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Modern algorithms

1. Computational geometry today

2. Space efficient algorithms
(In-place / in situ algorithms)

3. Data stream algorithms
4. Randomized algorithms
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Computational geometry today

= Popular: beauty as discipline, wide applicability

= Started in 2D with linear objects (points, lines,...),
now 3D and nD, hyperplanes, curved objects,...

= Shift from purely mathematical approach and
asymptotical optimality ignoring singular cases

= to practical algorithms, simpler data structures
and robustness => algorithms and data structures
provable efficient in realistic situations (application
dependent)
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Space efficient algorithms
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Space efficient algorithms

= output is in the same location as the input and

= need only a small amount of additionally memory

— in-place — O(1) extra storage
sometimes including O(log n) bits for indice

— insitu  — O(log n) extra storage
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Space efficient algorithms - practical advantages

= Allow for processing larger data sets

— Algorithms with separate input and output
need space for 2n points to store — O(n) extra space

— Space efficient algs. — n points + O(1) or O(log n) space
= Greater locality of reference

— Practical for modern HW with memory hierarchies
(e.g., main RAM — ram on chip — registers, caches, disk
latency, network latency )

= Less prone to failure

— no allocation of large amounts of memory, which can
fail at run time

— good for mission critical applications

_=.ess memory => faster program %
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EXx: String reverse

function reverse(a[0..n])
allocate b[0..n]
for 1 from © to n
b[n-i] = a[i]
return b

function reverselInPlace(a[0..n])
for i from @ to floor(n/2)

swap (a[n-i], a[i])
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In-place sorting

= |n array — continuous block in memory
— n element in 0(1) time

— Select sort, insert sort ... in-place,
0 (1) additional memory, 0(n?) time

— Heapsort — in-place, 0(1) add. memory, O(n log n) time
— Quicksort — in-situ, 0(logn) add. memory for recursion
— Mergesort — not in-place, not in-situ, O(n) add. memory

= In list — linked lists in dynamical memory
— n element in 0(n) time
— Mergesort —in-situ, O(logn) add. memory, O(nlogn) time
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Graham in-place algorithm

Graham-InPlaceScan(S,n, d)
Input: S — index to array of length n with points in plane, d = +1 direction
Output: Convex Hull in clockwise order
/I d controls the sort direction:
1. InPlace-Sort(S,n, d) /I d = 1 sortascending for upper hull
2. h < 1 [l empty stack // d = —1 sort descending for lower hull
3. fori « 1...n — 1do TOS-1 10S NEW
4. while h = 2 and not right turn( S[h — 2], S[h — 1], S[i] ) do
5. h < h—1 // pop top element from the stack
6 swap S[i] « S[h] [/ push the new point to the stack
7 h < h+1 // increment stack length
8. returnh I/l end of convex hull (the first point above the stack)

The array: S = offset of the sub-array (index of its first point)
h = index of the first point above the stack (offset to 5)
i = index of the current point
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Graham in-place algorithm

PUSH
chs,»/—\<

Upper Hull Below Hull | | Unprocessed points
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Graham in-place algorithm

Graham-InPlaceHull(S, n)
Input:  § — an array of length n with points in plane

Output: Convex Hull in clockwise order (CW) sort direction

O(n log n)
1. h « Graham-InPlaceScan(S,n, 1) // 1=ascending —|CW upper hull
2. fori«—0..h — 2do
3. swap S[i] & S[i + 1] // bubble a to thelright O(h)
4. h' < Graham-InPlaceScan(S + h — 2,n — h + 2,—1) // lower hull
5 returnh + A" — 2
Principle:

Stack at the beginning of the array S on indices [0.. h — 1]
Exchange by swap operation
We need the in-place sort
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Graham in-place algorithm

0

h-1

A

e

compute upper hull

a left CH point . _. M .
b right CH point alS[1],...,S[h—2]|b S[h],...,S[n —1]
h v "4
move a h
bla S[h],...,S[n—1]
< —
G4 p_p Ccompute lower hull

S[0],...,S[h+ 1 —2]

W

output hull

Sort first

Sort first

b stays left
a moves right
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Optimized Graham in-place algorithm

A
partition
above a, b below a, b
b
upper hull candidates lower hull candidates a W
compute upper hull
a| upper hull b lower hull candidates
W shift
- i Sort first
upper hull  |bla] lower hull candidates b stays left
a moves right

T

compute lower hull

convex hull

s a

[BrénnimannC]
output hull
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Data stream algorithms
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Data stream algorithms [Indyk]

= Data stream = a massive sequence of data
— Too large to store (on disk, memory, cache,...)

= Examples
— Network traffic
— Database transactions
— Sensor networks
— Satellite data feeds

= Approaches
— Ignore it (CERN ignores 9/10 of the data)
_— Develop algorithms for dealing with such data
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Motivation example [Muthukrishnan]

= Paul presents numbers x = {1 ...n} in random
order, one number missing

= Carole must determine the missing number
but has only O(logn) bits of memory

Any idea?

= Compute the sum of the numbers and subtracts
the incoming numbers one by one.

. n(n+1) .
missing number = > — 2 x|i]

<n

= _ T'he missing number “remains”
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Motivation example [Muthukrishnan]

= And two missing numbers i,j ?

= Store sum of numbers s and sum of squares s’

nn+1
i+ = (2 ) _
i2+j2=n(n+1)(2n+1)_ ,
6

(this principle is applicable for k-missing numbers)
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Basic data stream model [Indyk]

= Single pass over the data: a,a,, ..., a
— Typically n is known

n

= Bounded storage (typically n* or log®n or only c)

— Units of storage: bits, words, or elements
(such as points, nodes/edges, ...)

— Impossible to store the complete data

= Fast processing time per element
— Randomness is OK (in fact, almost necessary)
— Often sub-linear time for the whole data
— Often approximation of the result
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Data stream models classification

= Input stream a,, a,, ..., a,
— arrives sequentially, item by item
— describes an underlying signal A,
a 1D function A: [1..N] —> R
= Models differ on how the input a;'s describe the
signal A for increasing i
(in increasing order of generality):
a) Time series model - a; equals to signal Ali]
b) Cash register model- a, are increments to A[j], I; > 0
c) Turnstile model - a; are updates to A[j], U, € R
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a) Time series model (éasova rada):. i

i

i

= Stream elements q; are equal to Ali]
(a;,'s are samples of the signal)

= a;S appear in increasing order of i (i~time)

= Applications

s Observation of the traffic on IP address each 5 minutes
=  NASDAAQ volume of trades per minute
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b) Cash register model (pokladna)

= @; are increments to signal A[j]'s
= Stream elements a, = (j,1;), [, = 0 to mean

_ _ [ .= Increment
Aljl = A1 I+ 1;
where (i~time, j~bucket)
- A,lj] is the state of the signal after seeing i-th item

— multiple a; can increment given A[j] over time

= A most popular data stream model
— |P addresses accessing web server (histogram)
— Source |IP addresses sending packets over a link
— access many times, send many packets,...
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c) Turnstile model (turniket)

= qa,; are updates to signal A[j]’s
= Stream elements a, = (j,U;), U; € R to mean + —

AL = A1 [i] + U, U ;= Update
where (i~time, j~bucket, turnstile)
- A, is the state of the signal after seeing i-th item
- U,; may be positive or negative
— multiple a; can update given A[j] over time
= A most general data stream model
— Passengers in NY subway arriving and departing
— Useful for completely dynamic tasks

.— Hard to get reasonable solution in this-model
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C) Turnstile model variants (for completeness)

= strict turnstile model — A4,[j] = 0 for all i
— People can only exit via the turnstile they entered In
— Databases — delete only a record you inserted
— Storage — you can take items only if they are there

= non-strict turnstile model — A,[j] < 0 for some i
— Difference between two cash register streams
— (A,]j] < 0 ... negative amount of items for some i)
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Examples: Iceberg queries anku]

= l|dentify all elements whose current frequency f
exceeds support threshold s =0.1%
f = sN
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EX: Iceberg queries — a) ordinary solution

The ordinary solution in two passes (not data stream)

1. Pass — identify frequencies (count the hashes)

— a set of counters is maintained. Each incoming item is
hashed onto a counter, which is incremented.

— These counters are then compressed into a bitmap,
with a 1 denoting a large counter value.
2. Pass — count exact values for large counters only

— exact frequencies counters for only those elements
which hash to a value whose corresponding bitmap
value is 1

= Hard to modify for data stream — unknown
. ~Arequencies after only 18 pass %
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EX: Iceberg queries — data stream definition

= |nput: threshold s € (0,1),errore € (0,1), length N
= Output: list of items and frequencies €EKS

= Guarantees:
— No item omitted (reported all items with frequency > sN)
— No item added (no item with frequency < (s — €)N)

— Estimated frequencies are not less than eN of the true
frequencies

s EX:s=0.1%,e =0.01% - Eabout% to% of s

— All elements with freq. > 0.1% will output
— None of element with freq. < 0.09% will output
.~ == Some elements between 0.09% and 0.1% will out%
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EX: Iceberg queries — b) sticky sampling

= Probabilistic algorithm, given threshold s, error €
and probability of failure 6

— Data structure S of entries (e, f), /I S =subset of counters
e element, f estimated frequency,

r sampling rate, sampling probability%
s S<0re1
= Ife € Sthen (e, f++) //count, if the counter exists
else insert (e, f) into S with probability%

= S sweeps along the stream as a magnet, attracting
all elements which already have an entry in-S
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EX: Iceberg queries — b) sticky sampling

= r changes over the stream, t = —log( ) S| < 2t

- 2telementsr =1
— next 2t elements r = 2
— next 4t elementsr = 4 ...

= whenever r changes, we update S

— For each entry (6, f) INS  // random decrement of counters

* toss a coin until successful (head) // with probability 1/2
* if not successful (tail), decrement f
* if f becomes 0, remove entry (e, f) from S

= Output: list of items with threshold s
i.e. all entriesin S where f > (s — ¢)N
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EX: Iceberg queries — b) sticky sampling

= Space complexity is independent on N

s For
— support threshold s = 0.1%,
— error € = 0.01%,
— and probability of failure § = 1%

=  Sticky sampling computes results
— with (1 — §) = 99% probability
— using at most 2t = 80 000 entries

1 1
-t =Zlog() = 40000,|S| < 2t
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EX: Iceberg queries — b) sticky sampling

4t elements

2t elements

2t elements
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Stream

—> Create counters by sampling
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EXx: Iceberg queries — c¢) lossy counting

s Deterministic algorithm (user specifies error € and threshold s)

= Stream conceptually divided into buckets
— With bucket size w = [1/¢ | items each
— Numbered from 1, current bucket id is b

= Data structure D of entries (e, f, A),
- e element,
- f estimated frequency,

— A maximum possible error of f, A = b.yrrent — 1
(max number of occurrences in the previous buckets)

current

= At most ilog(eN) entries
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EXx: Iceberg queries — c¢) lossy counting

bucket 2 bucket 3

w elements

bucket 1
w elements
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Divide the stream into buckets

Keep exact counters for items in the buckets

Prune entries at bucket boundaries

(remove entries for which f +A<b_, ... )
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EXx: Iceberg queries — c¢) lossy counting alg.

N D<—®

= New element e

— |f e € D then increment its f
— Ife & D then

* Create anew entry (e, 1, boyrrent — 1)

* |f on the bucket border, i.e., N modw =0
then delete entries with f + A< b_,, e

* i.e., with zero or one occurrence in each of the previous buckets
— NewA=1b_,.... — 1is maximum number of times e
could have occurred in the first b — 1 buckets

current

= Output: list of items with threshold s
i.e. all entriesin S where f > (s — ¢)N
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Comparison of sticky and lossy sampling

= Sticky sampling performs worse
— Tendency to remember every unique element
— The worst case is for sequence without duplicates

= Lossy counting
— Is good in pruning low frequency elements quickly

— Worst case for pathological sequence which never
occurs in reality
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Number of mutually different entries 1/2

= Input: stream a,, a,, ..., a,,, with repeated entries
= Output: Estimate of number c of different entries
= Appl: # of different transactions in one day

a) Precise deterministic algorithm:
— Array b[1..U], U = max number of different entries
— Init by b[i] = 0for all i, counter c = 0
— for each q,
if b[a;] = 0then inc(c), b[i] =1
— Return ¢ as number of different entries in b[]
— 0(1) update and query times, 0(U) memory
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Number of mutually different entries 2/2

b) Approximate algorithm
— Array b[1 ...log U], U = max number of different entries
— Initby b[i] = Oforall i
— Hash function h: {1..U} - {0..log U}
— For each q,
Set b[h(a;)] =1
— Extract probable number of different entries from b([]
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Sublinear time example O(alg) < 0(n)

= Given mutually different numbers a, a,, ..., a,
= Determine any number from upper half of values

= Alg: select kK numbers equally randomly
— Compute their maximum
— Return this estimation as solution

= Probability of wrong answer = probability of all

k
selected numbers are from the lower half = (%)

= Forerror € take logé samples
= Not useful for MIN, MAX selection

- o —f—
+++++
> -~ -+ 4
-~ DCGI Felkel: Computational geometry _
(38) .




Randomized algorithms
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Randomized algorithms

Motivation
= Array of elements, half of char "a”, half of char "b”
= Find”a’

= Deterministic alg: n/2 steps of sequential search
(when all "b” are first)

= Randomized:

— Try random indices

— Probability of finding "a” soon is high regardless of the
order of characters in the array
(Las Vegas algorithm — keep trying up to n/2 steps)
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Randomized algorithms

= May be simpler even if the same worst time

= Deterministic algorithm
— is not known (prime numbers)
— does not exist

= Randomization

— can improve the average running time (with the same
worst case time), while

— the worst time depends on our luck — not on the data
distribution
(It is “hard” to prepare killing datasets)
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Randomized algorithms

a) Incremental algorithms
(insert something in random order)
— Linear programming (random plane insertion)
— Convex hulls
— Intersections, space subdivisions

by Divide and conquer
(split in random place)

— Random sampling
— Nearest neighbors, trapezoidal subdivisions
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Another classification

= Monte Carlo
— We always get an answer, often not correct
— Fast solution with risk of an error

— Itis not possible to determine, if the answer is correct
— run multiple times and compare the results

— Output can be understand as a random variable
— Example: prime number test
- Task: Find a € <z,§> such as n is divisible by a

* Algorithm: Sample 10 numbers from the given interval, answer

= Las Vegas
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Las Vegas algorithms

Las Vegas
— We always get a correct answer
— The run time is random (typically < deterministic time)
— Sometimes fails —> perform restart

— Example: Randomized quicksort
* No median necessary
« Simpler algorithm
Independent on data distribution
Return a correct result
The result will be ready in 8(nlogn) time with a high probability
Bad luck — we select the smallest element -> Selection sort
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Randomized g uicksort (Las Vegas alg.)

RQS(S) = Randomized Quicksort
Input: sequence of data elements a,,a,,...,a, €S
Output: sorted set S

1. Step 1: choose i € (1,n) in random
2. Step 2: Let Ais a multiset {a,, a,, ...,a,}
* if n = 1 then output(S)
* else — create three subsets of S_, S_, S.
S< = {b EA:b < ai}
S_={be€eAb=a;}
Ss={b€Ab>a}
3. Step 3: RQS(S.) and RQS(S,)

4. Return: RQS(S.), S=, RQS(Ss)

—
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Conclusion on randomized algs.

= Randomized algorithms are often experimental
= \We would not get perfect results, but nicely good

= We use randomized algorithm if we do not know
how to proceed

- o —f—
+++++
-+ - -+ 4
—~ DCGI Felkel: Computational geometry
(47) >



References

[Kolingerova] Nové sméry v algoritmizaci a vypoCetni geometrii (1 a 2),
pfednaska z predmétu Aplikovana vypocetni geometrie, MFF UK,
2008

[Bronnimann] Hervé Bronnimann. Towards Space-Efficient Geometric Algorithms,
Polytechnic university, Brooklyn, NY,USA, ICCSA04, Italy, 2004

[BronnimannC]Hervé Bronnimann, et al. 2002. In-Place Planar Convex Hull
Algorithms. In Proceedings of the 5th Latin American Symposium
on Theoretical Informatics (LATIN '02), Sergio Rajsbaum (Ed.).

Springer-Verlag, London, UK, UK, 494-507.
http://dl.acm.org/citation.cfm?id=690520

[IndykK] Piotr Indyk. 6.895: Sketching, Streaming and Sub-linear Space
Algorithms, MIT course

[Muthukrishnan] Data streams: Algorithms and applications, (“adorisms” in Google)

[Mulmuley] Ketan Mulmuley. Computational Geometry. An Introduction
Through Randomized Algorithms. Prentice Hall, NJ,1994

[Manku] G.S. Manku, R. Motwani. Approximate Frequency Counts over
b Data Streams, Proceedings of the 28th VLDB-Conference, Hong i

- —— .
o o = —— —— Kong ! h|na 2! " ! 2 hﬂp'{{mmm vidh OngCODﬂzOQZijOECB pdf
i -
DCGI Felkel: Computational geometry
(48)



