Logical reasoning and programming, lab session X

(December 2, 2019)
X. 1 We have a language that contains only one binary predicate symbol \in and we have an interpretation $\mathcal{M}=(D, i)$ such that $D=\{a, b, c, d\}$ and $i(\in)$ is given by the following diagram:

Meaning that $x \in y$ iff there is an arrow from x to y. Decide whether the following formulae are valid in \mathcal{M} :
(a) $\exists X \forall Y(\neg(Y \in X))$,
(b) $\exists X \forall Y(Y \in X)$,
(c) $\exists X \forall Y(Y \in X \leftrightarrow Y \in Y)$,
(d) $\exists X \forall Y(Y \in X \leftrightarrow \neg(Y \in Y))$.
X. 2 Show that the following formulae are valid and provide counter-examples for the opposite implications:
(a) $\forall X p(X) \vee \forall X q(X) \rightarrow \forall X(p(X) \vee q(X))$,
(b) $\exists X(p(X) \wedge q(X)) \rightarrow \exists X p(X) \wedge \exists X q(X)$,
(c) $\exists X \forall Y p(X, Y) \rightarrow \forall Y \exists X p(X, Y)$,
(d) $\forall X p(X) \rightarrow \exists X p(X)$.
X. 3 Show that the "exists unique" quantifier \exists ! does not commute with \exists, \forall, nor \exists !.
X. 4 Decide whether for any formula φ holds:
(a) $\varphi \equiv \forall \varphi$,
(b) $\varphi \equiv \exists \varphi$,
(c) $\models \varphi$ iff $\models \forall \varphi$,
(d) $\models \varphi$ iff $\models \exists \varphi$,
where $\forall \varphi(\exists \varphi)$ is the universal (existential) closure of φ. If not, does at least one implication hold?
X. 5 Show that for any set of formulae Γ and a formula φ holds if $\Gamma \models \varphi$, then $\forall \Gamma \models \varphi$, where $\forall \Gamma=\{\forall \psi: \psi \in \Gamma\}$. Does the opposite direction hold?
X. 6 Find a set of formulae Γ and a formula φ such that $\Gamma \models \varphi$ and $\Gamma \models \neg \varphi$.
X. 7 Produce equivalent formulae in prenex form:
(a) $\forall X(p(X) \rightarrow \forall Y(q(X, Y) \rightarrow \neg \forall Z r(Y, Z)))$,
(b) $\exists X p(X, Y) \rightarrow(q(X) \rightarrow \neg \forall Z p(X, Z))$,
(c) $\exists X p(X, Y) \rightarrow(q(X) \rightarrow \neg \exists Z p(X, Z))$,
(d) $p(X, Y) \rightarrow \exists Y(q(Y) \rightarrow(\exists X q(X) \rightarrow r(Y)))$,
(e) $\forall Y p(Y) \rightarrow(\forall X q(X) \rightarrow r(Z))$.
X. 8 In X. 7 you could obtain in some cases various prefixes; the order of quantifiers can be different. Are all these variants correct?
X. 9 Can we produce a formula equivalent to X.7e with just one quantifier?
X. 10 Produce Skolemized formulae equisatisfiable with those in X. 7 Try to produce as simple as possible Skolem functions.
X. 11 Skolemize the following formula

$$
\forall X(p(a) \vee \exists Y(q(Y) \wedge \forall Z(p(Y, Z) \vee \exists U q(X, Y)))) \vee \exists W q(a, W)
$$

Why is it possible in this particular case to do that without producing an equivalent formula in prenex form?

