

WINDOWING

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 15.12.2016

Windowing queries - examples

Windowing versus range queries

- Range queries (see range trees in Lecture 03)
- Points
- Often in higher dimensions
- Windowing queries
- Line segments, curves, ...
- Usually in low dimension (2D, 3D)
- The goal for both:

Preprocess the data into a data structure

- so that the objects intersected by the query rectangle can be reported efficiently

DCGI
(3/59)

Windowing queries on line segments

1. Axis parallel line segments

2. Arbitrary line segments (non-crôssing)

Talk overview

1. Windowing of axis parallel line segments in 2D

- 3 variants of interval tree - IT in x-direction
- Differ in storage of segment end points M_{L} and M_{R}
i. Line stabbing (standard $I T$ with sorted lists) lecture 9 - ineresections
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position

- segment tree

1. Windowing of axis parallel line segments

(6/59)

1. Windowing of axis parallel line segments

Window query

- Given

- a set of orthogonal line segments S (preprocessed),
- and orthogonal query rectangle $W=\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$
- Count or report all the line segments of S that intersect W
- Such segments have
a) 1 endpoint in
b) 2 end points in - Included
c) no end point in - Cross over

Line segments with 1 or 2 points inside

a) 1 point inside

- Use a range tree (Lesson 3)
- $\mathrm{O}(n \log n)$ storage
- $\mathrm{O}\left(\log ^{2} n+k\right)$ query time or
- $\mathrm{O}(\log n+k)$ with fractional cascading

b) 2 points inside - as a) 1 point inside
- Avoid reporting twice

1. Mark segment when reported (clear after the query)
2. When end point found, check the other end-point. Report only the leftmost or bottom endpoint

Line segments that cross over the window

c) No points inside

- Such segments not detected using end-point range tree
- Cross the boundary twice or contain one boundary edge
- It is enough to
 detect segments intersected by the left and bottom boundary edges (not having end point inside)
- For left boundary: Report the segments intersecting vertical query line segment (1/ii.)
- Let's discuss vertical query'line first (1/i.)
- Bottom boundary is rotated 90°

DCGI

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
i. Line stabbing (standard IT with sorted lists)
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

- segment tree

i. Segment intersected by vertical line - 1D

- Query line $\ell:=\left(x=q_{x}\right)$

Report the segments stabbed by a vertical line
= 1 dimensional problem (ignore y coordinate)

\Rightarrow Report the interval containing query point q_{x}

DS: Interval tree with sorted lists

Interval tree principle

Static interval tree [Edelsbrunner80]

Tree over sorted segment end-points

Primary structure - static tree for endpoints

Secondary lists - sorted segments in M

Interval tree construction

ConstructIntervalTree(S) I/ Intervals all active - no active lists Input: \quad Set S of intervals on the real line - on x-axis
Output: The root of an interval tree for S

1. if $(|S|==0)$ return null // no more intervals
2. else
3. $\quad x M e d=$ median endpoint of intervals in $S \quad / /$ median endpoint
4. $L=\{[x \mid 0, x h i]$ in $S \mid x h i<x M e d\} \quad / /$ left of median
5. $R=\{[x l o, x h i]$ in $S|x| 0>x M e d\} \quad / /$ right of median
6. $\mathrm{M}=\{[$ xlo, xhi] in $\mathrm{S} \mid \mathrm{xlo}<=x \mathrm{Med}<=\mathrm{xhi}\} \quad / /$ contains median
7. $\longrightarrow \mathrm{ML}=$ sort M in increasing order of xlo
// sort M
MR = sort M in decreasing order of xhi
8. $\mathrm{t}=$ new IntTreeNode(xMed, ML, MR) // this node
9. t.left $=$ ConstructIntervalTree(L) // left subtree
10. \quad t.right $=$ ConstructIntervalTree(R) $++_{+}++_{+}$// right subtree
11. return t

Line stabbing query for an interval tree

Stab(t, xq)
Input: IntTreeNode t, Scalar xq
Output: prints the intersected intervals

1. if $(t==$ null $)$ return
2. if $(x q<t . x M e d)$
3. for $(i=0 ; i<t . M L . l e n g t h ; ~ i++)$
4. if (t.ML[i].Io $\leq x q) \operatorname{print}(t . M L[i])$
5. else break
6. stab(t.left, xq)
7. else // (xq $\geq \mathrm{t} . \mathrm{xMed})$
8.
9. if (t.MR[i].hi $\geq x q)$ print(t.MR[i])
10.
11. stab(t.right, xq)

Less effective variant of QueryInterval (b, e, T) on slide 34 in lecture 09 with merged parts: fork and search right
// no leaf: fell out of the tree
// left of median?
// traverse ML
// ..report if in range
// ..else done
// recurse on left
// right of or equal to median
// traverse MR
// ..report if in range
// ..else done
// recurse on right

Note: Small inefficiency for $\mathrm{xq}==\mathrm{t} . \mathrm{xMed}-$ recurse on right

Complexity of line stabbing via interval tree

- Construction $-O(n \log n)$ time
- Each step divides at maximum into two halves or less (minus elements of M) $=>$ tree of height $h=O(\log n)$
- If presorted endpoints in three lists L,R, and M then median in $\mathrm{O}(1)$ and copy to new $\mathrm{L}, \mathrm{R}, \mathrm{M}$ in $\mathrm{O}(n)$]
- Vertical line stabbing query $-O(k+\log n)$ time
- One node processed in $O\left(1+k^{\prime}\right)$, k^{\prime} reported intervals
- v visited nodes in $O(v+k), \quad k$ total reported intervals
$-v=h=$ tree height $=O(\log n) k=\Sigma k^{\prime}$
- Storage - $O(n)$
- Tree has $O(n)$ nodes, each segment stored twice (two endpoints)

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
i. Line stabbing (standard IT with sorted lists)
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

- segment tree

Line segment stabbing (IT with range trees)

Enhance 1D interval trees to 2D

- Change 1D test $q_{x} \in\left\langle x, x^{\prime}\right\rangle$ done by interval tree with sorted lists M_{L} and M_{R} into 2D test $\quad q_{x} \in\left(-\infty: q_{x}\right]$
- and change lines to segments
$q_{x} \times[-\infty: \infty]$ (no y-test)
$q_{x} \times\left[q_{y}: q_{y}^{\prime}\right] \quad$ (additional y-test)

i. Segment intersected by vertical line - 2D

- Query line $\ell:=q_{x} \times[-\infty: \infty]$
- Horizontal segment of M stabs the query line ℓ iff its left endpoint lies in
halph-space

$$
q:=\left(-\infty: q_{x}\right] \times[-\infty: \infty]
$$

- In IT node with stored median xMid report all segments from M
- M_{L} : whose left point lies in
$\left(-\infty: q_{x}\right]$
if ℓ lies left from xMid
- M_{R} : whose right point lies in $\left[q_{x}:+\infty\right)$

ight from xMid

ii. Segment intersected by vertical line segment

- Query segment $q:=q_{x} \times\left[q_{y}: q_{y}^{\prime}\right]$
- Horizontal segment of $M_{\llcorner }$stabs the query segment q iff its left endpoint lies in semi-infinite rectangular region

$$
q:=\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]
$$

- In IT node with stored median xMid report all segments
- M_{L} : whose left points lie in
$\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$ where q_{x} lies left from xMid
- M_{R} : whose right point lies in $\left[q_{x}:+\infty\right) \times\left[q_{y}: q_{y}^{\prime}\right]$

[^0]

Data structure for endpoints

- Storage of M_{L} and M_{R}
- 1D Sorted lists not enough for line segments
- Use two 2D range trees
- Instead $O(n)$ sequential search in M_{L} and M_{R} perform O(log n) search
in range tree with fractional cascading
(23/59)

2D range tree (without fractional cascading-more in Lecture 3)

Complexity of line segment stabbing

- Construction - O($n \log n$) time
- Each step divides at maximum into two halves L,R or less (minus elements of M$)=>$ tree height $\mathrm{O}(\log n)$
- If the range trees are efficiently build in $\mathrm{O}(n)_{\text {ater points sorted }}$
- Vertical line segment stab. q. - $O\left(k+\log ^{2} n\right)$ time
- One node processed in $\mathrm{O}\left(\log n+\mathrm{k}^{\prime}\right)$, $\mathrm{k}^{\prime}=$ reported inter.
- v-visited nodes in $\mathrm{O}(\gamma \log n+\mathrm{k})$, $\mathrm{k}=$ total reported inter.
$-v=$ interval tree height $=\mathrm{O}(\log n)$
$-\mathrm{O}\left(k+\log ^{2} n\right)$ time - range tree with fractional cascading
$-\mathrm{O}\left(k+\log ^{3} n\right)$ time - range tree without fractional casc.
- Storage - O(n log n)
\neq Dominated by the range trees
DCGI

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
i. Line stabbing (standard IT with sorted lists)
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

- segment tree

iii. Priority search trees

- Priority search trees - in case c) on slide 9
- Exploit the fact that query rectangle in range queries is unbounded (in x direction)
- Can be used as secondary data structures for both left and right endpoints (ML and MR) of segments in nodes of interval tree - one for ML, one for MR
- Improve the storage to $O(n)$ for horizontal segment intersection with window edge (Range tree has $O(n \log n)$)
- For cases a) and b) - O($n \log n$) remains
- we need range trees for windowing segment endpoints
(27 / 59)

Rectangular range queries variants

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is set of points in plane
- Goal: rectangular range queries of the form $\left(-\infty: q_{x}\right] \times\left[q_{y} ; q_{y}^{\prime}\right]$
- In 1D: search for nodes v with $v_{x} \in\left(-\infty: q_{x}\right]$
- range tree $\quad \mathrm{O}(\log n+k)$ time
- ordered list $\mathrm{O}(1+k)$ time (start in the leftmost, stop on v with $v_{x}>q_{x}$)
- use heap $\mathrm{O}(1+k)$ time !
(traverse all children, stop when $v_{x}>q_{x}$)
- In 2D - use heap for points with $x \in\left(-\infty: q_{x}\right]$
+ integrate information about y-coordinate

Heap for 1D unbounded range queries

- Traverse all children, stop when $v_{x}>q_{x}$
- Example: Query ($-\infty$:10]

Principle of priority search tree

- Heap

- relation between parent and its child nodes
- no relation between the child nodes themselves
- Priority search tree
- relate the child nodes according to y

Priority search tree (PST)

- Heap in 2D can incorporate info about both x, y
- BST on y-coordinate (horizontal slabs) ~ range tree
- Heap on x-coordinate (minimum x from slab along x)
- If P is empty, PST is empty leaf
- else

$$
\begin{array}{ll}
- & p_{\text {min }} \quad=\text { point with smallest x-coordinate in } P \text {--- a heap root } \\
- & y_{\text {med }} \quad=y \text {-coord. median of points } P \backslash\left\{p_{\text {min }}\right\} \quad \text {--- BST root } \\
- & P_{\text {below }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y} \leq y_{\text {med }}\right\} \\
- & P_{\text {above }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y}>y_{\text {med }}\right\}
\end{array}
$$

- Point $p_{\text {min }}$ and scalar $y_{\text {med }}$ are stored in the PST root
- The left subtree is PST of $P_{\text {below }}$
- The right subtree is PST of $P_{\text {above }}$

Priority search tree construction example

Priority search tree construction

PrioritySearchTree(P)

Input: set P of points in plane
Output: priority search tree T

1. if $P=\varnothing$ then PST is an empty leaf
2. else
3. $\quad p_{\min }=$ point with smallest x-coordinate in $P \quad / /$ heap on x root
4. $\quad y_{\text {med }}=y$-coord. median of points $P \backslash\left\{p_{\min }\right\} \quad / /$ BST on y root
5. Split points $P \backslash\left\{p_{\text {min }}\right\}$ into two subsets - according to $y_{\text {med }}$
6. $\quad P_{\text {below }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y} \leq y_{\text {med }}\right\}$
7. $\quad P_{\text {above }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y}>y_{\text {med }}\right\}$
8. $\quad T=$ newTreeNode()
9. T. $p=p_{\min } \quad / /$ point $[x, y]$

Notation in alg:
10. T. $y=y_{\text {mid }} \quad / /$ skalar
... $p(v)$
11. T.left $=$ PrioritySearchTree $\left(P_{\text {below }}\right) \quad \ldots . . \operatorname{lc}(\mathrm{v})$
12. \quad T.rigft $=$ PrioritySearchTree $\left(P_{\text {above }}\right) \quad+\ldots \mathrm{tc}(\mathrm{v})$
13. $\mathrm{O}(n \log n)$, but $\mathrm{O}(n)$ if presorted on y-coordinate and bottom up

Query Priority Search Tree

QueryPrioritySearchTree($\left.T,\left(-\infty: q_{x}\right] \times\left[q_{y} ; q_{y}^{\prime}\right]\right)$
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search with q_{y} and q_{y}^{\prime} in $T \quad / /$ BST on y-coordinate - select y range Let $v_{\text {split }}$ be the node where the two search paths split (split node)
2. for each node v on the search path of q_{y} or $q_{y}^{\prime} / /$ points along the paths
3. if $p(v) \in\left(-\infty: q_{x}\right] \times\left[q_{y} ; q_{y}^{\prime}\right]$ then report $p(v) / /$ starting in tree root
4. for each node v on the path of q_{y} in the left subtree of $v_{\text {split }} / /$ inner trees
5. if the search path goes left at v
6. ReportInSubtree($\left.r c(v), q_{x}\right) \quad / /$ report right subtree
7. for each node v on the path of q_{y}^{\prime} in right subtree of $v_{\text {split }}$
8. if the search path goes right at v
9. ReportInSubtree($\left.\operatorname{Ic}(v), q_{x}\right)$ // rep. left subtree

Reporting of subtrees between the paths

ReportInSubtree(v, q_{x})

Input: The root v of a subtree of a priority search tree and a value q_{x}.
Output: All points in the subtree with x-coordinate at most q_{x}.

1. if v is not a leaf and $x(p(v)) \leq q_{x} \quad / / x \in\left(-\infty: q_{x}\right] \quad-$ heap condition
2. Report $p(v)$.
3. ReportInSubtree(Ic(v), q_{x})
4. ReportInSubtree($\left.r c(v), q_{x}\right)$

Priority search tree query

Priority search tree complexity

For set of n points in the plane

- Build $O(n \log n)$
- Storage O(n)
- Query $O(k+\log n)$
- points in query range $\left.\left(-\infty: q_{x}\right] \times\left[q_{y} ; q_{y}^{\prime}\right]\right)$
$-k$ is number of reported points
- Use Priority search tree as associated data structure for interval trees for storage of M (one for M_{L}, one for M_{R})

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
i. Line stabbing (standard IT with sorted lists)
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

- segment tree

DCGI

2. Windowing of line segments in general position

(39/59)

Windowing of arbitrary oriented line segments

- Two cases of intersection
a,b) Endpoint inside the query window $\quad=>$ range tree
c) Segment intersects side of query window $=>$???
- Intersection with BBOX (segment bounding box)?
- Intersection with 4n sides
- But segments may not intersect the window -> query y

(40 / 59)

Talk overview

1. Windowing of axis parallel line segments in 2D (variants of interval tree - IT)
i. Line stabbing
(IT with sorted lists)
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

- segment tree

Segment tree

- Exploits locus approach
- Partition parameter space into regions of same answer
- Localization of such region = knowing the answer
- For given set S of n intervals (segments) on real line
- Finds m elementary intervals (induced by interval end-points)
- Partitions 1D parameter space into these elementary
 $\left(-\infty: p_{1}\right),\left[p_{1}: p_{1}\right],\left(p_{1}: p_{2}\right),\left[p_{2}: p_{2}\right], \ldots$,

$$
\left(p_{m-1}: p_{m}\right),\left[p_{m}: p_{m}\right],\left(p_{m}:+\infty\right)
$$

- Stores intervals s_{i} with the elementary intervals
- Reports the intervals s_{i} containing query point q_{x}.
(42 / 59)

Segment tree example

Intervals

$$
\begin{aligned}
& S=\left\{\left[x_{1}: x_{1}^{\prime}\right],\left[x_{2}: x_{2}{ }^{\prime}\right], \ldots,\left[x_{n}: x_{n}^{\prime}\right]\right\} \\
& s_{i}=\left[x_{i}: x_{i}^{\prime}\right]
\end{aligned}
$$

Elementary Intervals

Segment tree definition

Segment tree

- Skeleton is a balanced binary tree T
- Leaves ~ elementary intervals $\operatorname{Int}(\mathrm{v})$
- Internal nodes v
~ union of elementary intervals of its children
- Store: 1. interval $\operatorname{Int}(\mathrm{v})=$ union of elementary intervals of its children segments s_{i}

2. canonical set $S(v)$ of intervals $[x: x] \in S$

- Holds $\operatorname{Int}(v) \subseteq[x: x]$ and $\operatorname{Int}($ parent $(v)] \nsubseteq[x: x]$ (node interval is not larger than the segment)
- Intervals $[x: x]$ are stored as high as possible, such that $\operatorname{Int}(v)$ is completely contained in the segment

Segments span the slab

Segments span the slab of the node, but not of its parent
(stored as up as possible)

$$
S\left(v_{2}\right)=\left\{s_{1}, s_{2}\right\}
$$

$$
\operatorname{lnt}\left(v_{j}\right) \subseteq s_{i}
$$ and

$\operatorname{lnt}\left(\right.$ parent $\left.\left(v_{j}\right)\right] \nsubseteq s_{i}$

Query segment tree - stabbing query

QuerySegmentTree(v, q_{x})
Input: The root of a (subtree of a) segment tree and a query point q_{x} Output: All intervals in the tree containing q_{x}.

1. Report all the intervals s_{i} in $S(v)$. // current node
2. if v is not a leaf
3. if $q_{x} \in \operatorname{Int}(\operatorname{lc}(v)) \quad / /$ go left
4. QuerySegmentTree(Ic(v), q_{x})
5. else $/ /$ or go right
6. QuerySegmentTree($\left.r c(v), q_{x}\right)$

Query time $\mathrm{O}(\log n+k)$, where k is the number of reported intervals $\mathrm{O}\left(1+k_{v}\right)$ for one node Height $\mathrm{O}(\log n)$

Segment tree construction

ConstructSegmentTree(S)
Input: Set of intervals S - segments
Output: segment tree

1. Sort endpoints of segments in S-> get elemetary intervals ... O (n log n)
2. Construct a binary search tree T on elementary intervals $\ldots \mathrm{O}(n)$ (bottom up) and determine the interval $\operatorname{Int}(v)$ it represents
3. Compute the canonical subsets for the nodes (lists of their segments):
4. $\quad v=\operatorname{root}(T)$
5. for all segments $s_{i}=\left[x: x^{\prime}\right] \in S$
6. InsertSegmentTree($v,[x: x])$

Segment tree construction - interval insertion

InsertSegmentTree($v,\left[x: x^{\prime}\right]$)
Input: The root of (a subtree of) a segment tree and an interval.
Output: The interval will be stored in the subtree.

1. if $\operatorname{lnt}(v) \subseteq\left[x: x^{\prime}\right] \quad / / \operatorname{Int}(v)$ contains $s_{i}=\left[x: x^{\prime}\right]$
2. store $\left[x: x^{\prime}\right]$ at v
3. else if $\operatorname{lnt}(I c(v)) \cap\left[x: x^{\prime}\right] \neq \varnothing$
4. InsertSegmentTree(Ic(v), $\left[x: x^{\prime}\right]$)
5. if $\operatorname{lnt}(r c(v)) \cap\left[x: x^{\prime}\right] \neq \phi$
6. InsertSegmentTree($\left.r c(v),\left[x: x^{\prime}\right]\right)$

One interval is stored at most twice in one level =>
Single interval insert $O(\log n)$, insert n intervals $O(z n \log n)$
Construction total $O(n \log n)$
Storage $O(n \log n)$
Tree height $O(\log n)$, name stored max 2 x in one level
Storage total $O(n \log n)$ - see next slide
DCGI

Space complexity - notes

Segment tree complexity

A segment tree for set S of n intervals in the plane,

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O(k+\log n)$
- Report all intervals that contain a query point
- k is number of reported intervals
(50/59)

Segment tree versus Interval tree

- Segment tree
- $\mathrm{O}(n \log n)$ storage $\times \mathrm{O}(n)$ of Interval tree
- But returns exactly the intersected segments s_{i}, interval tree must search the lists ML and/or MR
- Good for

1. extensions (allows different structuring of intervals)
2. stabbing counting queries

- store number of intersected intervals in nodes
$-\mathrm{O}(\mathrm{n})$ storage and $\mathrm{O}(\log n)$ query time = optimal

3. higher dimensions - multilevel segment trees
(Interval and priority search trees do not exist in ^dims)

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
i. Line stabbing (standard IT with sorted lists)
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

- segment tree
- the algorithm

2. Windowing of line segments in general position

Windowing of arbitrary oriented line segments

- Let S be a set of arbitrarily oriented line segments in the plane.
- Report the segments intersecting a vertical query segment $q:=q_{x} \times\left[q_{y}: q_{y}^{\prime}\right]$
- Segment tree T on x intervals of segments in S
- node v of T corresponds to vertical $\operatorname{slab} \operatorname{lnt}(v) \times(-\infty: \infty)$
- segments span the slab of the node, but not of its parent
- segments do not intersect
=> segments in the slab (node) can be vertically ordered - BST

Segments between vertical segment endpoints

- Segments (in the slab) do not mutually intersect
=> segments can be vertically ordered and stored in BST
- Each node v of the x segment tree has an associated y BST
- BST $T(v)$ of node v stores the canonical subset $S(v)$ according to the vertical order
- Intersected segments can be found by searching $T(v)$ in $\mathrm{O}\left(k_{v}+\log n\right), k_{v}$ is the number of intersected segments

Segments between vertical segment endpoints

- Segment s is intersected by vert.query segment q iff - The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

(56 / 59)

Structure associated to node (BST) uses storage linear in the size of $S(v)$

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $\mathrm{O}\left(k+\log ^{2} n\right)$
- Report all segments that contain a query point
$-k$ is number of reported segments

Windowing of line segments in 2D - conclusions

Construction: all variants $\mathrm{O}(\mathrm{n}$ logn)

1. Axis parallel
i. Line (sorted lists)
ii. Segment (range trees) $\mathrm{O}\left(k+\log ^{2} n\right) \quad \mathrm{O}(n \log n)$
iii. Segment (priority s. tr.) $\mathrm{O}(k+\log n) \quad \mathrm{O}(n)$
2. In general position

- segment tree
$\mathrm{O}\left(k+\log ^{2} n\right) \quad \mathrm{O}(n \log n)$

(58 / 59)

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, SpringerVerlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/
[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14, and 30.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
[Rourke] Joseph O'Rourke: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521-44592-2 http://maven.smith.edul~orourke/books/compgeom.html
[Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.htm|
[Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester 2009 http://wwwwisg.cs.uni-
magdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

[^0]:
 DCGI

