
DUALITY AND
APPLICATIONS OF ARRANGEMENTS

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount], and [Goswami]

Version from 5.2.2017

Felkel: Computational geometry

(2)

Talk overview

 Duality
1. Points and lines
2. Line segments
3. Polar duality (different points and lines)
4. Convex hull using duality

 Applications of duality and arrangements

Felkel: Computational geometry

(3)

1. Duality of lines and points in the plane

 Points and lines - both have 2 parameters:
– Points – coords x and y
– Lines – slope k and y-intercept q

y = kx + q

 We can simply map points and lines 1:1
 Many mappings exist – it depends on the context

φ
q k = tg φ

Felkel: Computational geometry

(4)

Why to use duality?

Some reasons why to use duality:
 Transforming a problem to dual plane may

give a new view on the problem
 Looking from a different angle may

give the insight needed to solve it
 Solution in dual space may be even simpler

Felkel: Computational geometry

(5)

Definition of duality transformation D

Let D be the duality transform:
 Point p = [px, py] is transformed

to line Dp = p* := (b = pxa – py)
 Line l : (y = ax – b) is transformed

to point Dl = l* := [a, b]

p
l

x

y

a

b

p*

l*

Primal plane (xy) Dual plane (ab)

variables

constants

Felkel: Computational geometry

(6)

Example and more about duality D

 Example:
line y = 5x – 3
can be represented as point y*=[5, 3]

 Duality D
– is its own inverse DDp = p, DDl = l
– cannot represent vertical lines

=>Take vertical lines as special cases, use lexico-
graphic order, or rotate the problem space slightly.

– Primal plane – plane with coordinates x, y
– Dual plane* – plane with coordinates a, b

See the [applet]

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [px, py]

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [px, py]

line p* := (b = pxa – py)

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [px, py]
line l := (y = ax + b)

line p* := (b = pxa – py)

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [px, py]
line l := (y = ax + b)

line p* := (b = pxa – py)
Point l* = [a, – b]

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [px, py]
line l := (y = ax + b)

line p* := (b = pxa – py)
Point l* = [a, – b]

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [px, py]
line l := (y = ax + b)
line l := (y = ax – b)

line p* := (b = pxa – py)
Point l* = [a, – b]

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [px, py]
line l := (y = ax + b)
line l := (y = ax – b)

line p* := (b = pxa – py)
Point l* = [a, – b]

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [px, py]
line l := (y = ax + b)
line l := (y = ax – b)

line p* := (b = pxa – py)
Point l* = [a, – b]
Point l* = [a, b]

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [px, py]
line l := (y = ax + b)
line l := (y = ax – b)

line p* := (b = pxa – py)
Point l* = [a, – b]
Point l* = [a, b]

Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [px, py]
line l := (y = ax + b)
line l := (y = ax – b)

line p* := (b = pxa – py)
Point l* = [a, – b]
Point l* = [a, b]

Same form => It is convenient to negate b in the
line equation

Felkel: Computational geometry

(8)

Why is b negated in the line equation?

 In primal plane, consider
– point p = [px, py] and
– set of non-vertical lines li :y = aix – bi

passing through p satisfy the equation py = aipx – bi
(each line with different constants ai,bi)

 In dual plane, these lines transform to collinear
points { li* = [ai,bi] : bi = pxai – py }

Same form =>
It is convenient to

negate b in the
line equation

p = [px, py]

l3*= [a3,b3]
a

by

x

l1

l2

l3: y=a3x – b3

If b not negated in the line equation…
Lines li have equartion li :y = aix – bi OR y = aix + bi

Passing through point p = [px, py] :

 With minus
– equation li: py = aipx – bi

dual points {li * = [ai,bi] : bi = pxai – py } … same form

 With plus
– equation li: py = aipx + bi

dual {li * = [ai,bi] : bi = – pxai + py } … different form

Felkel: Computational geometry

(9)

Felkel: Computational geometry

(10)

Properties of points and lines duality

Incidence is preserved
 Point p is incident to the line l in primal plane

iff
point l* is incident to the line p* in the dual plane.

 Lines l1, l2 intersects at point p
iff
line p* passes through points l1*, l2*.

Felkel: Computational geometry

(11)

Properties of points and lines duality

But order is reversed
 Point p lies above (below) line l in the primal plane

iff
line p* passes below (above) point l* in the dual
plane Or said order is preserved: … iff Point l* lies above (below) line p*

l*

p*

Felkel: Computational geometry

(12)

Properties of points and lines duality

Collinearity
 Points are collinear in the primal plane iff their

dual lines intersect in a common point

 This does not hold for points on vertical line

m*
p*

r*

q*p

r

q

m

a

b

x

y

Felkel: Computational geometry

(13)

 Dual transform is undefined for vertical lines
– Points with the same x coordinate dualize to lines with

the same slope (parallel lines) and therefore
– These dual lines do not intersect (as should for collinear points)

– Vertical line through these points does not dualize to an
intersection point

– For detection of vertically collinear points use other
method - O(n) vertical lines -> O(n2) brute force 3|| lines s.

-> O(n) after O(n log n)
sorting by x

Handling of vertical lines

p*
q*
r*

p
q

r Vertical distances of such duals
are “preserved”. For px = qx

vertDist(q*b, p*b) = py – qy

a

by

x

Felkel: Computational geometry

(14)

2. Duality of line segments

 Line segment s
= set of collinear points ––> set of lines passing one point
– union of these lines is a (left-right) double wedge s*

p

q

m

s

m*

q*

p*

s*

dual

left

right wedgetop

bottom wedges*

Dvojitý klín

Felkel: Computational geometry

(15)

 Line b intersects line segment s
– if point b* lays in the double wedge s*,

i.e., between the duals p*,q* of segment endpoints p,q
– point p lies above line b and q lies below line b
– point b* lies above line p* and b* lies below line q*

p

q

m

s

a

b

c
m*

q*

p*

s*

s*

b*

a*

c*

Intersection of line and line segment

Felkel: Computational geometry

(16)

3. Polar duality (Polarity)

 Another example of point-line duality
 In 2D: Point p = (px, py) in the primal plane

corresponds to a line Tp with equation ax + by = 1
in the dual plane and vice versa

 In dD: Point p is taken as a radius-vector (starts
in origin O). The dot product (p . x) = 1 defines a
polar hyperplane p* = Tp = { x Rd : (p . x) = 1 }

 Used in theory of polytopes

px x + py y = 1

Felkel: Computational geometry

(17)

Polar duality (Polarity)

 Geometrically in 2D, this means that
– if d is the distance from the origin(O) to the point p,

the dual Tp of p is the line perpendicular to Op at
distance 1/d from O and placed on the other side of O.

[Goswami]

p

1

d

Unit circle

1/d

Tp

Felkel: Computational geometry

(18)

4. Convex hull using duality – definitions

 An optimal algorithm
 Let P be the given set of n points in the plane.
 Let pa P be the point with smallest x-coordinate
 Let pd P be the point with largest x-coordinate

Both pa and pd CH(P)
Upper hull = CW polygonal chain

pa,…, pd along the hull
Lower hull = CCW polygonal chain

pa,…, pd along the hull

pa

pd

lower hull

upper hull

Felkel: Computational geometry

(19)

Definitions

 Let L be a set of lines in the
plane

 The upper envelope is a
polygonal chain Eu such that
no line l L is above Eu.

 The lower envelope is a
polygonal chain EL such that
no line l L is below EL.

[Goswami]

Felkel: Computational geometry

(20)

Connection between Hull and Envelope

ps

lc*

lb*

la*

ps*

ld*

le*

pd

pb

pc

Pa

pe

la

lb
lc

ld
le

ps

p*e

[Goswami]

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Felkel: Computational geometry

(21)

Connection between Hull and Envelope

Upper hull (lower hull) in primal
plane corresponds to the
lower envelope (upper envelope) in
the dual plane.

Thus the problem of computing convex hull of a
point set in the primal plane reduces to the problem
of computing upper and lower envelopes of the line
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L2
[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L2
[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L2
[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L2

L3

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L2

L3

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4
L5

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4
L5

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4
L5

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4
L5

L6

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4
L5

L6

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4

L6

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4

L6

[Goswami]

Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

// except of complete line L1
4. while(the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)

Felkel: Computational geometry

(22 / 38)

Upper envelope algorithm

L6

L5

L4

L3

L2
L1

L1

L3

L4

L6

[Goswami]

Konec animace

Felkel: Computational geometry

(23)

Convex hull via upper and lower envelope

 Upper envelope complexity
– After sorting n lines by their slopes in O(n logn) time,

the upper envelope can be obtained in O(n) time
– Proof: It may check more than one line segment when

inserting a new line, but those ones checked are all
removed except the last one.
(O(n) insertions, max O(n) removals
=> O(n) all steps. Average step O(1) amortized time)

 Convex hull complexity
– Given a set P of n points in the plane, CH(P) can be

computed in O(n log n) time using O(n) space.

Felkel: Computational geometry

(24)

Applications of line arrangement

Examples of applications – solved in O(n2) and
O(n2) space by constructing a line arrangement or
O(n) space through topological plain sweep.

a) General position test:
Given a set of n points in the plane, determine
whether any three are collinear.

– Construct an arrangement in dual plane
– Report intersections of more than 2 lines

a

b

Felkel: Computational geometry

(25)

b) Minimum k-corridor

 Given a set of n points, and an integer k [1 : n],
determine the narrowest pair of parallel lines that
enclose at least k points of the set.

 The distance between the lines can be defined
– either as the vertical distance between the lines
– or as the perpendicular distance between the lines

 Simplifications
– Assume k = 3 and no 3 points are collinear

=> narrowest corridor - contains exactly 3 points
- has width > 0

– No 2 points have the same x coordinate (avoid I duals)

vertical

Felkel: Computational geometry

(26)

b) Minimum k-corridor

 Vertical distance of la,lb = (-) distance of la*,lb*
 Nearest lines – one passes 2 vertices, e.g., p & r
 In dual plane are represented as intersection p* r*
 Find nearest 3-stabber similarly as trapezoidal map
 O(n2) time and O(n) space – topological line sweep

[Mount]

Felkel: Computational geometry

(26)

b) Minimum k-corridor

 Vertical distance of la,lb = (-) distance of la*,lb*
 Nearest lines – one passes 2 vertices, e.g., p & r
 In dual plane are represented as intersection p* r*
 Find nearest 3-stabber similarly as trapezoidal map
 O(n2) time and O(n) space – topological line sweep

[Mount]

Felkel: Computational geometry

(26)

b) Minimum k-corridor

 Vertical distance of la,lb = (-) distance of la*,lb*
 Nearest lines – one passes 2 vertices, e.g., p & r
 In dual plane are represented as intersection p* r*
 Find nearest 3-stabber similarly as trapezoidal map
 O(n2) time and O(n) space – topological line sweep

[Mount]

Felkel: Computational geometry

(27)

c) Minimum area triangle [Goswami]

 Given a set of n points in the plane, determine the
minimum area triangle whose vertices are selected
from these points

 Construct “trapezoids” as in the nearest corridor
 Minimize perpendicular distances (converted from

vertical) multiplied by the distance from pi to pj

[Goswami]

Felkel: Computational geometry

(28)

 Natural application of duality and arrangements
 Important for visibility graph computation
 Set of n points in the plane
 For each point perform an CCW angular sweep
 Naïve: for each point compute angles to

remaining n – 1 points and sort them
 => O(n log n) time per point
 O(n2 log n) time overall
 Arrangements can get rid of O(log n) factor

d) Sorting all angular sequences – naïve

Felkel: Computational geometry

(29)

d) Sorting all angular sequences – optimal

 For point pi
– Dual of point pi is line pi*
– Line pi* intersects other dual lines in order of slope

(angles from -90° to 90°) (180°)
– We need order of angles around pi

(angles from -90° to 270°) (360°)

– Split points in primal plane by vertical line through pi

– First, report intersections of points right of pi

– Second, report the intersections of points left of pi

– Once the arrangement is constructed:
O(n) time for point, O(n2) time for all n points

Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane

Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane

Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane

Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane

Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane

Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane

Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane

Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane

Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane
Point order around p9 : p1, p2, p3, p4, p5, p6, p7, p8

Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane

Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane

Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane

Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane

Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane

Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane

Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane

Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane

Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane
Point order around p3 : p2, p4, p5, p6, p7, p8, p3, p1

Felkel: Computational geometry

(32)

d) Angular sequences around p4

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane

Felkel: Computational geometry

(32)

d) Angular sequences around p4

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane
Point order around p4 : p2, p5, p6, p7, p8, p9, p3, p1

Felkel: Computational geometry

(33)

e) More applications of line arrangement

Visibility graph
Given a set of n non-intersecting line segments,
compute the visibility graph, whose vertices are
the endpoints of the segments, and whose edges
are pairs of visible endpoints
(use angular sequences).

Maximum stabbing line
Given a set of n line segments in the plane,
compute the line that stabs (intersects) the
maximum number of these line segments.

Felkel: Computational geometry

(34)

More applications of line arrangement

Ham-Sandwich cut
Given two sets of points, n red and m blue points
compute a single line that simultaneously bisects
both sets
Principle – intersect middle levels of arrangements

Point at k-th level Lk has
at most k lines above and
at most n – k – 1 lines below

level5

level4

level0 level1

level2
level3

[Mount][Goswami]

Felkel: Computational geometry

(35)

References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-Verlag,
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5,
Chapters 8., http://www.cs.uu.nl/geobook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for
Spring 2007, University of Maryland, Lectures 8,15,16,31, and 32.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[applet] Allen K. L. Miu: Duality Demo
http://nms.lcs.mit.edu/~aklmiu/6.838/dual/

[Goswami] Partha P. Goswami: Duality Transformation and its Application to
Computational Geometry, University of Calcutta, India
http://www.tcs.tifr.res.in/~igga/lectureslides/partha-lec-iisc-jul09.pdf

