏𝑛 are atoms, for 𝑛 ≥ 0. We define 𝐻(𝑟) = {ℎ}
and 𝐵(𝑟) = {𝑏1, . . . , 𝑏𝑛}.
A positive logic program is a finite set of positive logic rules.
Example
𝑃1 = {𝑎← 𝑏. 𝑏← 𝑐. 𝑐.} and 𝑃2 = {𝑎← 𝑏. 𝑏← 𝑎. 𝑐.} are positive
logic programs.

Model
A Herbrand interpretation 𝑀 of 𝑃 is a model of (positive)
program 𝑃 , if all rules in 𝑃 are true in 𝑀 that is if 𝑟 ∈ 𝑃 and
𝐵(𝑟) ⊆𝑀 , then 𝐻(𝑟) ∩𝑀 ̸= ∅.

Example
𝑀1 = {𝑎, 𝑏, 𝑐} is a model of 𝑃1 and 𝑃2, but 𝑀2 = {𝑐} is only a
model of 𝑃2. 7 / 37

Minimal model semantics

Logic programs usually have many models and we select the
canonical one where the truth of an atom is “founded” by rules.

A model 𝑀 of a program 𝑃 is minimal, denoted min⊆(𝑃), if there
is no model 𝑀 ′ (𝑀 of 𝑃 .

Lemma
Every positive logic program 𝑃 has exactly one minimal model
min⊆(𝑃). Hence min⊆(𝑃) =

⋂︀
{𝑀 |𝑀 is a model of 𝑃 }.

Example
For 𝑃1 = {𝑎← 𝑏. 𝑏← 𝑐. 𝑐.} and 𝑃2 = {𝑎← 𝑏. 𝑏← 𝑎. 𝑐.} we have
min⊆(𝑃1) = {𝑎, 𝑏, 𝑐} and min⊆(𝑃2) = {𝑐}.

8 / 37

Fixpoints
We can obtain min⊆(𝑃) by the consequence operator 𝑇𝑃 which
acts on interpretations. For an iterpretation 𝑀 we define

𝑇𝑃 (𝑀) = {𝐻(𝑟) | 𝑟 ∈ 𝑃 and 𝐵(𝑟) ⊆𝑀 }.

Let 𝑇 0
𝑃 = ∅ and 𝑇 𝑖+1

𝑃 = 𝑇𝑃 (𝑇 𝑖
𝑃), for 𝑖 ≥ 0.

Theorem
𝑇𝑃 has a least fixed point, denoted 𝑇 𝜔

𝑃 , and the sequence of 𝑇 𝑖
𝑃

converges to 𝑇 𝜔
𝑃 .

Example
For 𝑃1 = {𝑎← 𝑏. 𝑏← 𝑐. 𝑐.} we have 𝑇 0

𝑃1
= ∅, 𝑇 1

𝑃1
= {𝑐},

𝑇 2
𝑃1

= {𝑐, 𝑏}, 𝑇 3
𝑃1

= {𝑐, 𝑏, 𝑎}, 𝑇 4
𝑃1

= 𝑇 3
𝑃1

, and hence
𝑇 𝜔

𝑃1
= {𝑐, 𝑏, 𝑎}.

For 𝑃2 = {𝑎← 𝑏. 𝑏← 𝑎. 𝑐.} we have 𝑇 0
𝑃2

= ∅, 𝑇 1
𝑃2

= {𝑐},
𝑇 2

𝑃2
= 𝑇 1

𝑃2
, and hence 𝑇 𝜔

𝑃2
= {𝑐}.

9 / 37

Non-monotonic reasoning
In classical logic the consequence relation is monotone that is by
adding assumptions we can only add consequences, but it is
impossible to remove them.

Sometimes non-monotonic reasoning is useful. Let 𝑃1 be

𝑓𝑙𝑖𝑒𝑠(𝑋)← 𝑏𝑖𝑟𝑑(𝑋), not 𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑋).
𝑏𝑖𝑟𝑑(𝑡𝑤𝑒𝑒𝑡𝑦).

where not is a non-standard negation, cf. NAF in Prolog. The
meaning of the first rule is that if 𝑋 is a bird and we do not know
that 𝑋 is a 𝑝𝑒𝑛𝑔𝑢𝑖𝑛, then 𝑋 𝑓𝑙𝑖𝑒𝑠. We use the closed-world
assumption (CWA)—if something is true, then we know that. Or
in our case, if we do not know something, then it is false. We do
not know 𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑡𝑤𝑒𝑒𝑡𝑦) and hence 𝑃1 |= 𝑓𝑙𝑖𝑒𝑠(𝑡𝑤𝑒𝑒𝑡𝑦).

Let 𝑃2 = 𝑃1 ∪ {𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑡𝑤𝑒𝑒𝑡𝑦).} then 𝑃2 ̸|= 𝑓𝑙𝑖𝑒𝑠(𝑡𝑤𝑒𝑒𝑡𝑦).

10 / 37

Normal logic programs

A normal logic rule 𝑟 is of the form

ℎ← 𝑏1, . . . , 𝑏𝑛, not 𝑐1, . . . , not 𝑐𝑚.

where ℎ, 𝑏1, . . . , 𝑏𝑛, 𝑐1, . . . , 𝑐𝑚 are atoms, for 𝑛, 𝑚 ≥ 0. We call
not “negation as failure”, “default negation”, or “weak negation”.
We define 𝐻(𝑟) = {ℎ}, 𝐵(𝑟) = {𝑏1, . . . , 𝑏𝑛, not 𝑐1, . . . , not 𝑐𝑚},
𝐵(𝑟)+ = {𝑏1, . . . , 𝑏𝑛}, and 𝐵(𝑟)− = {𝑐1, . . . , 𝑐𝑚}.

A normal logic program is a finite set of normal logic rules.

Model
A Herbrand interpretation 𝑀 of 𝑃 is a model of (normal) program
𝑃 , if all rules in 𝑃 are true in 𝑀 that is if 𝑟 ∈ 𝑃 , 𝐵(𝑟)+ ⊆𝑀 , and
𝐵(𝑟)− ∩𝑀 = ∅, then 𝐻(𝑟) ∩𝑀 ̸= ∅.

11 / 37

Semantics for negation

So called “wars of semantics” in logic programming.

𝑃 = {𝑚𝑎𝑛(𝑑𝑖𝑙𝑏𝑒𝑟𝑡).
𝑠𝑖𝑛𝑔𝑙𝑒(𝑑𝑖𝑙𝑏𝑒𝑟𝑡)← 𝑚𝑎𝑛(𝑑𝑖𝑙𝑏𝑒𝑟𝑡), not ℎ𝑢𝑠𝑏𝑎𝑛𝑑(𝑑𝑖𝑙𝑏𝑒𝑟𝑡).
ℎ𝑢𝑠𝑏𝑎𝑛𝑑(𝑑𝑖𝑙𝑏𝑒𝑟𝑡)← 𝑚𝑎𝑛(𝑑𝑖𝑙𝑏𝑒𝑟𝑡), not 𝑠𝑖𝑛𝑔𝑙𝑒(𝑑𝑖𝑙𝑏𝑒𝑟𝑡).}

What is the correct model of 𝑃?
Two well-established approaches:
I single partial model (well-founded semantics)

𝑚𝑎𝑛(𝑑𝑖𝑙𝑏𝑒𝑟𝑡) is true,
𝑠𝑖𝑛𝑔𝑙𝑒(𝑑𝑖𝑙𝑏𝑒𝑟𝑡) and ℎ𝑢𝑠𝑏𝑎𝑛𝑑(𝑑𝑖𝑙𝑏𝑒𝑟𝑡) are unknown

I alternative models (stable models also called answer sets)
𝑀1 = {𝑚𝑎𝑛(𝑑𝑖𝑙𝑏𝑒𝑟𝑡), 𝑠𝑖𝑛𝑔𝑙𝑒(𝑑𝑖𝑙𝑏𝑒𝑟𝑡)},
𝑀2 = {𝑚𝑎𝑛(𝑑𝑖𝑙𝑏𝑒𝑟𝑡), ℎ𝑢𝑠𝑏𝑎𝑛𝑑(𝑑𝑖𝑙𝑏𝑒𝑟𝑡)}

12 / 37

Answer sets
We apply the closed world assumption (CWA).

Reduct 𝑃 𝑀

Given a (normal) program 𝑃 and a set of atoms 𝑀 , we define the
reduct of 𝑃 relative to 𝑀 , denoted 𝑃 𝑀 , as

𝑃 𝑀 = {𝐻(𝑟)← 𝐵(𝑟)+ | 𝑟 ∈ 𝑃 and 𝐵(𝑟)− ∩𝑀 = ∅ }.

In other words, we obtain 𝑃 𝑀 from 𝑃 by
I deleting every 𝑟 ∈ 𝑃 s.t. not 𝑐𝑖 is in its body and 𝑐𝑖 ∈𝑀 ,
I deleting all negative literals in the bodies of remaining rules.

Note that 𝑃 𝑀 is a positive logic program and hence has a unique
minimal model.

Answer set
A model 𝑀 is an answer set (or stable model) of 𝑃 , if 𝑀 is the
minimal model of 𝑃 𝑀 that is 𝑀 = min⊆(𝑃 𝑀).

13 / 37

One answer set

𝑃1 = {𝑎← 𝑎. 𝑏← not 𝑎.} has one answer set {𝑏}.

𝑀 𝑃 𝑀
1 min⊆(𝑃 𝑀

1)
∅ {𝑎← 𝑎, 𝑏←} {𝑏}
{𝑎} {𝑎← 𝑎} ∅
{𝑏} {𝑎← 𝑎, 𝑏←} {𝑏}
{𝑎, 𝑏} {𝑎← 𝑎} ∅

14 / 37

Many answer sets

𝑃2 = {𝑎← not 𝑏. 𝑏← not 𝑎.} has two answer sets {𝑎} and {𝑏}.

𝑀 𝑃 𝑀
2 min⊆(𝑃 𝑀

2)
∅ {𝑎←, 𝑏←} {𝑎, 𝑏}
{𝑎} {𝑎←} {𝑎}
{𝑏} {𝑏←} {𝑏}
{𝑎, 𝑏} ∅ ∅

15 / 37

No answer set
𝑃3 = {𝑎← not 𝑎.} has no answer set.

𝑀 𝑃 𝑀
3 min⊆(𝑃 𝑀

3)
∅ {𝑎←} {𝑎}
{𝑎} ∅ ∅

Integrity constraints
Let 𝑃 be a program and 𝑥 be a fresh atom in 𝑃 . A rule

𝑥← 𝑏1, . . . , 𝑏𝑛, not 𝑐1, . . . , not 𝑐𝑚, not 𝑥.

eliminates all answer sets of 𝑃 that contain 𝑏1,. . . ,𝑏𝑛 and do not
contain 𝑐1,. . . ,𝑐𝑚. Because 𝑥 is not important, we write

← 𝑏1, . . . , 𝑏𝑛, not 𝑐1, . . . , not 𝑐𝑚.

and call such rules integrity constraints.
16 / 37

Complexity of normal logic programs

Theorem
Deciding whether a normal logic program 𝑃 has an answer set is
I NP-complete if 𝑃 is grounded (propositional),
I NEXPTIME-complete if 𝑃 is function-free.

If 𝑃 is grounded, then we can guess an answer set 𝑀 of 𝑃 (in
NP). Computing 𝑃 𝑀 and testing whether 𝑀 = min⊆(𝑃 𝑀) is
polynomial. Grounding can cause an exponential blow up in
general and hence, roughly speaking, we are in NEXPTIME.

17 / 37

Disjunctive rules
A disjunctive logic rule 𝑟 is of the form

ℎ1 | · · · | ℎ𝑘 ← 𝑏1, . . . , 𝑏𝑛, not 𝑐1, . . . , not 𝑐𝑚.

where ℎ1,. . . ,ℎ𝑘, 𝑏1, . . . , 𝑏𝑛, 𝑐1, . . . , 𝑐𝑚 are atoms, for
𝑘, 𝑛, 𝑚 ≥ 0. We define 𝐻(𝑟) = {ℎ1, . . . , ℎ𝑘},
𝐵(𝑟) = {𝑏1, . . . , 𝑏𝑛, not 𝑐1, . . . , not 𝑐𝑚}, 𝐵(𝑟)+ = {𝑏1, . . . , 𝑏𝑛},
and 𝐵(𝑟)− = {𝑐1, . . . , 𝑐𝑚}.

A disjunctive logic program is a finite set of disjunctive logic rules.

Model
A Herbrand interpretation 𝑀 of 𝑃 is a model of (disjunctive)
program 𝑃 , if all rules in 𝑃 are true in 𝑀 that is if 𝑟 ∈ 𝑃 ,
𝐵(𝑟)+ ⊆𝑀 , and 𝐵(𝑟)− ∩𝑀 = ∅, then 𝐻(𝑟) ∩𝑀 ̸= ∅.

Note that it is no longer possible to compute stable models by a
simple iteration as for normal programs.

18 / 37

Graph is 3-colorable
Whether a graph is 3-colorable is an NP-complete problem. Hence
the complement of it is coNP-complete. We can solve it using:

𝑟(𝑋) | 𝑔(𝑋) | 𝑏(𝑋)← 𝑛𝑜𝑑𝑒(𝑋).

𝑛𝑜𝑛𝑐𝑜𝑙← 𝑟(𝑋), 𝑟(𝑌), 𝑒𝑑𝑔𝑒(𝑋, 𝑌).
𝑛𝑜𝑛𝑐𝑜𝑙← 𝑔(𝑋), 𝑔(𝑌), 𝑒𝑑𝑔𝑒(𝑋, 𝑌).
𝑛𝑜𝑛𝑐𝑜𝑙← 𝑏(𝑋), 𝑏(𝑌), 𝑒𝑑𝑔𝑒(𝑋, 𝑌).
← not 𝑛𝑜𝑛𝑐𝑜𝑙.

𝑟(𝑋)← 𝑛𝑜𝑛𝑐𝑜𝑙, 𝑛𝑜𝑑𝑒(𝑋).
𝑔(𝑋)← 𝑛𝑜𝑛𝑐𝑜𝑙, 𝑛𝑜𝑑𝑒(𝑋).
𝑏(𝑋)← 𝑛𝑜𝑛𝑐𝑜𝑙, 𝑛𝑜𝑑𝑒(𝑋).

It holds that the grounding of it is polynomial and
I no model means 3-colorable,
I a model means there is no 3-coloring.

19 / 37

Complexity of disjunctive logic programs

Theorem
Deciding whether a disjunctive logic program 𝑃 has an answer set
is
I NPNP-complete if 𝑃 is grounded (propositional),
I NEXPTIMENP-complete if 𝑃 is function-free.

Computing 𝑃 𝑀 and testing whether 𝑀 = min⊆(𝑃 𝑀) is
polynomial with an NP-oracle; ask the oracle whether 𝑁 (𝑀
satisfies 𝑃 𝑀 .

20 / 37

ASP language

There exists a standard language for ASP called ASP-Core-2 and it
is used in the ASP Competition (biannual).

Example
Our

𝑝(𝑋) | 𝑞(𝑋)← 𝑟(𝑋), not 𝑠(𝑋).

is

p(X) | q(X) :- r(X), not s(X).

The language contains many commonly used extensions, but many
of them are only shortcuts for things expressible already in our
language.

21 / 37

Choice rules
A rule 𝑟

{ℎ1; . . . ; ℎ𝑘} ← 𝑏1, . . . , 𝑏𝑛, not 𝑐1, . . . , not 𝑐𝑚.

is called a choice rule. The meaning is that any subset of atoms in
the head can be added to a stable model if the body is satisfied.

Example
𝑃4 = {𝑎. {𝑏} ← 𝑎.} has two stable models {𝑎} and {𝑎, 𝑏}.
A choice rule 𝑟 can be replaced by normal rules

ℎ′ ← 𝑏1, . . . , 𝑏𝑛, not 𝑐1, . . . , not 𝑐𝑚.

ℎ𝑖 ← ℎ′, not ℎ𝑖.

ℎ𝑖 ← not ℎ𝑖.

for 1 ≤ 𝑖 ≤ 𝑘 if we introduce new atoms ℎ′, ℎ1, . . . , ℎ𝑘. The
resulting program has the same stable models if we ignore the
newly introduced atoms.

22 / 37

Cardinality constraints
We also have special extended atoms

𝑙{𝑏1; . . . ; 𝑏𝑛; not 𝑐1; . . . ; not 𝑐𝑚}𝑢

where 𝑙, 𝑢 ≥ 0. The meaning is that at least 𝑙 and at most 𝑢
atoms from {𝑏1, . . . , 𝑏𝑛, not 𝑐1, . . . , not 𝑐𝑚} are true in a stable
model. We also allow that 𝑙 or 𝑢 are missing, meaning there is no
corresponding bound. It is possible to use cardinality constraints
both in heads and bodies.

Cardinality constraints can be expressed by normal rules, however,
the translation is quadratic in space. Also a normal logic rule

ℎ← 𝑏1, . . . , 𝑏𝑛, not 𝑐1, . . . , not 𝑐𝑚.

is equivalent to

1{ℎ} ← 1{𝑏1}, . . . , 1{𝑏𝑛}, {𝑐1}0, . . . , {𝑐𝑚}0.

23 / 37

Weight constraints

An extension of cardinality constraints. We add weights to literals
and the sum of weights of selected literals is bounded.

𝑙{𝑤1 : 𝑏1; . . . , 𝑤𝑛 : 𝑏𝑛; 𝑤𝑛+1 : not 𝑐1; . . . ; 𝑤𝑛+𝑚 : not 𝑐𝑚}𝑢

where 𝑤1, . . . , 𝑤𝑛+𝑚 and 𝑙, 𝑢 are integers.

The possibility to have both positive and negative weights can
affect the computational complexity of the problem (by one step in
the polynomial time hierarchy).

Example
10 { 4:repair(tv) ; 6:buy(phone) ; 8:buy(pc) } 14

24 / 37

Aggregate atoms
Similarly to weight constraints, we have aggregates. An aggregate
element has form

𝑡1, . . . , 𝑡𝑚 : ℓ1, . . . , ℓ𝑛

where 𝑡1, . . . , 𝑡𝑚 are terms and ℓ1, . . . , ℓ𝑛 are literals (atoms 𝑎𝑖 or
not 𝑎𝑖).
An aggregate atom has form

#𝑎𝑔𝑔𝑟{𝑒1; . . . ; 𝑒𝑘} ≺ 𝑢

where 𝑒𝑖, for 1 ≤ 𝑖 ≤ 𝑘, are aggregate elements. #𝑎𝑔𝑔𝑟 can be for
example # sum, # min, # max, # count and ≺ is a relational
symbol. We also allow 𝑢 ≺ #𝑎𝑔𝑔𝑟{𝑒1; . . . ; 𝑒𝑛} and
𝑢1 ≺1 #𝑎𝑔𝑔𝑟{𝑒1; . . . ; 𝑒𝑛} ≺2 𝑢2.
Example
#sum{1:edge(1,2) ; 2:edge(1,3) ; 1:edge(1,4)} < 3
2 <= #max{ X, Y : p(X,Y) , q(Y,X) , r(X) } < 5
2 <= #max{ X : p(X,Y) , q(Y,X) , r(X) } < 5

25 / 37

Conditional literals

A conditional literal
ℓ : ℓ1, . . . , ℓ𝑛

is the set of all instances of literal ℓ such that literals ℓ1,. . . ,ℓ𝑛

hold.

Example
If we have {𝑣𝑒𝑟𝑡𝑒𝑥(0). 𝑣𝑒𝑟𝑡𝑒𝑥(1). 𝑣𝑒𝑟𝑡𝑒𝑥(2).}, then

← 𝑒𝑑𝑔𝑒(0, 𝑋) : 𝑣𝑒𝑟𝑡𝑒𝑥(𝑋).

expands to
← 𝑒𝑑𝑔𝑒(0, 0), 𝑒𝑑𝑔𝑒(0, 1), 𝑒𝑑𝑔𝑒(0, 2).

However, the exact form of expansion is context dependent.

26 / 37

Weak constraints

We can prefer some models by adding weights and priority levels
and ask for best models using a weak constraint

:∼ ℓ1, . . . , ℓ𝑛. [𝑤@𝑝, 𝑡1, . . . , 𝑡𝑚]

where 𝑤 (weight) and 𝑝 (priority level) are integers and 𝑡1, . . . , 𝑡𝑚

are terms. Priority levels make it possible to use the lexicographic
ordering. We attempt to minimize.

Example
a | b | c.
:∼ a. [1@1]
:∼ b. [3@0]
:∼ c. [2@1]

has the optimal model {b}.

27 / 37

Negations
Classical negation
We can express classical negation by introducing new symbols. Let
𝑎 be an atom, then for ¬𝑎 we introduce a new symbol 𝑎 and add

← 𝑎, 𝑎.

In ASP we express the classical negation ¬𝑎 as −𝑎.

Default negation in heads
By introducing fresh symbols we can also simulate default
negations in heads. For example, let �̃� be fresh, then

not 𝑎← 𝑏, 𝑐.

can be expressed by

← 𝑏, 𝑐, not �̃�.

�̃�← not 𝑎.
28 / 37

Consequence relations for answer sets

We can define two natural types of consequence relations:

Brave — an atom 𝑎 is a brave consequence of 𝑃 , 𝑃 |=𝐵 𝑎, if
𝑀 |= 𝑎 for some stable model 𝑀 of 𝑃 ,

Cautious — an atom 𝑎 is a cautious consequence of 𝑃 , 𝑃 |=𝐶 𝑎, if
𝑀 |= 𝑎 for every stable model 𝑀 of 𝑃 .

Both |=𝐵 and |=𝐶 are non-monotonic. Maybe surprisingly, for |=𝐶 ,
unlike for |=𝐵, the following stronger result holds:

Lemma
There exists a program 𝑃 such that 𝑃 |=𝐶 𝑎 and 𝑃 |=𝐶 𝑏, but
𝑃 ∪ {𝑎.} ̸|=𝐶 𝑏.
Take 𝑃 = {𝑎← not 𝑎. 𝑎← 𝑏. 𝑏← not 𝑐. 𝑐← not 𝑏.}. The only
stable model of 𝑃 is {𝑎, 𝑏}, but 𝑃 ∪ {𝑎.} has also {𝑎, 𝑐} as a
stable model.

29 / 37

ASP solver
Different methods and approaches, but usually in two separate
steps:

Intelligent grounding
Generate as small as possible finite grounding, which need not be a
subset of the naïve grounding, that has the same models.

Solving — model search
Given a grounding generate candidate models and test them for
stability.

Some solvers try to take advantage of combining these two steps,
but it is not very common.

Extensions
ASP solvers usually have lot of extensions for example for external
data access (DBs).

30 / 37

Efficient grounding

If we have a program

𝑝(𝑎, 𝑏).
𝑝(𝑏, 𝑐).
𝑝(𝑋, 𝑍)← 𝑝(𝑋, 𝑌), 𝑝(𝑌, 𝑍).

then the naïve grounding says that we should substitute all possible
combinations of {𝑎, 𝑏, 𝑐} for {𝑋, 𝑌, 𝑍}. Hence the third rule has
33 = 27 ground instances. However, the obtained ground program
is clearly equivalent to

𝑝(𝑎, 𝑏).
𝑝(𝑏, 𝑐).
𝑝(𝑎, 𝑐)← 𝑝(𝑎, 𝑏), 𝑝(𝑏, 𝑐).

31 / 37

Grounding with functions
If we have a program (with function symbols)

𝑞(𝑓(𝑎)).
𝑝(𝑋)← 𝑞(𝑋).

then the naïve grounding produces infinitely many ground
instances, however, it is equivalent to

𝑞(𝑓(𝑎)).
𝑝(𝑓(𝑎))← 𝑞(𝑓(𝑎)).

On the other hand, if we have a program

𝑞(𝑓(𝑎)).
𝑝(𝑋)← not 𝑞(𝑋).

then we can eliminate only one instance, because the only stable
model {𝑞(𝑓(𝑎)), 𝑝(𝑎), 𝑝(𝑓(𝑓(𝑎))), 𝑝(𝑓(𝑓(𝑓(𝑎)))), . . . } is infinite.

32 / 37

Grounding
I grounding is hard even without function symbols

I in the worst case, grounding time can be exponential
I selecting “right” rules is difficult

I optimizations
I literal ordering
I backjumping
I magic sets

I arithmetic
I p(X+Y) :- q(X), r(Y), X<Y.

I function symbols
I finitely-grounded programs

I very expressive—correspond to terminating computations of
Turing machines

I but not recognizable
I finite domain programs

I based on argument dependency graphs

33 / 37

Solving
Given a ground program, we usually use techniques from modern
SAT solvers — CDCL,. . .
Stable models as classical models
It is possible to express a normal logic program using completion in
classical logic. Loosely speaking, we want to replace ← by ↔
(equivalence).

But we have to exclude unsupported loops from stable models by
loop formulae. A loop formula forces all atoms in a loop to be
false, unless they are externally supported. However, there can be
exponentially many loop formulae so we add them on the fly.
Moreover, we can learn conflicts separately on completions and
loops.

Example
Let 𝑃 = {𝑝← 𝑞. 𝑞 ← 𝑝, not 𝑟.}.
𝐶𝐹 (𝑃) = {𝑝↔ 𝑞, 𝑞 ↔ 𝑝 ∧ ¬𝑟, 𝑟 ↔ ⊥}. 𝐿𝐹 (𝑃) = {𝑝 ∧ 𝑞 → ⊥}.
𝐶𝐹 (𝑃) ∪ 𝐿𝐹 (𝑃) ≡ ¬𝑝 ∧ ¬𝑞 ∧ ¬𝑟 and ∅ is the only stable model.

34 / 37

ASP metodology — TSP data

You can play with the program here.

% Nodes
node(1..6).

% Edge Costs
cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

% (Directed) Edges
edge(X,Y):-cost(X,Y,_).

35 / 37

https://potassco.org/clingo/run/

ASP metodology — TSP solver

% Generate
{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).
{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).
% Test
:- node(Y), not reached(Y).
% Display
#show cycle/2.

% Optimize
:~ cycle(X,Y), cost(X,Y,C). [C,X,Y]

36 / 37

TSP solution

c l i n g o v e r s i o n 5 . 3 . 0
Reading from t s p . l p
S o l v i n g . . .
Answer : 1
c y c l e (1 , 4) c y c l e (4 , 2) c y c l e (3 , 1) c y c l e (2 , 6) c y c l e (6 , 5) c y c l e (5 , 3)
O p t i m i z a t i o n : 13
Answer : 2
c y c l e (1 , 4) c y c l e (4 , 2) c y c l e (3 , 1) c y c l e (2 , 5) c y c l e (6 , 3) c y c l e (5 , 6)
O p t i m i z a t i o n : 12
Answer : 3
c y c l e (1 , 2) c y c l e (4 , 1) c y c l e (3 , 4) c y c l e (2 , 5) c y c l e (6 , 3) c y c l e (5 , 6)
O p t i m i z a t i o n : 11
OPTIMUM FOUND

Models : 3
Optimum : ye s

O p t i m i z a t i o n : 11
C a l l s : 1
Time : 0 .001 s (S o l v i n g : 0 .00 s 1 s t Model : 0 .00 s Unsat : 0 .00 s)
CPU Time : 0 .001 s

37 / 37

Bibliography I

Eiter, Thomas (2016). Answer Set Programming and Extensions.
VTSA Summer School 2016. url: http:
//www.kr.tuwien.ac.at/staff/eiter/courses/vtsa16/.

Gebser, Martin et al. (2012). Answer Set Solving in Practice.
Morgan & Claypool Publishers. isbn: 9781608459711.

Lifschitz, Vladimir (2019). Answer Set Programming. Springer.
isbn: 978-3-030-24658-7. doi: 10.1007/978-3-030-24658-7.

http://www.kr.tuwien.ac.at/staff/eiter/courses/vtsa16/
http://www.kr.tuwien.ac.at/staff/eiter/courses/vtsa16/
https://doi.org/10.1007/978-3-030-24658-7

	References

