Logical reasoning and programming, lab session XI

(December 9, 2019)

XI. 1 Skolemize the following formula

$$
\forall X(p(a) \vee \exists Y(q(Y) \wedge \forall Z(p(Y, Z) \vee \exists U q(X, U)))) \vee \exists W q(a, W)
$$

Why is it possible in this particular case to do that without producing an equivalent formula in prenex form?
XI. 2 Unify the following pairs of formulae:
(a) $\{p(X, Y) \doteq p(Y, f(Z))\}$,
(b) $\{p(a, Y, f(Y)) \doteq p(Z, Z, U)\}$,
(c) $\{p(X, g(X)) \doteq p(Y, Y)\}$,
(d) $\{p(X, g(X), Y) \doteq p(Z, U, g(U))\}$,
(e) $\{p(g(X), Y) \doteq p(Y, Y), p(Y, Y) \doteq p(U, f(W))\}$.
XI. 3 What is the size of the maximal term that is produced when you try to unify

$$
\left\{f\left(g\left(X_{1}, X_{1}\right), g\left(X_{2}, X_{2}\right), \ldots, g\left(X_{n-1}, X_{n-1}\right)\right) \doteq f\left(X_{2}, X_{3}, \ldots, X_{n}\right)\right\}
$$

XI. 4 Show that the resolution rule is correct.
XI. 5 Derive the empty clauseusing the resolution calculus from:
(a) $\{\{\neg p(X), \neg p(f(X))\},\{p(f(X)), p(X)\},\{\neg p(X), p(f(X))\}\}$
(b) $\{\{\neg p(X, a), \neg p(X, Y), \neg p(Y, X)\},\{p(X, f(X)), p(X, a)\},\{p(f(X), X), p(X, a)\}\}$
XI. 6 Prove using the resolution calculus that from

$$
\begin{aligned}
& \forall X \forall Y(p(X, Y) \rightarrow p(Y, X)) \\
& \forall X \forall Y \forall Z((p(X, Y) \wedge p(Y, Z)) \rightarrow p(X, Z)) \\
& \forall X \exists Y p(X, Y)
\end{aligned}
$$

follows $\forall X p(X, X)$.
XI. 7 List all possible applications of the factoring rule on the clause

$$
\{p(X, f(Y), Z), \neg s(Z, T), p(T, T, g(a)), p(f(b), S, g(W)), \neg s(c, d)\}
$$

If it is possible to use the factoring rule several times, then produce even these results.

