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Section 1

Equality



FOL with equality

We have intentionally ignored the equality predicate. We denote it
≈ here to emphasize that it is an equality in our language, but
usually it is just =.

It is the most common predicate used in FOL and hence it deserves
a special treatment. There are two main approaches how to deal
with it, equality is either
I a binary predicate and its meaning is given by axioms added

to our problem, or
I a logical symbol interpreted by the identity relation on the

domain.

Note that we have already seen equality in SMT.
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Naïve handling of equality

Let ≈ be the equality symbol, we can handle it as a new binary
predicate symbol ∼ defined by the following axioms:
I ∀𝑋(𝑋 ∼ 𝑋),
I ∀𝑋∀𝑌 (𝑋 ∼ 𝑌 → 𝑌 ∼ 𝑋),
I ∀𝑋∀𝑌 ∀𝑍(𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 → 𝑋 ∼ 𝑍),
I ∀𝑋1 . . . ∀𝑋𝑛∀𝑌1 . . . ∀𝑌𝑛(𝑋1 ∼ 𝑌1 ∧ · · · ∧ 𝑋𝑛 ∼ 𝑌𝑛 →

𝑓(𝑋1, . . . , 𝑋𝑛) ∼ 𝑓(𝑌1, . . . , 𝑌𝑛)),
I ∀𝑋1 . . . ∀𝑋𝑚∀𝑌1 . . . ∀𝑌𝑚(𝑋1 ∼ 𝑌1 ∧ · · · ∧ 𝑋𝑚 ∼ 𝑌𝑚 →

(𝑝(𝑋1, . . . , 𝑋𝑚) → 𝑝(𝑌𝑚, . . . , 𝑌𝑚))).
for every 𝑛-ary function symbol 𝑓 and 𝑚-ary predicate symbol 𝑝.

However, this is not a feasible approach mainly thanks to the
congruence axioms for function and predicate symbols and
transitivity.
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Axiomatic vs. direct approach
We say that an interpretation is normal if the equality predicate is
interpreted as the identity relation on its domain.

Example
We can define 𝑋 ∼ 𝑌 over Z by 𝑋 ≡ 𝑌 (mod 𝑛) and it clearly
satisfies the previous axioms, but the models are non-normal.

In fact, it is impossible to force that all models are normal just by
using axioms. For any ℳ = (𝐷, 𝑖), we may add a fresh constant 𝑐
that will be interpreted exactly as a constant 𝑑 ∈ 𝐷 and we get a
new non-normal model.

Theorem
Any set of formulae Γ has a normal model iff Γ has a model
satisfying the previous equality axioms.

Proof.
We get a normal model by partitioning the domain into equivalence
classes, [𝑎] = { 𝑏 | 𝑏 ∼ 𝑎 }, and use them as the new domain. 3 / 30



Paramodulation
From now on we treat ≈ as a logical symbol. We say 𝑠 ≈̇ 𝑡 if 𝑠 ≈ 𝑡
or 𝑡 ≈ 𝑠, because order will be important for us later on.

Let 𝑙, 𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛 be literals and 𝑠, 𝑠′ and 𝑡 be
terms. Moreover, 𝑙[𝑠′] means that the literal 𝑙 contains 𝑠′

{𝑙1, . . . , 𝑙𝑚, 𝑠 ≈̇ 𝑡} {𝑙[𝑠′], 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛, 𝑙[𝑡]}𝜎

where 𝜎 = mgu(𝑠, 𝑠′) and 𝑙[𝑡] is the result of replacing an
occurrence of 𝑠′ in 𝑙[𝑠′] by 𝑡. We assume that the input clauses do
not share variables (renaming away).

The clause {𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛, 𝑙[𝑡]}𝜎 produced by the
paramodulation rule is sometimes called the paramodulant.
Example
From {𝑓(𝑋) ≈ 𝑓(𝑋, 𝑒)} and {𝑝(𝑔(𝑓(0), 𝑓(𝑌, 𝑒)), 2)} we can
derive {𝑝(𝑔(𝑓(0, 𝑒), 𝑓(𝑌, 𝑒)), 2)} and {𝑝(𝑔(𝑓(0), 𝑓(𝑌 ), 2)} as
paramodulants.
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Reflexivity resolution

Clearly, we cannot refute

{¬𝑋 ≈ 𝑋}

by the paramodulation rule. Hence we have to add also a rule for
such cases. Let 𝑙1, . . . , 𝑙𝑚 be literals and 𝑠 and 𝑡 be terms, then
the reflexivity resolution rule is

{𝑙1, . . . , 𝑙𝑚, ¬𝑠 ≈ 𝑡}
{𝑙1, . . . , 𝑙𝑚}𝜎

where 𝜎 = mgu(𝑠, 𝑡).
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Completeness of paramodulation

We define Γ ⊢≈ 𝜙 similarly to ⊢, but, moreover, we can use the
paramodulation rule and the reflexivity resolution rule.

Theorem
Let Γ be a set of clauses in the FOL language with equality. Γ is
unsatisfiable iff Γ ⊢≈ 2.

It is possible to produce various restrictions, for example, it is never
necessary to replace a variable by a more complex term using
paramodulation. Loosely speaking, the aim of paramodulation is to
make things unifiable, by changing a variable into a complex term
we do not improve on this.

However, the most important modification is if we impose
orderings on equalities.
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Example on equalities (word problem for group theory)

Assume we have axioms

1 · 𝑋 ≈ 𝑋

𝑋−1 · 𝑋 ≈ 1
(𝑋 · 𝑌 ) · 𝑍 ≈ 𝑋 · (𝑌 · 𝑍)

and we want to know whether 𝑋 · 𝑌 ≈ 𝑌 · 𝑋−1 follows from them?

It would be nice to direct axioms, say left to right, and use them
only in this one direction.

However, this is not sufficient, because we know that, e.g.,
𝑌 · (𝑋 · 𝑋−1) ≈ 𝑌 holds. Hence we have to add more rules!
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Solution
Using the Knuth–Bendix completion we produce the following set
of directed rewriting rules:

1 · 𝑋 ≻ 𝑋

𝑋−1 · 𝑋 ≻ 1
(𝑋 · 𝑌 ) · 𝑍 ≻ 𝑋 · (𝑌 · 𝑍)

𝑋−1 · (𝑋 · 𝑌 ) ≻ 𝑌

𝑋 · 1 ≻ 𝑋

1−1 ≻ 1
𝑋−1−1 ≻ 𝑋

𝑋 · 𝑋−1 ≻ 1
𝑋 · (𝑋−1 · 𝑌 ) ≻ 𝑌

(𝑋 · 𝑌 )−1 ≻ 𝑌 −1 · 𝑋−1

Note that the Knuth–Bendix completion may fail.
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Equalities are general

It is possible to express every FOL problem as a problem using only
equalities by the following transformation:

𝑝(𝑡1, . . . , 𝑡𝑛) becomes 𝑓𝑝(𝑡1, . . . , 𝑡𝑛) ≈ ⊤,

¬𝑝(𝑡1, . . . , 𝑡𝑛) becomes ¬𝑓𝑝(𝑡1, . . . , 𝑡𝑛) ≈ ⊤,

where ⊤ is a new constant and 𝑓𝑝 is a new functional symbol for
every predicate 𝑝 in our original language. Note that 𝑓𝑝 and ⊤ are
not valid arguments of other terms.

Example
{𝑝(𝑋), ¬𝑞(𝑋, 𝑔(𝑋, 𝑌 ))} becomes
{𝑓𝑝(𝑋) ≈ ⊤, ¬𝑓𝑞(𝑋, 𝑔(𝑋, 𝑌 )) ≈ ⊤}.
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Term orderings
We say that a binary relation  is a rewrite relation, if it is
I stable under contexts: 𝑠 𝑡 implies 𝑢[𝑠] 𝑢[𝑡], and
I stable under substitutions: 𝑠 𝑡 implies 𝑠𝜎  𝑡𝜎

where 𝑠, 𝑡, and 𝑢 are terms and 𝜎 is a substitution.

A reduction ordering, denoted =, is a rewrite relation where  is
irreflexive, transitive, and well-founded, i.e., there is no infinite
strictly-descending sequence 𝑠1 = 𝑠2 = . . . .
A simplification ordering, denoted ≻, is a reduction ordering where
a term is larger than all its proper subterms, i.e., 𝑢[𝑠] ≻ 𝑠 if
𝑢[𝑠] ̸= 𝑠.
Example
𝑓(𝑋) and 𝑔(𝑌 ) are =-incomparable. Let 𝑓(𝑋) = 𝑔(𝑌 ) and
𝜎 = {𝑌 ↦→ 𝑓(𝑋)}, then 𝑓(𝑋) = 𝑔(𝑓(𝑋)), and hence
𝑔(𝑓(𝑋)) = 𝑔(𝑔(𝑓(𝑋))), . . . Therefore, it is possible that all
(non-ground) terms and literals are maximal under a =.
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Useful orderings
Very popular simplifications orderings are:

KBO (Knuth–Bendix Ordering)

I uses symbols weights and precedence to break ties
I produces syntactically smaller terms and is more efficient

LPO (Lexicographic Path Ordering)

I uses function symbols precedence and lexicographic
decompositions to break ties

I produces better directions in many cases, e.g., for distributivity

For example, the EQP prover used orderings to prove the Robbins
conjecture—are the algebras satisfying a given set of axioms
exactly Boolean algebras.
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Superposition

Although paramodulation rule

{𝑙1, . . . , 𝑙𝑚, 𝑠 ≈̇ 𝑡} {𝑙[𝑠′], 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛, 𝑙[𝑡]}𝜎

where 𝜎 = mgu(𝑠, 𝑠′), is more efficient than the naïve approach, it
has to be further improved to be practical.

We want
I to use only maximal literals (ordered resolution),
I to use only maximal sides of literals (completion),
I 𝑠′ not to be a variable

and the superposition calculus satisfies all this.

It is used in almost all state-of-the-art automated theorem provers.
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Section 2

Tableaux systems



Tableaux
There are many other approaches used to prove formulae in FOL.
For example, we have (semantic) tableaux. There are many simple
implementations of tableaux in Prolog, e.g., leanTAP or leanCoP,
available.

Tableaux systems are also popular in non-classical logics, because
I there is no need for special normal forms like CNF,

I can be complicated, or
I even impossible to obtain

I given a semantic meaning of a connective we can usually
produce a rule (or rules) in a straightforward way.

Generally, they are relatively easy to produce, in most cases, and
still suitable for automated theorem proving. However, the
handling of equality is as tricky as in resolution (superposition).

Moreover, they are similar to other proof systems like natural
deduction and sequent calculi.
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Example

We want to prove ∀𝑋(¬𝑝(𝑋)) → (¬𝑝(𝑎) ∧ ¬𝑝(𝑏)). We can prove
it by showing that ∀𝑋(¬𝑝(𝑋)) and 𝑝(𝑎) ∨ 𝑝(𝑏) are together
unsatisfiable.

∀𝑋(¬𝑝(𝑋)) ∧ (𝑝(𝑎) ∨ 𝑝(𝑏))
(∧)

∀𝑋(¬𝑝(𝑋))
𝑝(𝑎) ∨ 𝑝(𝑏)

(∨)
𝑝(𝑎)

(∀)
¬𝑝(𝑋1)

𝜎1 = {𝑋1 ↦→ 𝑎}

𝑝(𝑏)
(∀)

¬𝑝(𝑋2)
𝜎2 = {𝑋2 ↦→ 𝑏}

Note that we have to use ∀𝑋(¬𝑝(𝑋)) twice.
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leanTAP

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,UnExp,Lits,FreeV,VarLim),
prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,
\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-
prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).
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Section 3

Finite model finding



How do we show that a formula is not provable?

We have seen several methods that can be used to prove a formula
𝜙 from a set of formulae Γ and hence Γ |= 𝜙. However, can we
use them to show that Γ ̸|= 𝜙? Sometimes we can, but it is quite
rare, e.g., if we obtain a saturated set.

Note that Γ ̸|= 𝜙 is not equivalent to Γ |= ¬𝜙! For example,
̸|= 𝑝(𝑎) and ̸|= ¬𝑝(𝑎).

A general method is to provide a counterexample. A model of Γ
where 𝜙 is false, for simplicity assume that 𝜙 is a closed formula.
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How do we find a counterexample?
We have to check all possible models.

Finite models
For a finite language and a given size of domain, it is possible to
check all possible models exhaustively (up to trivial isomorphisms).

Infinite models
Clearly, there are many sets of formulae with only infinite models,
for example,

∀𝑋¬(𝑋 < 𝑋),
∀𝑋∀𝑌 ∀𝑍(𝑋 < 𝑌 ∧ 𝑌 < 𝑍 → 𝑋 < 𝑍),
∀𝑋∃𝑌 (𝑋 < 𝑌 ).

However, the problem how to generate useful infinite models is
widely open. Moreover, for many problems finite counterexamples
are sufficient.
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MACE-style approach

We attempt to generate a finite counterexample iteratively. We try
to produce a model of size 1, 2, 3, . . .

The main idea is to produce a grounding of the problem assuming
a given cardinality of our model and encode such a grounding as a
SAT problem. Using a clever encoding we can significantly reduce
the search space; no need to go through all possible models of the
given size.

We present some basic techniques used in a model finder called
Paradox, see Claessen and Sörensson 2003.
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Our example

There is a counterexample for the problem that from

𝑒 · 𝑋 = 𝑋,

𝑋−1 · 𝑋 = 𝑒,

𝑋 · (𝑌 · 𝑍) = (𝑋 · 𝑌 ) · 𝑍

follows

𝑋 · (𝑋 · 𝑋) = 𝑋.

Or equivalently.

19 / 30



Our example

There is a model for

𝑒 · 𝑋 = 𝑋, (1)
𝑋−1 · 𝑋 = 𝑒, (2)

𝑋 · (𝑌 · 𝑍) = (𝑋 · 𝑌 ) · 𝑍, (3)
¬(𝑎 · (𝑎 · 𝑎) = 𝑎). (4)

We have ℳ = (𝐷, 𝑖), where 𝐷 = {1, 2, 3}, 𝑖(𝑒) = 1, 𝑖(𝑎) = 2, and

𝑖(−1)
1 1
2 3
3 2

𝑖(·) 1 2 3
1 1 2 3
2 2 3 1
3 3 1 2

20 / 30



Propositional encoding
We are looking for a model ℳ = (𝐷, 𝑖) of a given cardinality, say
𝑛, that satisfies a set of clauses Γ. Assume without loss of
generality that 𝐷 = {1, . . . , 𝑛}. Hence it only remains to generate
a function 𝑖.

We want to describe 𝑖 using propositional variables (atoms). For
every 𝑘-ary
I predicate symbol 𝑝 in Γ, there is a prop. variable for every

𝑝(𝑑1, . . . , 𝑑𝑘)

where 𝑑1, . . . , 𝑑𝑘 ∈ 𝐷.
I function symbol 𝑓 in Γ, there is a prop. variable for every

𝑓(𝑑1, . . . , 𝑑𝑘) = 𝑑

where 𝑑1, . . . , 𝑑𝑘, 𝑑 ∈ 𝐷.
This is all we need to describe a model.
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Our example

Note that our example is a bit confusing—we have only one
predicate symbol (=), which is very special, because it has the
fixed meaning. Still we have atoms for all

1 = 1, 1 = 2, 1 = 3, 2 = 1, . . . , 3 = 2, 3 = 3

We also have propositional variables for all

𝑒 = 1, 𝑒 = 2, 𝑒 = 3
𝑎 = 1, 𝑎 = 2, 𝑎 = 3

1−1 = 1, 1−1 = 2, 1−1 = 3, 2−1 = 1, . . . , 3−1 = 3
1 · 1 = 1, 1 · 1 = 2, 1 · 1 = 3, 1 · 2 = 1, . . . , 3 · 3 = 3
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Flattening
However, it is impossible to express complex terms like 𝑋 · (𝑌 · 𝑍)
directly in our language. We can only express so called shallow
literals:
I 𝑝(𝑋1, . . . , 𝑋𝑘), or ¬𝑝(𝑋1, . . . , 𝑋𝑘),
I 𝑓(𝑋1, . . . , 𝑋𝑙) = 𝑌 , or 𝑓(𝑋1, . . . , 𝑋𝑙) ̸= 𝑌 ,
I 𝑋 = 𝑌 .

Note that 𝑠 ̸= 𝑡 is a shortcut for ¬𝑠 = 𝑡.

We do not want 𝑋 ̸= 𝑌 , because we can transform a clause

𝑋 ̸= 𝑌 ∨ 𝜙(𝑋, 𝑌 )

into
𝜙(𝑋, 𝑋).

Note that a clause {𝑋 ̸= 𝑌 } is unsatisfiable.
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Flattening complex terms
If we have a clause

𝜙(𝑡),
it is equivalent to

∀𝑋(𝑋 = 𝑡 → 𝜙(𝑋)),
which is

𝑋 ̸= 𝑡 ∨ 𝜙(𝑋)
where 𝑋 is fresh in 𝜙(𝑡). 𝜙(𝑋) is produced from 𝜙(𝑡) by replacing
all (free) occurrences of 𝑡 by 𝑋.

We can repeat this process as long as necessary.

Example

𝑋 · (𝑌 · 𝑍) = (𝑋 · 𝑌 ) · 𝑍 ;

(𝑋 · 𝑌 ) · 𝑍 ̸= 𝑊 ∨ 𝑋 · (𝑌 · 𝑍) = 𝑊 ;

𝑋 · 𝑌 ̸= 𝑉 ∨ 𝑉 · 𝑍 ̸= 𝑊 ∨ 𝑋 · (𝑌 · 𝑍) = 𝑊 ;

𝑋 · 𝑌 ̸= 𝑉 ∨ 𝑉 · 𝑍 ̸= 𝑊 ∨ 𝑌 · 𝑍 ̸= 𝑈 ∨ 𝑋 · 𝑈 = 𝑊.
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Instantiating
For every flattened clause we create three sets of propositional
clauses

1. instances — we generate all possible groundings, where we
can immediately simplify all groundings containing 𝑑1 = 𝑑2 or
𝑑1 ̸= 𝑑2, for 𝑑1, 𝑑2 ∈ 𝐷, based on whether it is true (discard
the clause), or not (discard the literal)

2. function definitions — for each 𝑘-ary function 𝑓 and 𝑑, 𝑑′ ∈ 𝐷
such that 𝑑 ̸= 𝑑′, we add

{𝑓(𝑑1, . . . , 𝑑𝑘) ̸= 𝑑, 𝑓(𝑑1, . . . , 𝑑𝑘) ̸= 𝑑′}

for every 𝑑1, . . . , 𝑑𝑘 ∈ 𝐷.
3. totality definitions — for each 𝑘-ary function 𝑓 , we add

{𝑓(𝑑1, . . . , 𝑑𝑘) = 1, 𝑓(𝑑1, . . . , 𝑑𝑘) = 2, . . . , 𝑓(𝑑1, . . . , 𝑑𝑘) = 𝑛}

for every 𝑑1, . . . , 𝑑𝑘 ∈ 𝐷.
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Reducing the number of distinct variables
The number of instances is exponential in the number of distinct
variables in a flattened clause.

Term definitions
It is possible to decrease the number of newly introduced variables
during flattening by using definitions based on constants. From
𝑎 · (𝑎 · 𝑎) we can obtain 𝑎 · 𝑏, where 𝑏 is a fresh constant, and
define 𝑏 = 𝑎 · 𝑎. It is also possible to introduce definitions for
non-ground terms and use definitions across clauses.

Clause splitting
If a clause can be split into parts, where each part contains less
distinct variables than the whole clause, then we can decrease the
number of distinct variables by introducing a new predicate.

Example
From {𝑝(𝑋, 𝑌 ), 𝑞(𝑌, 𝑍)}, we can produce
{𝑝(𝑋, 𝑌 ), 𝑟(𝑌 )}, {¬𝑟(𝑌 ), 𝑞(𝑌, 𝑍)}, where 𝑟 is a fresh predicate.
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Isomorphic models

We have ℳ = (𝐷, 𝑖), where 𝐷 = {1, 2, 3}, 𝑖(𝑒) = 1, 𝑖(𝑧) = 2, and

𝑖(−1)
1 1
2 3
3 2

𝑖(·) 1 2 3
1 1 2 3
2 2 3 1
3 3 1 2

Note that any permutation on elements of 𝐷 produces an
isomorphic model. It makes no sense to look for all of them.
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Static symmetry reduction
It is possible to avoid many isomorphic models using the following
symmetry reduction technique. If we start to build a model by
interpreting a constant 𝑐1, then we can safely assign 𝑖(𝑐1) = 1,
because no element of 𝐷 has an assigned meaning. Hence we have

{𝑐1 = 1} instead of {𝑐1 = 1, 𝑐1 = 2, . . . , 𝑐1 = 𝑛}
Then we can assume that 𝑖(𝑐2) ∈ {1, 2} and 𝑖(𝑐3) ∈ {1, 2, 3},
because it has to be interpreted by an element with a meaning, or
the first fresh element (if available). However, if 𝑖(𝑐2) = 1, then
𝑖(𝑐3) ∈ {1, 2}. Or more generally

{𝑐𝑖 ̸= 𝑘, 𝑐1 = 𝑘 − 1, 𝑐2 = 𝑘 − 1, . . . 𝑐𝑖−1 = 𝑘 − 1}

This can be used also for functions, however, we have to take into
account the meaning assigned to elements of 𝐷 by constants.
Example
Hence 𝑖(𝑒) = 1 and 𝑖(𝑎) = 2 in our example, although 𝑖(𝑎) = 3
works as well.
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Other techniques

It is possible to use other techniques like
I pre-processing in SAT—variable and clause elimination, which

is incompatible with an incremental search
I finding bounds for |𝐷|

I look for cardinality axioms
I EPR—no function symbols and hence |𝐷| is bounded by the

number of constants occurring in the problem
I use sorts

I some problems are expressed in a many-sorted language,
I other problems can be reformulated in a many-sorted

language, if we have parts that can be defined independently
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Section 4

Summary



Proving in first-order logic (quick summary)

We are interested in the problem Γ |= 𝜙 in FOL, which is an
algorithmically undecidable problem. Still we can solve many
instances by using the following methods:
I we clausify formulae (skolemization,. . . ),
I we extend the resolution calculus to FOL using unification,
I we add direct equality handling,
I we use term orderings.

The most power-full solvers are based on superposition calculus and
we also showed how to use SAT to find small counter-examples.

Note that all these methods are machine-oriented and not
particularly suitable for humans (tableaux systems are better). We
will use them in the next (and last) lecture on proof assistants.
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