CGl

KATEDRA POCITACOVE GRAFIKY A INTERAKCE

DUALITY AND
APPLICATIONS OF ARRANGEMENTS

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/adm39vqg/start

Based on [Berg], [Mount], and [Goswami]

Version from 5.2.2017

Talk overview

N Duallty
1. Points and lines
2. Line segments
3. Polar duality (different points and lines)
4. Convex hull using duality

= Applications of duality and arrangements

= : -
A S = == ——
> -~ -+
—~ DCGI Felkel: Computational geometry
(2) . b e

1. Duality of lines and points in the plane

= Points and lines - both have 2 parameters:
— Points — coords x and y

— Lines - slope k and y-intercept g
y=kx+q « =

g =
A

= We can simply map points and lines 1:1

= Many mappings exist — it depends on the context

= —:_ -
e S =~ == ——
> -~ -+
—~ DCGI Felkel: Computational geometry
(3) . . bl e i

Why to use duality?

Some reasons why to use duality:

= [ransforming a problem to dual plane may
give a new view on the problem

= Looking from a different angle may
give the insight needed to solve it

= Solution in dual space may be even simpler

- o —f—
+++++
> -~ -+ 4
-~ DCGI Felkel: Computational geometry .
(4) } 4 + 4 4 i i 4 - -4 4 = 4= — -}

Definition of duality transformation D

Let D be the duality transform: variables

= Pointp =[p,, p,] is transformed)
toline D,=p*:=(b=pa-p,)

= Line |:(y=ax-Db)is transformed T
_ constants
topointD, =1*:=[a, b]

y b
I
\ . p*
AN X /a
Primal plane (xy) Dual plane (ab)

= —:_ -
e S =~ == ——
> -~ -+
—~ DCGI Felkel: Computational geometry _

(®)

Example and more about duality D

o Example: See the [applet]
liney =5x—-3
can be represented as point y*=[5, 3]

o Duallty D
— Isits own inverse DD, = p, DD, = |

— cannot represent vertical lines
=>Take vertical lines as special cases, use lexico-
graphic order, or rotate the problem space slightly.

— Primal plane - plane with coordinates X, y

o A o~ ==

—~ DCGI Felkel: Computational geometry
(6)

. ~— Dual plane* — plane with coordinates a, b %

Duality of lines and points in the plane

Primal plane Dual plane
*
L P3
y g b
P4 @ P2
sk
P4
X * a
AN

[Berg]

+++++
> -~ -+ -
—~ DCGI Felkel: Computational geometry _

Duality of lines and points in the plane

P2

Primal plane Dual plane .
¥ P3
y g b
P4 ®
sk
P4
X * a
AN

[Berg]

+++++
> -~ -+
—~ DCGI Felkel: Computational geometry _
" _ . . . b 4 o+ 4

Duality of lines and points in the plane

Primal plane Dual plane
* p3”
y g b
P4 @ P2
p4”
X * a
. _ VAN
point p =[p,, py] line p*:= (b =pa-py)

[Berg]

+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(7) . . i de e e R

Duality of lines and points in the plane

Primal plane Dual plane
* p3”
y g b
P4 @ P2
p4”
X * a
. _ VAN
point p =[p,, py] line p*:= (b =pa-py)

[Berg]

line |l :=(y=ax+Db)

+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(7) . . i de e e R

Duality of lines and points in the plane

Primal plane Dual plane
* p3”
y g b
P4 @ P2
P4
X * a
. _ /N
pOIﬂt P = [Px: py] line p* = (b = Pxa — py) Berg]
line | :=(y=ax+Db) Point1*=[a,—-Db]

+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(7) | _ b oA+ 4

Duality of lines and points in the plane

Primal plane Dual plane .
y pit . P3
P4 @ P2
P4
X * a
. _ VAN
pOIﬂt P = [Px: py] line p* = (b = Pxa — py) Berg]

= (g =) = —

+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(7) . . i de e e R

Duality of lines and points in the plane

Primal plane Dual plane
y pit . P3
P4 ®
. *
P4
X * a
. _ VAN
point p =[p,, py] line p*:= (b =pa-py)

= (g =) = —

line | :=(y =ax—Db)

-

Felkel: Computational geometry

DCGI .

P2

Duality of lines and points in the plane

Primal plane Dual plane
y pit . P3
P4 @ P2
P4
X * a
. VAN
point p =[p,, Pyl P line p*:= (b =p,a-p,) -
' = =) """"""""""""""""""""""""""""""""""""" * = —

>
 a

Felkel: Computational geometry

DCGI .

Duality of lines and points in the plane

Primal plane Dual plane
y pit . P3
P4 @ P2
P4
X * a
. VAN
pointp = Px: py] 7 line p*:=(b = Pxa — py) Berg

PointI*=[a, b]

Felkel: Computatior . . |

DCGI .

Duality of lines and points in the plane

Primal plane Dual plane
ok P3
y P b
P4 @ P2
- *
P4
X * a
AN\
point p = [py Py] S P line p*:=(b=p,a-p,) oo
he={y-=) P =fa—
inel:=(y=ax-b) <« > Pointl*=[a, b]
” Felkel: Computatior . . | %
DCGI 5 e

Duality of lines and points in the plane

Primal plane Dual plane
*
* P3
y g b
P4 @ P2
P4
X * a
. VAN
point p = [py Py] S P line p*:=(b=p,a-p,) oo
. = =) v ______________ * = —
line | = (y=ax—b)) i B R N POint|*=[a, b]
T Same form => [t is convenient to negate b in the

line equation

Why is b negated in the line equation?

= In primal plane, consider
— pointp=[p, py]and
— set of non-vertical lines |, :y = ax — b,
passing through p satisfy the equation p, = ap, — b,
(each line with different constants a;,b;)
= In dual plane, these lines transform to collinear
points {I"=[a,b] : by =pa—py}
AN +b
|3*= [a3,bs]

‘
|2 .
g \\ . Same form =>

g > It is convenient to
P= [P By ﬁx — b, \ negate b in the
» line equation
-~ Felkel: Computational geomet
DCGI iy % -

If b not negated in the line equation...

Lines |; have equartion |, :y =ax—b, ORy=ax+ Db,
Passing through pointp = [p,, p,] :

= With minus
— equation | p, = ap,—b

dual points {I;*=[a;,b] : b;=p,a —p, } ... Same form
= With plus
— equation |;: p, = ap, + b
dual {li*=[a.b] :bj=-p,a +p,} ... different form

= —:_ -

+++++

> -~ -+ -
- DCGI Felkel: Computational geometry)

Properties of points and lines duality

Incidence is preserved
= Point p is incident to the line | in primal plane
ITf
point |I* is incident to the line p* in the dual plane.

= Lines |, |, intersects at point p
I
line p* passes through points |,*, |,*.

.

Iy % \

+++++
> -~ -+ 4
—~ DCGI Felkel: Computational geometry .
(10) .

Properties of points and lines duality

But order is reversed

= Point p lies above (below) line | in the primal plane
I
line p* passes below (above) point I* in the dual

plane Or said order is preserved: ... iff Point I* lies above (below) line p*
A A

AN
®p
el
— >
\ o |* /
-~ Felkel: Computational geometry

Properties of points and lines duality

Collinearity

= Points are collinear in the primal plane iff their

dual lines intersect in a common point
[

yll Ab

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(12) T

Handling of vertical lines

= Dual transform is undefined for vertical lines

— Points with the same x coordinate dualize to lines with
the same slope (parallel lines) and therefore

— These dual lines do not intersect (as should for collinear points)

— Vertical line through these points does not dualize to an
Intersection point

— For detection of vertically collinear points use other
method - O(n) vertical lines -> O(n?) brute force 3jjiiness.

wln tb r** -> O(n) after O(n log n)
lg g* sorting by x
i X a Vertical distances of such duals
! % are “preserved”. For p; = q,

S o ol o vertDist(q*,, p*,) = Py = Qy
-+ -+ -
— DCGI Felkel: Compu(’:a;i)onal geometry _

2. Duality of line segments

= Line segments o
ua . .
= set of collinear points —> set of lines passing one point

Dvojity klin

union of these lines is a (left-right) double wedge s*

»
»

right wedge

P
\S top

p*

bottom wedge

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(14)

Intersection of line and line segment

= Line b intersects line segment s

— if point b* lays in the double wedge s*,
l.e., between the duals p*,g* of segment endpoints p,q

— point p lies above line b and (qlies below line b
— point b* lies above line p* and b* lies below line g*

—~ DCGI Felkel: Computational geometry %
(15)

3. Polar duality (Polarity)

= Another example of point-line duality

= In2D: Point p = (p,, p,) in the primal plane
corresponds to a line T, with equation ax + by = 1
in the dual plane and vice versa PyX+pyy =1

= IndD: Point p is taken as a radius-vector (starts
in origin O). The dot product (p . X) = 1 defines a
polar hyperplane p*=T ={x €R:(p.x)=1}

= Used in theory of polytopes

- S~ =
e A A == =
—~ DCGI Felkel: Computational geometry
(16) :

Polar duality (Polarity)

= Geometrically in 2D, this means that

— If d is the distance from the origin(O) to the point p,

the dual T, of p is the line perpendicular to Op at
distance 1/d from O and placed on the other side of O.

Unit circle

- Tp [Goswami]
+++++
-+ -+ -+
o o Felkel: Computational geometry

DCGI x

4. Convex hull using duality — definitions

= An optimal algorithm
= Let P be the given set of n points in the plane.
= Letp, € P be the point with smallest x-coordinate

= Letp, € P be the point with largest x-coordinate
Both p, and p4, € CH(P) upper hull

Upper hull = CW polygonal chain
P.,---, Pg @long the hull

Pa
Lower hull = CCW polygonal chain
P.,---, Pg @long the hull

lower hull

- - =
+++++
- -+ 4 :
7 DC G I Felkel: Computational geometry _
(18) a2

Definitions

s LetL be asetoflines in the
plane

= [he upper envelope is a
polygonal chain E such that
nolinel € Lis above E,. @

= [he lower envelope is a
polygonal chain E; such that
nolinel € L is below E,.

« e

0P

- [Goswami]
> S o~ 4~ 4+
> -~ -+
—~ DCGI Felkel: Computational geometry
(19) e X

Connection between Hull and Envelope

[Goswami] p’;

Ps

= —:_ -
+++++
> -~ -+ 4
—~ DCGI Felkel: Computational geometry _
(20) L X

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in :

Connection between Hull and Envelope
the dual plane.

of

: \
[Goswami] p’;

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

Py

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the

lower envelope (upper envelope) in .
the dual plane. '

Pc

Py

le Thus the problem of computing convex hull of a
Pe point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line

R set in the dual plane.
DC GI Felkel: Computational geometry _

(21)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))

L2

L3

L4
L5
L6 [Goswami]

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L3
L4
LS
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L3
L4
LS
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1

4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))

L2

L3

L4

LS

L2
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1

4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))

L2

L3

L4

LS

L2
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1

4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))

L2

L3

L4

LS

L2
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1

4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))

L2

L3

L4

L3
LS
L2
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1

4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))

L2

L3

L4

L3
LS
L2
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1

4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))

L2

L3

L4

L3
LS
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1

4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))

L2

L3

L4

L3
LS
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L3
L4 L4
L3
LS
Lo L6 [Goswami] L1

(22/38)

-+ O
S o Felkel: Computational geometry _
DCGI e |

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L3
L4 L4
L3
LS
Lo L6 [Goswami] L1

(22/38)

-+ O
S o Felkel: Computational geometry _
DCGI e |

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L3
L4 L4
L3
LS
Lo L6 [Goswami] L1

(22/38)

-+ O
S o Felkel: Computational geometry _
DCGI e |

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L3
LS
L4 L4
L3
LS
Lo L6 [Goswami] L1

(22/38)

-+ O
S o Felkel: Computational geometry _
DCGI e |

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L3
LS
L4 L4
L3
LS
Lo L6 [Goswami] L1

(22/38)

-+ O
S o Felkel: Computational geometry _
DCGI e |

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L3
LS
L4 L4
L3
LS
Lo L6 [Goswami] L1

(22/38)

-+ O
S o Felkel: Computational geometry _
DCGI e |

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L6
L3
LS
L4 L4
L3
LS
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L6
L3
LS
L4 L4
L3
LS
L6 [Goswami] L1

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L6
L3
L4 L4
L3
LS
Lo L6 [Goswami] L1

(22/38)

-+ O
S o Felkel: Computational geometry _
DCGI e |

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1
4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))
L2
L6
L3
L4 L4
L3
LS
Lo L6 [Goswami] L1

(22/38)

-+ O
S o Felkel: Computational geometry _
DCGI e |

Upper envelope algorithm

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)

Polygonal chain O representing the upper hull

1. O=L1 // the only complete line in O
2. fori=2ton
3. L = last entry in O // O contains half-lines, or line segments,
Il except of complete line L1

4. while(the line segment L does not intersect line L)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment L, at the tail of the list O (trim L, trim L))

L2 Konec animace

L3

L4

L5

L6 [Goswami]

-+ -+ -+ W) |
S o Felkel: Computational geometry
DCGI e 1

(22/38)

Convex hull via upper and lower envelope

= Upper envelope complexity

— After sorting n lines by their slopes in O(n logn) time,
the upper envelope can be obtained in O(n) time

— Proof: It may check more than one line segment when

iInserting a new line, but those ones checked are all
removed except the last one.

(O(n) insertions, max O(n) removals
=> O(n) all steps. Average step O(1) amortized time)

= Convex hull complexity

— Given a set P of n points in the plane, CH(P) can be
computed in O(n log n) time using O(n) space.

- o —f—
+++++
> -~ -+
—/— DCGI Felkel: Computational geometry
(23)

Applications of line arrangement

Examples of applications — solved in O(n?) and

N\ O(n?) space by constructing a line arrangement or

O(n) space through topological plain sweep.

a) General position test:
Given a set of n points in the plane, determine

whether any three are collinear.
— Construct an arrangement in dual plane
— Report intersections of more than 2 lines

P2

P3

S A o~ == =

P1

pa’

b
2N
/* a

reikel: Computational geometry

(24)

b) Minimum k-corridor

= Given a set of n points, and an integerk e[1:n],
determine the narrowest pair of parallel lines that
enclose at least k points of the set.

s | he distance between the lines can be defined
— either as the vertical distance between the lines
— or as the perpendicular distance between the lines

= Simplifications
— Assume k = 3 and no 3 points are collinear

=> narrowest corridor - contains exactly 3 points
- has width > 0 /Vertical

— No 2 points have the same x coordinate (avoid | duals%

S A o~ == =

—~ DCGI Felkel: Computational geometry
(25)

b) Minimum k-corridor

Primal Plane Dual Plane

= Vertical distance of |_,l, = (-) distance of |_*,I*

= Nearest lines — one passes 2 vertices, e.g., p&r

= |n dual plane are represented as intersection p*x r*
= Find nearest 3-stabber similarly as trapezoidal map
= O(n?) time and O(n) space — topological line sweep

= —:_ -
+++++
> -~ -+ 4
—~ DCGI Felkel: Computational geometry _
(26) L X

b) Minimum k-corridor

Primal Plane Dual Plane

= Vertical distance of |_,l, = (-) distance of |_*,I*

= Nearest lines — one passes 2 vertices, e.g., p&r

= |n dual plane are represented as intersection p*x r*
= Find nearest 3-stabber similarly as trapezoidal map
= O(n?) time and O(n) space — topological line sweep

= —:_ -
+++++
> -~ -+ 4
—~ DCGI Felkel: Computational geometry _
(26) L X

b) Minimum k-corridor

Primal Plane Dual Plane

= Vertical distance of |_,l, = (-) distance of |_*,I*

= Nearest lines — one passes 2 vertices, e.g., p&r

= |n dual plane are represented as intersection p*x r*
= Find nearest 3-stabber similarly as trapezoidal map
= O(n?) time and O(n) space — topological line sweep

= —:_ -
+++++
> -~ -+ 4
—~ DCGI Felkel: Computational geometry _
(26) L X

c) Minimum area triangle [Goswami]

= Given a set of n points in the plane, determine the
minimum area triangle whose vertices are selected
from these points

= Construct “trapezoids” as in the nearest corridor

= Minimize perpendicular distances (converted from
vertical) multiplied by the distance from p; to p,

° d h(l,_] ’k) [Goswami]

= —:_ -
+++++
> -~ -+ 4
—~ DCGI Felkel: Computational geometry .
(27) .

d) Sorting all angular sequences — naive

= Natural application of duality and arrangements
= |Important for visibility graph computation

= Set of n points in the plane

= For each point perform an CCW angular sweep

= Naive: for each point compute angles to
remaining n — 1 points and sort them

= =>0(n log n) time per point
m O(n? log n) time overall
= Arrangements can get rid of O(log n) factor

- —:_ —
e A A == =
—~ DCGI Felkel: Computational geometry
(28) :

d) Sorting all angular sequences — optimal

= For point p,
— Dual of point p; is line p;*
— Line p;* intersects other dual lines in order of slope

(angles from -90° to 90°) (180°)
— We need order of angles around p;
(angles from -90° to 270°) (360°)

— Split points in primal plane by vertical line through p;
— First, report intersections of points right of p;
— Second, report the intersections of points left of p,

— Once the arrangement is constructed:
O(n) time for point, O(n?) time for all n points

= : -
+++++
> -~ -+
—/— DCGI Felkel: Computational geometry
(29)

d) Angular sequence around pg

oPs /
N7/

p%/ Pi

P’

In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30)

d) Angular sequence around pg

oPs /
N7/

p%/ Pi

P’

In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30)

d) Angular sequence around pg

oPs /
N4

PS
o P1
Py /
Py P s
In primal plane In dual plane

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30)

d) Angular sequence around pg

In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30)

d) Angular sequence around pg

oPs \ //

In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30)

d) Angular sequence around pg

oPs i \ /

In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30)

d) Angular sequence around pg

O....,,p5 \

In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30)

d) Angular sequence around pg

O....,,p5 \

In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30)

d) Angular sequence around pg

In primal plane In dual plane

I Point order around pq : Py, P, Ps, Pas Pss Pes By Pg %
+
o o Felkel: Computational geometry

d) Angular sequences around p,

oPs /
N4
oPa =p§ “(//

p%/ Pi

P’

In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(31)

d) Angular sequences around p,

oPs /
N4
oPa =p§ “(//

p%/ Pi

P’

In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(31)

d) Angular sequences around p,

In primal plane In dual plane

o A o~ ==

oPs \ /
P
ore oP4
s
: >

—~ DCGI Felkel: Computational geometry
(31)

e

d) Angular sequences around p,

In primal plane In dual plane

o A o~ ==

oPs E \ /
p i
ore ' oP4
s
o :]
9 1

—~ DCGI Felkel: Computational geometry
(31)

e

d) Angular sequences around p,

In primal plane In dual plane

o A o~ ==

oPs E \ /
P i
or ' oP4
%
o /i]
.

—~ DCGI Felkel: Computational geometry
(31)

e

d) Angular sequences around p,

In primal plane In dual plane

o A o~ ==

oPs E \ /
P i
or ' oP4
%
o /i]
.

—~ DCGI Felkel: Computational geometry
(31)

e

d) Angular sequences around p,

In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(31)

d) Angular sequences around p,

e /
o P1
Py /
Py P s
In primal plane In dual plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(31)

d) Angular sequences around p,

In primal plane In dual plane

*,fff 3 Point order around p; : P, P4s Pss Per P72 Pgr Par Py %
-+
o o Felkel: Computational geometry
DCGI -

d) Angular sequences around p,

o A o~ ==

In dual-plane

Felkel: Computational geometry

(32)

I

d) Angular sequences around p,

In primal plane In dual plane

++++ff . Point order around p, : P,, Ps: Pss P7s Pas Pgs Pas P1 %
-+
o o Felkel: Computational geometry
DCGI -

e) More applications of line arrangement

Visibility graph
Given a set of n non-intersecting line segments,
compute the visibility graph, whose vertices are
the endpoints of the segments, and whose edges
are pairs of visible endpoints
(use angular sequences).

Maximum stabbing line
Given a set of n line segments in the plane,
compute the line that stabs (intersects) the
maximum number of these line segments.

- —:_ -t
S~ A o~ ——
—~ DCGI Felkel: Computational geometry
(33) :

More applications of line arrangement ’

Ham-Sandwich cut

Given two sets of points, n red and m blue points

compute a single line that simultaneously bisects
both sets

Principle — intersect middle levels of arrangements

Point at k-th level L, has
at most k lines above and
at most n — k — 1 lines below

M(A) H}am sandwich point

) Dual arrangement of A. Overlay of A and B's median levels

[Goswami] [Mount]
- level
> -~ -+ 4
—~ DCGI Felkel: Computational geometry _
(34) . G

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-Verlag,
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5,
Chapters 8., http://www.cs.uu.nl/geobook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for
Spring 2007, University of Maryland, Lectures 8,15,16,31, and 32.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[applet] Allen K. L. Miu: Duality Demo
http://nms.lcs.mit.edu/~aklmiu/6.838/dual/

[Goswami] Partha P. Goswami: Duality Transformation and its Application to
Computational Geometry, University of Calcutta, India
http://www.tcs.tifr.res.in/~igga/lectureslides/partha-lec-iisc-jul09.pdf

> S o~ =~) t
D C GI Felkel: Computational geometry

4 i { - 4 4 } b 4 4 -pe o — _:, _!_

(35) _ . o L _

