
Logical reasoning and programming
Proof assistants

Karel Chvalovský

CIIRC CTU

What do we have so far?

We have introduced diverse techniques that make it possible to
automatically solve problems in logics of various strengths:

I propositional logic
I Prolog
I ASP
I SMT
I first-order logic

However, if we want to solve real problems, we usually need to
combine many small results together and hence we need a tool
that makes this process as efficient as possible. These tools are
called proof assistants or interactive theorem provers.

1 / 32

What do we want from proof assistants?
The basic things that a reasonable proof assistant should provide
are, e.g.:

I appropriate formal language
I proof checking
I assistance with proving

I current proof state (what remains to be proved)
I library search
I automatic proof search

I presentation

However, we have to start with a formalization of our problem.

formal language ⇒ formal specification ⇒ formal proof

2 / 32

Formalization

We formulate our problem in terms of axioms, definitions,
lemmata, and theorems. We prove things using allowed inference
rules. The goal is to certify that all proofs are valid.

It is usually not so difficult to check a validity of a proof, however,
it is surprisingly difficult to write down all the details necessary to
make it possible.

An obvious candidate for a straightforward formalization is
mathematics, which is already quite formal. However, even in
mathematics a full formalization is far from easy.

3 / 32

Why is it so difficult even in mathematics?
We require the precise representation of

I objects
I how should we represent real numbers, division, computation,

graphs, . . .
I how to switch between different representations

I proof steps
I “use the method introduced in the above paragraph”
I “the rest is a standard diagonalization argument”
I “the following reasoning holds up to a set of measure zero”

source: Terry Tao about Jean Bourgain’s paper, see blog
4 / 32

https://terrytao.wordpress.com/2018/12/29/jean-bourgain/

Practical notes about formalization of mathematics

I It is necessary to write down all the details, people do not do
that for efficiency and clarity reasons (and sometimes we
make mistakes thanks to that).

I Some notions are hard to formalize in some systems.
I de Bruijn factor — the ratio of lengths of a formal proof to

the corresponding informal proof (LATEX source) is surprisingly
stable (∼4). Apparently people tend to formalize problems
where the overhead is not so big. For more details, see
Wiedijk’s page on the de Bruijn factor.

I 1 week ≈ 1 page of a math textbook (≈ 1
2 day of classical

writing)

5 / 32

http://www.cs.ru.nl/~freek/factor/

Principia Mathematica
It was a fully formal mathematical text (in 3 volumes, the first
edition was published in 1910, 1912, and 1913) by Whitehead and
Russell. It was simultaneously a huge success and failure. For
example, it takes over 300 pages to prove 1 + 1 = 2.

source: wiki

Russell during the work on it arguably contemplated suicide and
said: “my intellect never quite recovered from the strain . . . I have
been ever since definitely less capable of dealing with difficult
abstractions than I was before”.

6 / 32

https://en.wikipedia.org/wiki/File:Principia_Mathematica_54-43.png

Kepler’s conjecture

Problem (Sir Walter Raleigh)
Determine formulae for the number of
cannonballs in regularly stacked piles.

Claim (Thomas Harriot, ∼1587)
The density of the faced-centered cubic
packing is 𝜋√

18 ≈ 0.74048.

Conjecture (Johannes Kepler, 1611)
No packing of balls of the same radius
in three dimensions has density greater
than the face-centered cubic packing.

7 / 32

Tom Hales’s solution

Theorem (Tom Hales, 1998)
No packing of balls of the same radius in three dimensions has
density greater than the face-centered cubic packing.

Paper was submitted to Annals of Mathematics
I received September 4, 1998

I 250 pages, source codes + data (graph enumeration,
non-linear optimization, and linear programming)

I 12 reviewers gave up after 4 years—”They have not been able
to certify the correctness of the proof, and will not be able to
certify it in the future, because they have run out of energy to
devote to the problem.”

I a shorten version (123 pages) was eventually published
(August 16, 2005) and the Annals are checking computer
programs only for obvious errors since then

8 / 32

FlysPecK
Formal Proof of the Kepler conjecture, flyspeck = examine closely

As a result Hales initiated a project to completely formalize the
proof. It was completed on August 10, 2014. For details see
GitHub.

I the Flyspeck book (Dense Sphere Packing) was created to
make the formalization process easier (informal text)

I formalized in HOL Light (formal text) and Isabelle
I 20,000 lemmata in geometry, analysis, and graph theory
I three separate computational sub-claims (the most difficult

one takes 5,000 CPU hours to verify)

9 / 32

https://github.com/flyspeck/flyspeck

Verifying computations

We can verify a computation many ways
I the computation constructs a proof as a by-product (Flyspeck:

non-linear bounds)
I verify certificates (e.g., proof sketches)
I verify the algorithm, then execute it with a trusted evaluator

(four color theorem)
I verify the algorithm, extract code, and run it trusting a

compiler or interpreter (Flyspeck: enumeration of tame
graphs)

10 / 32

Pentium FDIV bug
It was a bug in the floating point unit that affected early Intel
Pentium processors and costed Intel $475 M. The reason was that
5 cells were missing in a programmable logic array.

An elegant demonstration of the problem is that

4195835/3145727

should return
1.333820 . . .

but affected processors returned

1.333739 . . .

As a consequence, Intel improved investments in formal verification
efforts. For example, various floating-point algorithms were
formally verified in HOL Light. Maybe surprisingly, it requires a
non-trivial mathematics.

11 / 32

CompCert
It is a formally verified (in Coq) optimizing compiler for a large
fragment of C language for PowerPC, ARM, RISC-V and x86 (32
and 64 bits) architectures. Hence all the proved properties on the
source code hold also for the generated executable.

>>

For more details see their webpage, the image is from there.
12 / 32

http://compcert.inria.fr/

seL4

A verified L4 microkernel (in Isabelle), but only the ARM version
has a full code-level functional correctness proof; the
implementation in C adheres to its specification.

We have some more properties:
I the binary code which executes on the hardware is a correct

translation of the C code and hence there is no need to trust
the compiler

I a correct usage of the seL4 specification also ensures integrity
and confidentiality (security properties)

I provable upper bound latencies on kernel operations

For more details see their webpage.

13 / 32

https://sel4.systems/

Mathematics vs. computer science

Clearly, formal verification problems in mathematics and computer
science are usually different:

math cs
size of statements small large
formulation of statements easy to get right easy to get wrong
proofs intricate straightforward

interesting boring

However, there is no sharp line between them, because even
problems in computer science are expressed using mathematical
terms and usually depend on mathematical results.

These days basically all major software and hardware companies
pay close attention to formal verification.

14 / 32

Formalizing 100 Theorems
A list of problems containing 100 “interesting” theorems; many of
them are elementary.

System #theorems
HOL Light 86
Isabelle 80
Coq 69
Mizar 69
Metamath 69
all together 93

source: Formalizing 100 Theorems by Wiedijk

Note that, for example, Coq has some big formalizations like the
four color problem or Feit–Thompson (odd order) theorem (not on
the list, but 4,000 definitions and 13,000 theorems based on 250
pages of text from 2 books).

15 / 32

http://www.cs.ru.nl/~freek/100/

Proof languages

Procedural style
A very common approach, because a formal proof usually says how
it is proved. However, it is far less readable and very language
specific.

Declarative style
It says what is to be proved. It is much easier to use external tools,
modify proofs etc. It is usually more verbose and harder to script.

This style was pioneered by Mizar.

16 / 32

√
2 is irrational

It is the first problem on the list. For a formalization of this
problem in many proof assistants see The Seventeen Provers of the
World by Wiedijk; the following text is from it.

10 Freek Wiedijk

One of the main aims of this comparison is comparing the appearance of
proofs in the various systems. In particular, it is interesting how close that man-
ages to get to non-formalized mathematics. For this reason there is also an
‘informal’ presentation of the proof included, as Section 0. On pp. 39–40 of the
4th edition of Hardy and Wright’s An Introduction to the Theory of Numbers,
one finds a proof of the irrationality of

√
2 (presented for humans instead of for

computers):

Theorem 43 (Pythagoras’ theorem).
√

2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If

√
2 is

rational, then the equation
a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and therefore
a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is also even, contrary
to the hypothesis that (a, b) = 1. 2

Ideally, a computer should be able to take this text as input and check it for its
correctness. We clearly are not yet there. One of the reasons for this is that this
version of the proof does not have enough detail. Therefore, Henk Barendregt
wrote a very detailed informal version of the proof as Section 0. Again, ideally
a proof assistant should be able to just check Henk’s text, instead of the more
‘computer programming language’ like scripts that one needs for the current
proof assistants.

There are various proofs of the irrationality of
√

2. The simplest proof reasons
about numbers being even and odd.2 However, some people did not just formalize
the irrationality of

√
2, but generalized it to the irrationality of

√
p for arbitrary

prime numbers p. (Sometimes I even had to press them to specialize this to the
irrationality of

√
2 at the end of their formalization.)

Conor McBride pointed out to me that if one proves the irrationality of
√

p
then there are two different properties of p that one can take as a assumption
about p. The p can be assumed to be irreducible (p has just divisors 1 and
itself), or it can be assumed to be prime (if p divides a product, it always
divides one of its factors).3 Conor observed that proving the irrationality of

√
p

where the assumption about p is that it is prime, is actually easier than proving
the irrationality of

√
2, as the hard part will then be to prove that 2 is prime.

Rob Arthan told me that a nicer generalization than showing the irrationality
of

√
p for prime p, is to show that if n is an integer and

√
n is not, then this√

n is in fact irrational. According to him at a very detailed level this is even
slightly easier to prove than the irrationality of prime numbers.

I had some discussion with Michael Beeson about whether the proof of the
irrationality of

√
2 necessarily involves an inductive argument. Michael convinced

2 This becomes especially easy when a binary representation for the integers is used.
3 In ring theory one talks about ‘irreducible elements’ and ‘prime ideals’, and this is

the terminology that we follow here. In number theory a ‘prime number’ is gener-
ally defined with the property of being ‘an irreducible element’, but of course both
properties characterize prime numbers there.

17 / 32

http://www.cs.ru.nl/~freek/comparison/comparison.pdf
http://www.cs.ru.nl/~freek/comparison/comparison.pdf

√
2 is irrational in Isabelle

source: wiki
A version in Mizar is here.

18 / 32

https://en.wikipedia.org/wiki/Isabelle_(proof_assistant)
http://grid01.ciirc.cvut.cz/~mptp/mml5.29.1227/html/irrat_1.html

√
2 is irrational in Metamath

A compressed version is
${

$d x y $.
$(The square root of 2 is irrational. $)
sqr2irr $p |- (sqr ‘ 2) e/ QQ $=

(vx vy c2 csqr cfv cq wnel wcel wn cv cdiv co wceq cn wrex cz cexp
cmulc sqr2irrlem3 sqr2irrlem5 bi2rexa mtbir cc0 clt wbr wa wi wb nngt0t
adantr cr ax0re ltmuldivt mp3an1 nnret zret syl2an mpd ancoms 2re 2pos
sqrgt0i breq2 mpbii syl5bir cc nncnt mulzer2t syl breq1d adantl sylibd
exp r19.23adv anc2li elnnz syl6ibr impac r19.22i2 mto elq df-nel mpbir)
CDEZFGWDFHZIWEWDAJZBJZKLZMZBNOZAPOZWKWJANOZWLWFCQLCWGCQLRLMZBNOANOABSWIWM
ABNNWFWGTUAUBWJWJAPNWFPHZWJWFNHZWNWJWNUCWFUDUEZUFWOWNWJWPWNWIWPBNWNWGNHZW
IWPUGWNWQUFZWIUCWGRLZWFUDUEZWPWRWTUCWHUDUEZWIWQWNWTXAUHZWQWNUFUCWGUDUEZXB
WQXCWNWGUIUJWGUKHZWFUKHZXCXBUGZWQWNUCUKHXDXEXFULUCWGWFUMUNWGUOWFUPUQURUSW
IUCWDUDUEXACUTVAVBWDWHUCUDVCVDVEWQWTWPUHWNWQWSUCWFUDWQWGVFHWSUCMWGVGWGVHV
IVJVKVLVMVNVOWFVPVQVRVSVTABWDWAUBWDFWBWC $.
$([8-Jan-02] $)

$}

Note that the string expands to a sequence of steps, where A is vx,
B is vy, . . .

A more readable variant is here.
19 / 32

http://us.metamath.org/mpegif/sqr2irr.html

Foundations
It is non-trivial to select the correct foundations, we usually
balance between simplicity and flexibility (expressiveness).

I set theories
I Mizar, Metamath, Isabelle/ZF
I the standard foundations for mathematics
I problems

I adding types
I higher-order reasoning
I computations

I type theories
I simple type theory — HOL, Isabelle/HOL, HOL light
I dependent type theory — Coq (constructive), Lean, PVS

(classical)
I a type definition depends on a value
I propositions as types (Curry–Howard correspondence)

I primitive recursive arithmetic (ACL2) — weak, a type of
finitistic reasoning about natural numbers (quantifier-free)

20 / 32

Intuitionistic logic
Loosely speaking, it is a constructive variant of classical logic.
Brouwer–Heyting–Kolmogorov (BHK) interpretation
We say that a proof of

I 𝜙 ∧ 𝜓 is a proof of 𝜙 and a proof of 𝜓,
I 𝜙 ∨ 𝜓 consists of selecting one of 𝜙,𝜓 and a proof of the

selected formula (disjunction property),
I 𝜙 → 𝜓 is a transformation of a proof of 𝜙 into a proof of 𝜓,
I ⊥ does not exist,
I ¬𝜙 is a shortcut for a proof of 𝜙 → ⊥,
I ∀𝑋𝜙(𝑋) is a transformation of any object 𝑎 into a proof of
𝜙(𝑎),

I ∃𝑋𝜙(𝑋) consists of constructing an object 𝑎 (witness) and a
proof of 𝜙(𝑎) (existence or witness property).

Example
𝜙 ∨ ¬𝜙 has no proof, but 𝜙 → (¬𝜙 → 𝜓) has a proof.

21 / 32

An intuitionistic proof

Theorem
There exist irrational numbers 𝑎 and 𝑏 such that 𝑎𝑏 is rational.

Classical proof
√

2
√

2 is either rational, or irrational (by the law of excluded
middle). If it is irrational, then 𝑎 =

√
2

√
2 and 𝑏 =

√
2.

Intuitionistic proof
Use 𝑎 =

√
2 and 𝑏 = log2 9. Clearly, 𝑎𝑏 = 3. It is easy to prove

that 𝑏 is irrational, because log2 9 = 𝑚
𝑛 means 9𝑛 = 2𝑚. The

constructive argument that
√

2 is irrational is a bit more
complicated, see, e.g., here.

22 / 32

https://en.wikipedia.org/wiki/Square_root_of_2#Constructive_proof

Practical issues with proof checking
Even proof checkers contain bugs; at least one incorrect proof of a
real problem has been “proved”. There are two basic approaches
how to deal with this problem.

de Bruijn approach
It is possible to independently check all proofs by a small program.

LCF approach
We have a small logical kernel and all complex rules can be
reduced into a sequence of steps in this small kernel.

A basic observation is that the smaller amount of code, the higher
the reliability.

Example
HOL Light is just 430 lines of the critical code. Coq is historically
known to be quite big.

23 / 32

Libraries

When we formalize a problem, it usually depends on many other
results and hence we want libraries of “basic” results.

In fact, it is much more important to have many basic results than
to have few big theorems. However, big results usually depend on
lot of basic facts and as a by-product produce many useful basic
results.

The QED manifesto was an attempt, started in 1993, to formalize
all interesting mathematical knowledge and techniques. Dead since
1996, but still a source of inspiration.

Hales recently proposed formal abstracts (in Lean) as a
collaborative effort to formalize the main results of mathematical
texts (usually without proofs).

24 / 32

http://www.cs.ru.nl/~freek/qed/qed.html
https://github.com/formalabstracts/formalabstracts

Translating proofs between proof assistants

It is possible to share results between similar systems, e.g.,
I ACL2 → HOL4

More interesting are translations like, e.g.,
I HOL Light → Isabelle/HOL
I Isabelle/HOL → HOL Light
I HOL Light → Coq

25 / 32

Automation
We can use various automation tools to simplify our task, e.g.,

I ATPs for pure logic
I linear arithmetic decision procedures
I Gröbner bases for solving polynomial systems
I counter-example finders

Hammers
We can translate a problem into, e.g., first-order (or higher-order)
logic and use an external prover (E, Vampire, Z3) to prove it fully
automatically.

Sometimes, it is non-trivial to import the external proof, but it can
be used at least as a good premise selection (select relevant
lemmata), which is often enough to reconstruct the proof using
weaker internal provers. We usually do not trust external proofs,
because they depend on the correctness of external tools,
translations, . . .

26 / 32

Machine learning over proofs
We have various formalizations and naturally we can try to learn
something on top of them. The goal is to improve automatic
methods and hence make the formalization process easier.

We can learn, for example,
I relevant facts (premise selection)
I various parameters of ATPs that improve their performance
I proof strategies
I common proof techniques
I auto-completions

Example
It is possible to prove automatically

I over 50% of Mizar
I over 40% of Flyspeck

27 / 32

Inductive proofs

We want to prove something using mathematical induction

𝑃 (0) ∧ ∀𝑁(𝑃 (𝑁) → 𝑃 (𝑁 + 1)) → ∀𝑁(𝑃 (𝑁)),

where 𝑃 is a predicate over a natural number and 𝑁 is a natural
number. However, we claim that it holds for every predicate 𝑃 ; we
quantify over a predicate and hence we use second-order logic.
Therefore first-order theorem provers are generally not sufficient for
such proofs and higher-order theorem provers like Satallax are
needed.

Clearly, we can use any well-founded set (no descending chains)
not only natural numbers. We have inductive proofs over trees,
lists, . . .

28 / 32

Axioms vs. definitions
If we want to reason about, for example, the natural numbers,
then we have two basic options:

Axioms
For example, using the Peano axioms

∀𝑋(0 ̸= 𝑠(𝑋))
∀𝑋∀𝑌 (𝑠(𝑋) = 𝑠(𝑌) → 𝑋 = 𝑌)
∀𝑋(𝑋 + 0 = 𝑋)
...

Definitions
For example, using the von Neumann ordinals where
𝑠(𝑋) = 𝑋 ∪ {𝑋} and 0 = ∅. Hence 1 = {∅}, 2 = {∅, {∅}},
We can prove the Peano axioms, because we can also define
𝑋 + 0 = 𝑋, 𝑋 · 0 = 0, 𝑋 + 𝑠(𝑌) = 𝑠(𝑋 + 𝑌), and
𝑋 · 𝑠(𝑌) = 𝑋 · 𝑌 +𝑋.

29 / 32

Axioms vs. definitions

I axioms
I usually easier to obtain
I sometimes unclear whether axioms are adequate for our

purposes
I an extreme case is when they are inconsistent—we can prove

everything from them
I definitions

I usually harder to obtain
I we have a relative consistency

Example
If we have the axiom schema of unrestricted comprehension in set
theory, then we can define a set as {𝑋 : 𝜙(𝑋)}. However, for
𝜙(𝑋) being 𝑋 /∈ 𝑋, we obtain Russell’s paradox, because if
𝐴 = {𝑋 : 𝑋 /∈ 𝑋}, then 𝐴 ∈ 𝐴 iff 𝐴 /∈ 𝐴.

30 / 32

Consistency
A theory 𝑇 is consistent if 𝑇 ̸⊢ ⊥.
We know thanks to the second Gödel incompleteness theorem that
a sufficiently strong recursive enumerable theory of arithmetics
cannot prove its own consistency. Note that Tarski’s undefinability
theorem says that, for a similarly powerful system, it is impossible
to define its semantics in itself.
We have sometimes relative consistency results — if we have a
theory 𝑇 and produce a stronger theory 𝑇 ′ = 𝑇 ∪ {𝜙} by adding
an axiom 𝜙, then it may be possible to prove that 𝑇 ′ is consistent,
if 𝑇 is consistent. We say that 𝑇 ′ is consistent relative to 𝑇 .

The reason why we believe that, e.g., Peano arithmetics and
Zermelo–Fraenkel (ZF) set theory are consistent is that they have
been used extensively and no inconsistency has been found in them.
Example
ZFC is consistent relative to ZF. In fact, also ZF¬C is consistent
relative to ZF and hence the axiom of choice is independent of ZF.

31 / 32

Types in programs
Static type systems can be seen as proof systems, type checking as
a proof checking, and type inference as a proof search.

Well-typed program cannot go wrong.
Robin Milner

There are various kinds of types
I the good—static types that guarantee no runtime errors of

certain kind (Java, Haskell)
I the bad—static types that mainly decorate but do not

guarantee no runtime errors (C, C++)
I the ugly—dynamic types that detect errors at runtime

(Python)

Rice’s theorem
All non-trivial semantic properties of programs are undecidable.
Hence a fully automatic analysis of semantic properties, e.g.
termination, is impossible.

32 / 32

Bibliography I

Avigad, Jeremy (2018). “The Mechanization of Mathematics”. slides. url:
http:
//www.andrew.cmu.edu/user/avigad/Talks/mechanization_talk.pdf.

Harrison, John (2015). “Formalization of Mathematics for Fun and Profit.”
slides. url: https://www.cl.cam.ac.uk/~jrh13/slides/wollic-
23jul15/slides.pdf.

Harrison, John, Josef Urban, and Freek Wiedijk (2014). “History of Interactive
Theorem Proving”. In: Computational Logic. Ed. by Jörg H. Siekmann.
Vol. 9. Handbook of the History of Logic. North-Holland, pp. 135–214. doi:
https://doi.org/10.1016/B978-0-444-51624-4.50004-6.

Nipkow, Tobias and Gerwin Klein (2014). Concrete Semantics — with
Isabelle/HOL. Springer. isbn: 978-3-319-10541-3. url:
http://concrete-semantics.org/.

Urban, Josef (2015). “Computer-Understandable Mathematics: Is It Coming?”
slides. url:
http://www.karlin.mff.cuni.cz/~ssaos/2015/slides_urban.pdf.

http://www.andrew.cmu.edu/user/avigad/Talks/mechanization_talk.pdf
http://www.andrew.cmu.edu/user/avigad/Talks/mechanization_talk.pdf
https://www.cl.cam.ac.uk/~jrh13/slides/wollic-23jul15/slides.pdf
https://www.cl.cam.ac.uk/~jrh13/slides/wollic-23jul15/slides.pdf
http://dx.doi.org/https://doi.org/10.1016/B978-0-444-51624-4.50004-6
http://concrete-semantics.org/
http://www.karlin.mff.cuni.cz/~ssaos/2015/slides_urban.pdf

