

Modern algorithms

1. Computational geometry today
2. In-place / in situ algorithms
3. Data stream algorithms
4. Randomized algorithms
5. Sublineární algoritmy

1. Computational geometry today

- Popular: beauty as discipline, wide applicability
- Started in 2D with linear objects (points, lines,...), now 3D and nD, hyperplanes, curved objects,...
- Shift from purely mathematical approach and asymptotical optimality ignoring singular cases
- to practical algorithms, simpler data structures and robustness => algorithms and data structures provable efficient in realistic situations (application dependent)

Space efficient algorithms - practical advantages

- Allow for processing larger data sets
- Algorithms with separate input and output need space for $2 n$ points to store - O(n) extra space
- Space efficient algs $-n$ points $+O(1)$ or $O(\log n)$ space
- Greater locality of reference
- Practical for modern HW with memory hierarchies (e.g., main RAM - ram on chip - registers, caches, disk latency, network latency)
- Less prone to failure
- no allocation of large amounts of memory, which can fail at run time
- good for mission critical applications

2. In-place / in situ algorithms

Space efficient algorithms

- output is in the same location as the input and
- need only a small amount of additionaly memory
- in-place - O(1) extra storage
- in situ - $\mathrm{O}(\log n)$ extra storage

In-place sorting

- In array - continuous block in memory
- Select sort, insert sort \ldots yes, $O(1)$ memory, $O\left(n^{2}\right)$ time
- Heapsort - yes, O (1) additional memory
- Quicksort - yes, $O(\log n)$ additional memory for recursion
- Mergesort - not in-place
- In list - linked lists in dynamical memory
- $\mathrm{n}^{\text {th }}$ element in $O(n)$ time
- Mergesort - $O(\log n)$ time, $O(\log n)$ additional memory

Graham in-place algorithm			
Graham-InPlaceHull($(S, n$) Input: $\quad S$ - an array of length n with points in plane Output: Convex Hull in clockwise order			
1. $h \leftarrow \operatorname{Graham}-\operatorname{InPlace}-S \operatorname{can}(S, n, 1) \quad / / C W$ upper hull 2. for $i \leftarrow 0 \ldots h-2$ do 3. swap $S[i] \leftrightarrow S[i+1] \quad / /$ bubble a to the right 4. $h^{\prime} \leftarrow \operatorname{Graham}-\operatorname{InPlace}-S c a n(S+h-2, n-h+2,-1)$ // lower hull 5. return $h+h^{\prime}-2$			
Stack at the beginning of the array			

Graham in-place algorithm

```
Input: }\quadS[0,\textrm{n}-1]-\mathrm{ array of length }n\mathrm{ with points in plane, }d=\pm1\mathrm{ direction
Output: Convex Hull in clockwise order
1. InPlace-Sort(S, n,d) // d=1 CW for upper hull, d=-1 CCW for LH
2. }h\leftarrow
3. for }i\leftarrow1\ldotsn-1 d
4. while }h\geq2\mathrm{ and not right turn(S[h-2],S[h-1],S[i]) do
        h}\leftarrowh-1 // pop top element from the stac
        swap S[i]}\leftrightarrowS[h
    h}\leftarrowh+
return h
```


3. Data stream algorithms

 [Indyk]- Data stream = a massive sequence of data
- Too large to store (on disk, memory, cache,...)
- Examples
- Network traffic
- Database transactions
- Sensor networks
- Satelite data feeds
- Aproaches

Motivation example

[Muthukrishnan]

- Paul presents numbers $x=\{1 . . n\}$ in random order, one number missing
- Carole must determine the missing number but has only $O(\log n)$ bits of memory

Any idea?

- Compute the sum of the numbers and subtracts the incoming numbers one by one.

$$
\text { missing number }=\frac{n(n+1)}{2}-\sum_{i<n} x[i]
$$

The missing number remains

Motivation example

 [Muthukrishnan]- And two missing numbers?
- Store sum of numbers s and sum of squares s^{\prime}

Basic data stream model

[Indyk]

- Single pass over the data: $a_{1}, a_{2}, \ldots, a_{n}$
- Typically n is known
- Bounded storage (typically n^{α} or $\log ^{c} n$ or only c)
- Units of storage: bits, words, or elements (such as points, nodes/edges, ...)
- Impossible to store the data
- Fast processing time per element
- Randomness is OK (in fact, almost necessary)

a) Time series model (Časová řada)

- Stream elements a_{i} are equal to $A[i]$ (samples of the signal)
- a_{i} 's appear in increasing order of i
- Applications
- Observation of the traffic on IP address each 5 minutes
- NASDAQ volume of trades per minute
b) Cash register model - a_{i} are increments to $A[j]$, Ii $>$ 0
c) Turnstyle model $\quad-a_{i}$ are updates to $A[j], U_{i} \in R$

Data stream models classification

- Input stream a_{1}, a_{2}, \ldots, an
- arrives sequentially, item by item
- describes an underlying signal A, a 1D function A : [1.. $N] \rightarrow R$
- Models differ on how a_{i} 's describe the signal A (in decreasing order of generality):
a) Time series model $-a_{i}$ equals $A[i]$, in increasing i

b) Cash register model (registrační pokladna)
- a_{i} are increments to $A[j]^{\prime} s$
- Stream elements $a_{i}=(j, I i), I_{i} \geq 0$ to mean

$$
A_{i}[j]=A_{i_{-}}[j]+I i
$$

where

- A_{i} is the state of the signal after seeing i-th item
- multiple a_{i} can increment given $A[j]$ over time
- A most popular data stream model
- IP addresses accessing web server
- Source IP addresses sending packets over a link
- access many times, send many packets,.

$+{ }^{+}+$
\ldots Felkel: Computational geometit
Felel: Compuationar ge

c) Turnstile model (turniket)

- a_{i} are updates to $A[j]^{\prime} s$
- Stream elements $a_{i}=\left(j, U_{i}\right), I_{i} \in R$ to mean

$$
A_{i}[j]=A i_{-1}[j]+U_{i}
$$

where

- A_{i} is the state of the signal after seeing i-th item
- U_{i} may be positive or negative
- multiple a_{i} can updategiven $A[j]$ over time
- A most general data stream model
- Passengers in NY subway arriving and departing
- Hard to get reasonable solution in this model

DCGI

c）Turnstile model variants（for completness）

－strict turnstile model $-A_{i}[j] \geq 0$ for all i
－People can only exit via the turnstile they entered in
－Databases－delete only a record you inserted
－Storage－you can take items only if they are there
－non－strict turnstile model $-A_{i}[j]<0$ for some i
－Difference between two cash register streams

Examples：Iceberg queries

－Identify all elements whose current frequency exceeds support threshold $s=0.1 \%$ ．

Ex：Iceberg queries－problem definition

－Input：threshold $s \in(0,1)$ ，error $\varepsilon \in(0,1)$ ，length N
－Output：list of items and frequencies $\epsilon \ll s$
－Guarantees：
－No item omitted（reported all items with frequency $>s N$ ）
－No item added（no item with frequency＜$(s-\epsilon) N$ ）
－Estimated frequencies not less than ϵN of the true frequencies
－Ex：$s=0.1 \%, \epsilon=0.01 \%-\epsilon$ about $\frac{1}{10}$ to $\frac{1}{20}$ of s
－All element with freq．$>0.1 \%$ will output
－Hard to modify for datastream－unknown ffeequencies after only $1^{\text {st }}$ pass

DCGI \ldots Felkel：Computaional goometry

－None of element with freq．$<0.09 \%$ will output

Ex：Iceberg queries－b）sticky sampling

－ r changes over the stream，$t=\frac{1}{\epsilon} \log \left(\frac{1}{s \delta}\right),|S|<2 t$
－ $2 t$ elements $r=1$
－next $2 t$ elements $r=2$
－next $4 t$ elements $r=4 \ldots$
－whenever r changes，we update S
－For each entry (e, f) in S
－toss a coin until successful（head）
－if not successful（tail），decrement f
－if f becomes 0 ，remove entry (e, f) from s
－Output：list of items with threshold s
i．e．all entries in S where $f \geq(s-\epsilon) N$
なーも手
DCGI

Ex: Iceberg queries - b) sticky sampling

- Space complexity is independent on N
- For
- support threshold $s=0.1 \%$,
- error $\epsilon=0.01 \%$,
- and probability of failure $\delta=1 \%$
- Sticky sampling computes results
- with $(1-\delta)=99 \%$ probability
- using at most $2 \mathrm{t}=80000$ entries
$-t=\frac{1}{\epsilon} \log \left(\frac{1}{s \delta}\right)=40000,|S|<2 t$

Ex: Iceberg queries - c) lossy counting

- Deterministic algorithm
- Stream conceptually divided into buckets
- With $w=\lceil 1 / \varepsilon\rceil$ items each
- Numbered from 1, current bucket id is $b_{\text {current }}$
- Data structure D of entries (e, f, Δ),
- e element,
- f estimated frequency,
- Δ maximum possible error of f (max number of occurences in previous buckets)
- At most $\frac{1}{\epsilon} \log \left(\frac{1}{\varepsilon N}\right)$ entries

Ex: Iceberg queries - c) lossy counting

- Divide the stream into buckets
- Keep exact counters for items in the buckets
- Prune entries at bucket boundaries
(remove entries for which $f+\Delta \leq b_{\text {current }}$)

Ex: Iceberg queries - c) lossy counting alg.

- $D \leftarrow \emptyset$
- New element e
- If $e \in D$ then increment its f
- If $e \notin D$ then
- Create a new entry (e, 1, bcurrent -1)
- If on the bucket border, i.e., $N \bmod w=0$ then delete entries with $f+\Delta \leq b_{\text {current }}$
- i.e., with zero or one occurence in previous buckets
- New $\Delta=b_{\text {current }}-1$ is maximum number of times e could have occured in the first $b_{\text {current }}-1$ buckets
- Output: list of items with threshold s
i.e. all entries in S where $f \geq(s-\epsilon) N$

DCGI

Comparison of sticky and lossy sampling

- Sticky sampling performs worse
- Tendency to remember every unique element
- The worst case is for sequence without duplicates
- Lossy counting
- Is good in pruning low frequency elements quickly
- Worst case for pathological sequence which never occurs in reality

Number of mutually different entries

- Input: stream a_{1}, a_{2}, \ldots, an, with repeated entries
- Output: Estimate of number of different entries
- Appl: \# of different transactions in one day
- Precise deterministic algorithm:
- Array $b[1 . . U], U=$ max number of different entries
- Init by $b[i]=0$ for all i, counter $c=0$
- For each a_{i}
- if $b\left[a_{i}\right]=0$ then $\operatorname{inc}(c), b[i]=1$
- Return c as number of different entries in $b \square]$
- $O(1)$ update and query times, $O(U)$ memory

Number of mutually different entries

- Approximate algorithm
- Array $b[1 . . \log U], U=$ max number of different entries
- Init by $b[i]=0$ for all i, counter $c=0$
- Hash function $h:\{1 . . U\} \rightarrow\{0 . . \log U\}$
- For each a_{i}

Set $b[h(a i)]=1$

- Extract probable number of different entries from $b[]$

Sublinear time example

- Given mutually different numbers a_{1}, a_{2}, \ldots, an
- Determine number in upper half of values
- Alg: select k numbers equally randomly
- Compute their maximum
- Return it as solution
- Probability of wrong answer = probability of all selected numbers are from the lower half $=\left(\frac{1}{2}\right)^{k}$
- For error δ take $\log \frac{1}{\delta}$ samples
- Not useful for MIN, MAX selection
- 声寺+

DCGI

4. Randomized algorithms

Motivation

- Array of elements, half of char "a", half of char "b"
- Find "a"
- Deterministic alg: $n / 2$ steps of sequential search (when all "b" are first)
- Randomized:
- Try random indices
- Probability of finding "a" soon is high regardless of the order of characters in the array (Las Vegas algorithm)

Randomized algorithms

Incremental algorithms

- Linear programming - see seminars
- Convex hulls
- Intersections, space subdivisions
b) Divide and conquer
- Random sampling
- Nearest neighbors, trapezoidal subdivisions worst time depends on our luck - not on the data distribution

DCGI

Random sampling

- Hierarchical data structures
- Sublinear algorithms
- Randomized quicksort
- Approximate solutions on random samples

Another classification

- Monte Carlo
- We always get an answer, often not correct
- Fast solution with risk of an error
- It is not possible to determine, if the answer is correct
\rightarrow run multiple times and compare the results
- Output can be understand as a random variable
- Example: prime number test
- Task: Find a $\in\left(2, \frac{n}{2}\right)$ such as n is divisible by a
- Algorithm: Sample 10 numbers from the given interval, answer
- Las Vegas

Randomized quicksort

RQS = Randomized Quicksort
1nput: sequence of data elements $a_{1}, a_{2}, \ldots, a_{n} \in S$
Output: sorted set S

1. Step 1: choose $i \in\langle 1, n\rangle$ in random
2. Step 2: Let A is a multiset $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

- if $n=1$ then output(S)
- else - create three subsets of $S_{<} S_{„}, S_{>}$ $S_{S}=\left\{b\right.$ z A: $\left.b<a_{i}\right\}$ $S^{<}=\left\{\begin{array}{lll}b & z & A: \\ b & b=a_{i}\end{array}\right\}$
$S=\left\{b\right.$ z $\left.A: b>a_{i}\right\}$

3. Step 3: Sort S and S
4. Výstup: $R Q S(S<), S=, \vec{R} Q S(S>)$

- Return a correct result
- The result will be ready to uphold with a high probability

$$
S<), S=, R Q S(S>)
$$

- Bad luck - we select the smallest element -> Selection sort

Conclusion

- Randomized algs. are often experimental
- We would not get perfect results, but nicely good

References

[Kolingerová]	Nové směry v algoritmizaci a výpočetní geometrii (1 a 2), přednáška z předmětu Aplikovaná výpočetní geometrie, MFF UK, 2008
[Brönnimann]	Hervé Brönnimann. Towards Space-Efficient Geometric Algorithms, Polytechnic university, Brooklyn, NY,USA, ICCSA04, Italy, 2004
[BrönnimannC]Hervé Brönnimann, et al. 2002. In-Place Planar Convex Hull Algorithms. In Proceedings of the 5th Latin American Symposium on Theoretical Informatics (LATIN '02), Sergio Rajsbaum (Ed.). Springer-Verlag, London, UK, UK, 494-507. http://dl.acm.org/citation.cfm?id=690520	
[Indyk]	Piotr Indyk. 6.895: Sketching, Streaming and Sub-linear Space Algorithms, MIT course
[Muthukrishnan] Data streams: Algorithms and applications, ("adorisms" in Google)	
[Mulmuley]	Ketan Mulmuley. Computational Geometry. An Introduction Through Randomized Algorithms. Prentice Hall, NJ, 1994
[Manku]	G.S. Manku, R. Motwani. Approximate Frequency Counts over Data Streams, Proceedings of the 28th VLDB Conference, Hong Kong China 2002

