

WINDOWING

PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 15.12.2016

Windowing queries - examples

+ + + + + + + + +

Windowing versus range queries

- Range queries (see range trees in Lecture 03)
 - Points
 - Often in higher dimensions
- Windowing queries
 - Line segments, curves, ...
 - Usually in low dimension (2D, 3D)
- The goal for both: Preprocess the data into a data structure

 so that the objects intersected by the query rectangle can be reported efficiently

+ + + + + + +

Windowing queries on line segments

Talk overview

1. Windowing of axis parallel line segments in 2D

- 3 variants of *interval tree* IT in x-direction
- Differ in storage of segment end points M_L and M_R
- i. Line stabbing (standard *IT* with sorted lists) lecture 9 intersections
- ii. Line segment stabbing (*IT* with *range trees*)
- iii. Line segment stabbing (IT with priority search trees)
- 2. Windowing of line segments in general position
 - segment tree

1. Windowing of axis parallel line segments

1. Windowing of axis parallel line segments

Window query

- Given
 - a set of orthogonal line segments S (preprocessed),
 - and orthogonal query rectangle $W = [x : x'] \times [y : y']$
- Count or report all the line segments of S that intersect W

Line segments with 1 or 2 points inside

- a) 1 point inside
 - Use a range tree (Lesson 3)
 - O(*n* log *n*) storage
 - $O(\log^2 n + k)$ query time or
 - O(log n + k) with fractional cascading

- b) 2 points inside as a) 1 point inside
 - Avoid reporting twice
 - 1. Mark segment when reported (clear after the query)
 - 2. When end point found, check the other end-point. Report only the leftmost or bottom endpoint

Line segments that cross over the window

c) No points inside

- Such segments not detected using end-point range tree
- Cross the boundary twice or contain one boundary edge
 - contain one boundary edge

- For left boundary: Report the segments intersecting vertical query *line segment* (1/ii.)
- Let's discuss vertical query line first (1/i.)
 - Bottom boundary is rotated 90°

Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - Line stabbing (standard *IT* with sorted lists)
 - ii. Line segment stabbing (*IT* with *range trees*)
 - iii. Line segment stabbing (*IT* with *priority search trees*)
- 2. Windowing of line segments in general position
 - segment tree

i. Segment intersected by vertical line – 1D

Interval tree principle

Static interval tree [Edelsbrunner80]

Primary structure – static tree for endpoints

Secondary lists – sorted segments in M

Interval tree construction

Merged procedures from in lecture 09

- PrimaryTree(S) on slide 33
- InsertInterval (*b*, *e*, *T*) on slide 35

ConstructIntervalTree(S) // Intervals all activ	e – no active lists
Input: Set S of intervals on the real line – on x-axis	
Output: The root of an interval tree for S	
1. if $(S == 0)$ return null	// no more intervals
2. else	
3. xMed = median endpoint of intervals in S	// median endpoint
4. L = { [xlo, xhi] in S xhi < xMed }	// left of median
5. R = { [xlo, xhi] in S xlo > xMed }	<pre>// right of median</pre>
6M = { [xlo, xhi] in S xlo <= xMed <= xhi }	// contains median
7. $(\longrightarrow ML = sort M in increasing order of xlo$	// sort M
8. \rightarrow MR = sort M in decreasing order of xhi	+ + + + + + + + + + +
9. t = new IntTreeNode(xMed, ML, MR)	// this node + + + + + +
10. t.left = ConstructIntervalTree(L)	// left subtree
11. t.right = ConstructIntervalTree(R)	// right subtree + + + +
12. return t	+ + + + + + + + + + +
*****	* * * * * * * * * * * * *
+ + + + + + + + + + + + + + + + + + +	+ + + [Mount] + + (C)
+ + + + + + + + + + + + + + + + + + + +	
+ + ' + DCGI + + + + + + + + + + + + + + + + + + +	

Line stabbing query for an interval tree

```
Less effective variant of QueryInterval (b, e, T)
Stab(t, xq)
                                                     on slide 34 in lecture 09
         IntTreeNode t, Scalar xq
Input:
                                                     with merged parts: fork and search right
Output: prints the intersected intervals
    if (t == null) return
                                                       // no leaf: fell out of the tree
    if (xq < t.xMed)
2.
                                                       // left of median?
       for (i = 0; i < t.ML.length; i++)
3.
                                                       // traverse ML
               if (t.ML[i].lo \le xq) print(t.ML[i])
4.
                                                       // ..report if in range
5.
               else break
                                                       // ..else done
6.
       stab(t.left, xq)
                                                       // recurse on left
    else // (xq \geq t.xMed)
                                                       // right of or equal to median
7.
       for (i = 0; i < t.MR.length; i++) {
8.
                                                       // traverse MR + + +
               if (t.MR[i].hi \ge xq) print(t.MR[i]) // ..report if in range
9.
                                                      // ..else done
10.
               else break
       stab(t.right, xq)
                                                      // recurse on right
11.
    Note: Small inefficiency for xq == t.xMed – recurse on right
                                                                      [Mount]
                                       + + + + +
```

Complexity of line stabbing via interval tree

- Construction $O(n \log n)$ time
 - Each step divides at maximum into two halves or less (minus elements of M) => tree of height $h = O(\log n)$
 - If presorted endpoints in three lists L,R, and M then median in O(1) and copy to new L,R,M in O(n)]
- Vertical line stabbing query $O(k + \log n)$ time
 - One node processed in O(1 + k'), k'reported intervals
 - v visited nodes in O(v + k), k total reported intervals
 - $v = h = \text{tree height} = O(\log n)$ $k = \Sigma k'$
- Storage O(n)

 Tree has O(n) nodes, each segment stored twice
 Image: A store and points)
 Image: DCGI
 (18/59)

Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - i. Line stabbing (standard *IT* with sorted lists)

ii. Line segment stabbing (*IT* with *range trees*)

- iii. Line segment stabbing (*IT* with *priority search trees*)
- 2. Windowing of line segments in general position

segment tree

Line segment stabbing (*IT* with *range trees*)

Enhance 1D interval trees to 2D

- Change 1D test $q_x \in \langle x, x' \rangle$ done by interval tree with sorted lists M_L and M_R into 2D test $q_x \in (-\infty : q_x]$
- $\begin{array}{ll} \text{ and change lines} & q_x \times [-\infty : \infty] & (\text{no y-test}) \\ \text{ to segments} & q_x \times [q_y : q'_y] & (\text{additional y-test}) \end{array}$

i. Segment intersected by vertical line - 2D Query line $l \coloneqq q_x \times [-\infty : \infty]$ Horizontal segment of *M* stabs the query line *l* iff its left endpoint lies in halph-space $q \coloneqq (-\infty : q_{\chi}] \times [-\infty : \infty]$ In IT node with stored median xMid report all segments from M $- M_1$: whose left point lies in $(-\infty : q_x]$ if ℓ lies left from xMid M_{R} : whose right point lies in $[q_{\chi}:+\infty)$ Inspired by [Berg] if *l* lies right from xMid

Data structure for endpoints

- Storage of M_L and M_R
 - 1D Sorted lists not enough for line segments
 - Use two 2D range trees
- Instead O(n) sequential search in M_L and M_R perform O(log n) search in range tree with fractional cascading

2D range tree (without fractional cascading-more in Lecture 3)

Complexity of line segment stabbing

- Construction O(n log n) time
 - Each step divides at maximum into two halves L,R
 or less (minus elements of M) => tree height O(log n)
 - If the range trees are efficiently build in O(n) after points sorted
- Vertical line segment stab. q. $O(k + \log^2 n)$ time ^{2D range tree search with Fractional Cascading}
 - One node processed in O(log n + k'), k'=reported inter.
 - v-visited nodes in O($\gamma \log n + k$), k=total reported inter.
 - -v = interval tree height = O(log n)
 - $-O(k + \log^2 n)$ time range tree with fractional cascading
 - $-O(k + \log^3 n)$ time range tree without fractional casc.

Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - i. Line stabbing (standard *IT* with sorted lists)
 - ii. Line segment stabbing (*IT* with *range trees*)

iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

- segment tree

- Priority search trees in case c) on slide 9
 - Exploit the fact that query rectangle in range queries is unbounded (in x direction)
 - Can be used as secondary data structures for both left and right endpoints (ML and MR) of segments in nodes of interval tree – one for ML, one for MR
 - Improve the storage to O(n) for horizontal segment intersection with window edge (Range tree has O(n log n))
- For cases a) and b) O(n log n) remains

we need range trees for windowing segment endpoints

Rectangular range queries variants

- Let $P = \{ p_1, p_2, \dots, p_n \}$ is set of points in plane
- Goal: rectangular range queries of the form $(-\infty : q_x] \times [q_y; q'_y]$
- In 1D: search for nodes v with $v_x \in (-\infty; q_x]$
 - range tree $O(\log n + k)$ time
 - ordered listO(1 + k) time
(start in the leftmost, stop on v with $v_x > q_x$)- use heapO(1 + k) time !

(traverse all children, stop when $v_x > q_x$)

■ In 2D – use heap for points with $x \in (-\infty : q_x]$ + integrate information about y-coordinate $\neq \neq \neq \neq +$ DCGI

Heap for 1D unbounded range queries

- Traverse all children, stop when $v_x > q_x$
- Example: Query (–∞:10]

Principle of priority search tree

Heap

- relation between parent and its child nodes
- no relation between the child nodes themselves
- Priority search tree
 - relate the child nodes according to y

Priority search tree (PST)

- Heap in 2D can incorporate info about both x, y
 - BST on y-coordinate (horizontal slabs) ~ range tree
 - Heap on x-coordinate (minimum x from slab along x)
- If P is empty, PST is empty leaf
- else

Priority search tree construction example

Priority search tree construction

```
PrioritySearchTree(P)
Input: set P of points in plane
Output: priority search tree T
1. if P=\phi then PST is an empty leaf
2.
    else
3.
              = point with smallest x-coordinate in P
                                                        // heap on x root
       p<sub>min</sub>
              = y-coord. median of points P \setminus \{p_{min}\}
                                                         // BST on y root
4.
       Y<sub>med</sub>
       Split points P \setminus \{p_{min}\} into two subsets – according to y_{med}
5.
6.
              P_{below} := \{ p \in P \setminus \{p_{min}\} : p_v \leq y_{med} \}
7.
              P_{above} := \{ p \in P \setminus \{p_{min}\} : p_v > y_{med} \}
                                                         Notation in alg:
       T = \text{newTreeNode}()
8.
                                                      ... p(v)
       T.p = p_{min} // point [ x, y ]
9.
10.
    T.y = y_{mid} // skalar
                                11.T.left = PrioritySearchTree(P_{below})\dots Ic(v)12.T.rigft = PrioritySearchTree(P_{above})\dots rc(v)
13. O(n \log n), but O(n) if presorted on y-coordinate and bottom up
```

Query Priority Search Tree

QueryPrioritySearchTree($T, (-\infty : q_x] \times [q_v; q'_v]$) A priority search tree and a range, unbounded to the left Input: Output: All points lying in the range

- 1. Search with q_y and q'_y in T // BST on y-coordinate select y range Let v_{split} be the node where the two search paths split (split node)
- 2. for each node v on the search path of q_v or q'_v // points along the paths
- if $p(v) \in (-\infty; q_x] \times [q_v; q'_v]$ then report p(v) // starting in tree root 3.
- for each node v on the path of q_v in the left subtree of v_{split} // inner trees 4.

* + + + + + + +

+ + + + + + + + +

- if the search path goes left at v 5.
- ReportInSubtree($rc(v), q_x$) // report right subtree 6.
- for each node v on the path of q'_v in right subtree of v_{split} 7.
- if the search path goes right at v 8. 9.
 - ReportInSubtree($lc(v), q_x$) // rep. left subtree

Reporting of subtrees between the paths

ReportInSubtree(v, q_x)

Input: The root *v* of a subtree of a priority search tree and a value q_x . *Output:* All points in the subtree with *x*-coordinate at most q_x .

* + + * * + + + * + + *

- 1. if v is not a leaf and $x(p(v)) \le q_x$
- 2. Report p(v).
- 3. ReportInSubtree($lc(v), q_x$)
- 4. ReportInSubtree($rc(v), q_x$)

 $// X \in (-\infty; q_x]$ -- heap condition

Priority search tree query

Priority search tree complexity

For set of *n* points in the plane

- Build O(n log n)
- Storage O(n)
- Query $O(k + \log n)$
 - points in query range $(-\infty : q_x] \times [q_y; q'_y])$
 - k is number of reported points

 Use Priority search tree as associated data structure for interval trees for storage of M (one for M_L, one for M_R)

+ + + + + + + + + +

+ + + + + + + + +

Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - i. Line stabbing (standard *IT* with sorted lists)
 - ii. Line segment stabbing (*IT* with *range trees*)
 - iii. Line segment stabbing (*IT* with *priority search trees*)

| | | | Se | ЭG | m | <i>le</i> | nt | t t | re | е | | | | | | | | | | | | | | | | | | | | | | | | | | |
|-----|----------------|----------|----|----|----|-----------|----|-----|----|---|---|---|---|---|---|---|---|-----|------|---|---|---|---|---|---------------|---|---|---|----|---|---|------|---|----|---------------|---|
| | | | | Ŭ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | + | + |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ÷ | + | | ÷ | + | +- | + | + |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ť | ÷ | ÷ | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | | | | | | | | | | | ÷ | + | Ŧ | + | t | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | | | | | | | | ÷ | | | + | $\frac{1}{2}$ | + | + | ÷ | (+ | + | + | + | + | + | ÷ | + |
| | | | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | | | | | ÷ | | ÷ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| | | | | | | | | | | + | ÷ | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| + + | - - | <i>‡</i> | 4 | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | R | | Ŋ | R | + |
| + + | + · | + | | | + | + | ÷ | ÷ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | K | \mathcal{Q} | + |
| + + | - | | | | 31 | + | + | Ŧ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | // ` | R | | 5 | + |
| + + | ÷ + | + | + | + | + | + | + | Ŧ | ÷ | + | + | + | + | + | ÷ | + | + | (38 | / 59 |) | + | + | ÷ | + | + | + | + | + | + | + | + | + | + | + | + | + |

2. Windowing of line segments in general position

Windowing of arbitrary oriented line segments

- Two cases of intersection
 - a,b) Endpoint inside the query window => range tree
 - c) Segment intersects side of query window => ???
- Intersection with BBOX (segment bounding box)?
 - Intersection with 4n sides
 - But segments may not intersect the window -> query y

Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - i. Line stabbing (*IT* with sorted lists)
 - ii. Line segment stabbing (*IT* with *range trees*)
 - iii. Line segment stabbing (*IT* with *priority search trees*)
- 2. Windowing of line segments in general position

– segment tree

Exploits locus approach

- Partition parameter space into regions of same answer
- Localization of such region = knowing the answer
- For given set S of *n* intervals (segments) on real line
 - Finds *m* elementary intervals (induced by interval end-points)

+ + + + + + + + + +

- Stores intervals s_i with the elementary intervals
- Reports the intervals s_i containing query point q_x .

Segment tree example

Intervals

Segment tree definition

Segment tree

- Skeleton is a balanced binary tree T
- Leaves ~ elementary intervals Int(v)
- Internal nodes v
 - ~ union of elementary intervals of its children
 - Store: 1. interval Int(v) = union of elementary intervals
 - of its children segments s_i
 - 2. canonical set S(v) of intervals $[x : x'] \in S$
 - Holds $Int(v) \subseteq [x : x']$ and $Int(parent(v)] \not\subseteq [x : x']$ (node interval is not larger than the segment)
 - Intervals [x : x'] are stored as high as possible, such that

+ + + + + + +

Int(v) is completely contained in the segment

Segments span the slab

Query segment tree – stabbing query

QuerySegmentTree(v, q_x) Input: The root of a (subtree of a) segment tree and a query point q_x

Output: All intervals in the tree containing q_x .

Segment tree construction

ConstructSegmentTree(*S*) Input: Set of intervals *S* - segments Output: segment tree

- Sort endpoints of segments in S -> get elemetary intervals ...O(n log n)
- 2. Construct a binary search tree *T* on elementary intervals $\dots O(n)$ (bottom up) and determine the interval Int(v) it represents
- 3. Compute the canonical subsets for the nodes (lists of their segments):
- 4. v = root(T)5. for all segments $s_i = [x : x'] \in S$ 6. InsertSegmentTree(v, [x : x']) 6. v = root(T)

+ + + + + + + + + + +

+ + + + + + + +

Segment tree construction – interval insertion

```
InsertSegmentTree(v, [x : x'])
Input:
        The root of (a subtree of) a segment tree and an interval.
Output: The interval will be stored in the subtree.
    if Int(v) \subseteq [x : x']
                                          // Int(v) contains s_i = [x : x']
       store [ x : x' ] at v
2
    else if Int(lc(v)) \cap [x : x'] \neq \phi
3.
           InsertSegmentTree(lc(v), [x : x'])
4.
         if Int(rc(v)) \cap [x : x'] \neq \phi
5.
           InsertSegmentTree(rc(v), [x : x'])
6.
One interval is stored at most twice in one level =>
    Single interval insert O(\log n), insert n intervals O(2n \log n)
    Construction total O(n \log n)
Storage O(n \log n)
    Tree height O(\log n), name stored max 2x in one level
    Storage total O(n \log n) – see next slide
                 + + + + + + + + + + +
```

Space complexity - notes

Segment tree complexity

A segment tree for set *S* of *n* intervals in the plane,

- Build O(n log n)
- Storage O(n log n)
- Query $O(k + \log n)$
 - Report all intervals that contain a query point
 - k is number of reported intervals

Segment tree versus Interval tree

Segment tree

- $O(n \log n)$ storage x O(n) of Interval tree
- But returns exactly the intersected segments s_i, interval tree must search the lists ML and/or MR

Good for

- 1. extensions (allows different structuring of intervals)
- 2. stabbing counting queries
 - store number of intersected intervals in nodes
 - -O(n) storage and $O(\log n)$ query time = optimal
- 3. higher dimensions multilevel segment trees

(Interval and priority search trees do not exist in ^dims)

+ + + + + + + + +

Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - i. Line stabbing (standard *IT* with sorted lists)
 - ii. Line segment stabbing (*IT* with *range trees*)
 - iii. Line segment stabbing (*IT* with *priority search trees*)
- 2. Windowing of line segments in general position
 - segment tree

2. Windowing of line segments in general position

Windowing of arbitrary oriented line segments

- Let S be a set of arbitrarily oriented line segments in the plane.
- Report the segments intersecting a vertical query segment q := q_x × [q_y : q'_y]
- Segment tree T on x intervals of segments in S
 - node v of T corresponds to vertical slab $Int(v) \times (-\infty : \infty)$
 - segments span the slab of the node, but not of its parent
 - segments do not intersect
 - => segments in the slab (node) can be vertically ordered BST

[Bera]

Segments between vertical segment endpoints

- Segments (in the slab) do not mutually intersect
 - => segments can be vertically ordered and stored in BST
 - Each node v of the x segment tree has an associated y BST
 - BST T(v) of node v stores the canonical subset S(v) according to the vertical order
 - Intersected segments can be found by searching T(v) in O(k_v + log n), k_v is the number of intersected segments

+ + + + + + +

+ + + + + +

Segments between vertical segment endpoints

- Segment s is intersected by vert.query segment q iff
 - The lower endpoint (B) of q is below s and
 - The upper endpoint (A) of q is above s

Windowing of arbitrary oriented line segments complexity

Structure associated to node (BST) uses storage linear in the size of S(v)

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O(k + \log^2 n)$
 - Report all segments that contain a query point
 - k is number of reported segments

Windowing of line segments in 2D – conclusions

Construction: all variants O(n logn)

- 1. Axis parallelSearchMemoryi. Line (sorted lists) $O(k + \log n)$ O(n)
 - ii. Segment (*range trees*) $O(k + \log^2 n) O(n \log n)$

```
iii. Segment (priority s. tr.) O(k + \log n) O(n)

2. In general position

- segment tree O(k + \log^2 n) O(n \log n)

f = \int_{-\infty}^{+\infty} DCGI
```

References

| [Berg] | Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmar | | | | | | | | | | |
|--------|---|--|--|--|--|--|--|--|--|--|--|
| | Computational Geometry: Algorithms and Applications, Springer- | | | | | | | | | | |
| | Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540- | | | | | | | | | | |
| | 77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/ | | | | | | | | | | |

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14, and 30.

http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Rourke] Joseph O'Rourke: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 <u>http://maven.smith.edu/~orourke/books/compgeom.html</u>

- [Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html
- [Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester 2009 <u>http://wwwisg.cs.uni-</u> magdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

