
WINDOWING

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 15.12.2016



Windowing queries - examples

 Interaction in GIS
– Select subset by outlining
– Zoom in and re-center

 Circuit board inspection,…
[Vakken]

[Berg]

[Berg]

(2 / 59)



Windowing versus range queries

 Range queries (see range trees in Lecture 03)

– Points
– Often in higher dimensions

 Windowing queries
– Line segments, curves, …
– Usually in low dimension (2D, 3D) 

 The goal for both: 
Preprocess the data into a data structure 

– so that the objects intersected by the query rectangle 
can be reported efficiently

(3 / 59)



Windowing queries on line segments

1. Axis parallel line segments 2. Arbitrary line segments
(non-crossing) [Vakken]

(4 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
– 3 variants of interval tree – IT in x-direction
– Differ in storage of segment end points ML and MR 

i. Line stabbing (standard IT with sorted lists ) lecture 9 - intersections

ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(5 / 59)



1. Windowing of axis parallel line segments

[Vakken]

(6 / 59)



1. Windowing of axis parallel line segments

Window query
 Given 

– a set of orthogonal line segments S (preprocessed),
– and orthogonal query rectangle W = [ x : x’ ] μ [ y : y’ ]

 Count or report all the line segments of S that 
intersect W

 Such segments have
a) 1 endpoint in
b) 2 end points in – Included
c) no end point in – Cross over

[Mount]

a)
a)

b)
c)

c)

(7 / 59)



Line segments with 1 or 2 points inside

a) 1 point inside
– Use a range tree (Lesson 3)
– O(n log n) storage
– O(log2 n + k) query time or
– O(log n + k) with fractional 

cascading

b) 2 points inside – as a) 1 point inside
– Avoid reporting twice

1. Mark segment when reported (clear after the query)
2. When end point found, check the other end-point.

Report only the leftmost or bottom endpoint

a)
a)

b)

c)

c)

[Mount]

(8 / 59)



Line segments that cross over the window

c) No points inside
– Such segments not detected 

using end-point range tree 
– Cross the boundary twice 

or 
contain one boundary edge

– It is enough to 
detect segments intersected by the left and bottom
boundary edges (not having end point inside)

– For left boundary: Report the segments intersecting 
vertical query line segment (1/ii.)

– Let’s discuss vertical query line first (1/i.)
– Bottom boundary is rotated 90°

[Mount]

(9 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)

i. Line stabbing (standard IT with sorted lists)
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(10 / 59)



i. Segment intersected by vertical line – 1D

 Query line l := (x=qx)

Report the segments 
stabbed by a vertical line 
= 1 dimensional problem

(ignore y coordinate)

 Report the interval 
containing query point qx

DS: Interval tree with sorted lists
[Mount]

(11 / 59)



Interval tree principle (see lecture 9 - intersections)

L(v)
R(v)

[Vigneron]

L R

M

(12 / 59)



Static interval tree [Edelsbrunner80]

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
5 6

[Kukral]

Tree over sorted segment end-points

(13 / 59)



Primary structure – static tree for endpoints

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

v = vertex
d(v)= midpoint of 

segment 
endpoints

5 6

[Kukral]

(14 / 59)



Secondary lists – sorted segments in M

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
ML(v) MR(v)

ML(v) – intervals containing v
(sorted of ascending lo points)

MR(v) – intervals containing v
(descending 
hi endpoints)

5 6

[Kukral]

(15 / 59)



Input:
Output:

(16 / 59)

Interval tree construction
ConstructIntervalTree( S )         // Intervals all active – no active lists

Set S of intervals on the real line – on x-axis
The root of an interval tree for S

1. if (|S| == 0) return null // no more intervals
2. else
3. xMed = median endpoint of intervals in S // median endpoint
4. L = { [xlo, xhi] in S | xhi < xMed } // left of median
5. R = { [xlo, xhi] in S | xlo > xMed } // right of median
6. M = { [xlo, xhi] in S | xlo <= xMed <= xhi } // contains median
7. ML = sort M in increasing order of xlo // sort M
8. MR = sort M in decreasing order of xhi
9. t = new IntTreeNode(xMed, ML, MR) // this node
10. t.left = ConstructIntervalTree(L) // left subtree
11. t.right = ConstructIntervalTree(R) // right subtree
12. return t

[Mount]

Merged procedures from in lecture 09
- PrimaryTree(S)  on slide 33 
- InsertInterval ( b, e, T ) on slide 35



Input:
Output:

(17 / 59)

Line stabbing query for an interval tree
Stab( t, xq)

IntTreeNode t, Scalar xq
prints the intersected intervals

1. if (t == null) return // no leaf: fell out of the tree
2. if (xq < t.xMed) // left of median?
3. for (i = 0; i < t.ML.length; i++)  // traverse ML
4. if (t.ML[i].lo ≤ xq) print(t.ML[i]) // ..report if in range
5. else break // ..else done
6. stab(t.left, xq) // recurse on left
7. else  // (xq ¥ t.xMed) // right of or equal to median
8. for (i = 0; i < t.MR.length; i++) { // traverse MR
9. if (t.MR[i].hi ¥ xq) print(t.MR[i]) // ..report if in range
10. else break // ..else done
11. stab(t.right, xq) // recurse on right

Note: Small inefficiency for xq == t.xMed – recurse on right
[Mount]

Less effective variant of QueryInterval ( b, e, T )
on slide 34 in lecture 09
with merged parts: fork and search right



Complexity of line stabbing via interval tree

 Construction - time
– Each step divides at maximum into two halves or less

(minus elements of M) => tree of height ℎ = ܱ(log ݊)
– If presorted endpoints in three lists L,R, and M 

then median in O(1) and copy to new L,R,M in O(n)]

 Vertical line stabbing query - time
– One node processed in ܱ(1 + ݇′),   ݇′reported intervals– ݒ visited nodes in ܱ(ݒ + ݇), 						݇	total reported intervals– ݒ = ℎ = tree height = ܱ(log ݊)

 Storage -
– Tree has ܱ(݊) nodes, each segment stored twice 

(two endpoints)

݇ = Σ݇′
(18 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree – IT)

i. Line stabbing (standard IT with sorted lists )
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(19 / 59)



Line segment stabbing (IT with range trees)

Enhance 1D interval trees to 2D
– Change 1D test ݍ௫ ∈ ,ݔ ′ݔ

done by interval tree with sorted lists ML and MR
into 2D test ௫ݍ ∈ (−¶ ∶ [	௫ݍ

– and change lines ௫ݍ × [−¶ ∶ ¶] (no y-test)
to segments ݍ௫ × ௬ݍ] ∶ [௬′ݍ (additional y-test)

(20 / 59)



i. Segment intersected by vertical line - 2D

 Query line l ௫ ¶ ¶

 Horizontal segment of M stabs the query 
line l iff its left endpoint lies in 
halph-space ݍ ≔	 (−¶ ∶ [	௫ݍ × [−¶ ∶ ¶]

 In IT node with stored median xMid
report all segments from M

– ML: whose left point lies in (−¶ ∶ [	௫ݍ
if l lies left from xMid

– MR: whose right point lies in [ݍ௫ ∶ +¶)
if l lies right from xMid

l

Inspired by [Berg]

xMidqx

l

(21 / 59)



ii. Segment intersected by vertical line segment

 Query segment ݍ ≔ ௫ݍ × ௬ݍ] ∶ [௬′ݍ
 Horizontal segment of ML stabs the query 

segment q iff its left endpoint lies in 
semi-infinite rectangular region ݍ ≔ (−∞ ∶ [௫ݍ × ௬ݍ] ∶ [௬′ݍ

 In IT node with stored median xMid
report all segments 

– ML: whose left points lie in (−∞ ∶ [௫ݍ × ௬ݍ] ∶ [௬′ݍ
where ݍ௫ lies left from xMid

– MR: whose right point lies in [ݍ௫ ∶ +∞) × ௬ݍ] ∶ [௬′ݍ
where ௫ݍ lies right from xMid

[Berg]

xMidqx

(22 / 59)

ML MR



Data structure for endpoints

 Storage of ML and MR
– 1D Sorted lists not enough for line segments
– Use two 2D range trees

 Instead O(n) sequential search in ML and MR
perform O(log n) search 
in range tree with fractional cascading

(23 / 59)



2D range tree (without fractional cascading-more in Lecture 3)

Segment left end-points for ML

segment right end-points for MR

[Mount]

(24 / 59)



Complexity of line segment stabbing

 Construction - O(n log n) time
– Each step divides at maximum into two halves L,R

or less (minus elements of M) => tree height O(log n)
– If the range trees are efficiently build in O(n) after points sorted

 Vertical line segment stab. q. - O(k + log2 n) time
– One node processed in O(log n + k’), k’=reported inter.
– v-visited nodes in O(v log n + k), k=total reported inter. 
– v = interval tree height = O(log n)
– O(k + log2 n) time - range tree with fractional cascading
– O(k + log3 n) time - range tree without fractional casc.

 Storage - O(n log n) 
– Dominated by the range trees

2D range tree search with Fractional Cascading

(25 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)

i. Line stabbing (standard IT with sorted lists )
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(26 / 59)



iii. Priority search trees [McCreight85]

 Priority search trees – in case c) on slide 9
– Exploit the fact that query rectangle in range queries is 

unbounded (in x direction)
– Can be used as secondary data structures for both left 

and right endpoints (ML and MR) of segments in nodes 
of interval tree – one for ML, one for MR

– Improve the storage to O(n) for horizontal segment 
intersection with window edge (Range tree has O(n log n))

 For cases a) and b) - O(n log n) remains
– we need range trees for windowing segment endpoints 

(27 / 59)



Rectangular range queries variants

 Let P = { p1, p2,…, pn } is set of points in plane
 Goal: rectangular range queries of the form

(–¶ : qx] μ [qy ; q’y ]
 In 1D: search for nodes v with vx œ (–¶ : qx]

– range tree O(log n + k) time
– ordered list O(1 + k) time

(start in the leftmost, stop on v with vx>qx)
– use heap  O(1 + k) time !

(traverse all children, stop when vx>qx)
 In 2D – use heap for points with x œ (–¶ : qx]

+ integrate information about y-coordinate

(28 / 59)



Heap for 1D unbounded range queries

 Traverse all children, stop when vx>qx

 Example: Query (–¶:10]

6

50 100

12

7

9

11

99 19

stop

report

[Berg]

xMidqx

l

(29 / 59)

vx



Principle of priority search tree

 Heap 
– relation between parent and its child nodes
– no relation between the child nodes themselves

 Priority search tree
– relate the child nodes according to y

≤ ௬
≤ ௬

≤ ௬

(30 / 59)



Priority search tree (PST)
 Heap in 2D can incorporate info about both x,y

– BST on y-coordinate (horizontal slabs) ~ range tree
– Heap on x-coordinate (minimum x from slab along x)

 If P is empty, PST is empty leaf
 else

– pmin = point with smallest x-coordinate in P --- a heap root
– ymed = y-coord. median of points P \ {pmin} --- BST root
– Pbelow := { p œ P \ {pmin} : py § ymed}
– Pabove := { p œ P \ {pmin} : py > ymed}

 Point pmin and scalar ymed are stored in the PST root
 The left subtree is PST of Pbelow

 The right subtree is PST of Pabove

(31 / 59)



Priority search tree construction example

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1 3

5

7

9
14

13

10
6

[Schirra]

y

x

§y

>y

Pmin

ymed

y10

y8

y15

y12

y13

y14

y9

(32 / 59)



Input:
Output:

(33 / 59)

Priority search tree construction
PrioritySearchTree( P )

set P of points in plane
priority search tree  T

1. if P=« then PST is an empty leaf
2. else
3. pmin = point with smallest x-coordinate in P // heap on x root
4. ymed = y-coord. median of points P \ {pmin} // BST on y root
5. Split points P \ {pmin} into two subsets – according to ymed
6. Pbelow := { p œ P \ {pmin} : py § ymed}
7. Pabove := { p œ P \ {pmin} : py > ymed}
8. T = newTreeNode() Notation in alg: 
9. T.p = pmin // point [ x, y ] … p(v)
10. T.y = ymid // skalar … y(v)
11. T.left = PrioritySearchTree( Pbelow ) … lc(v)
12. T.rigft = PrioritySearchTree( Pabove ) … rc(v)

13. O( n log n ) , but O( n ) if presorted on y-coordinate and bottom up



Input:
Output:

(34 / 59)

Query Priority Search Tree
QueryPrioritySearchTree( T, (–• : qx] ¥ [qy ; q’y ] )

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with qy and q’y in T // BST on y-coordinate – select y range     
Let νsplit be the node where the two search paths split (split node)

2. for each node ν on the search path of qy or q’y // points along the paths
3. if p(ν) œ (–¶ : qx] μ [qy ; q’y ] then report p(ν) // starting in tree root

4. for each node ν on the path of qy in the left subtree of νsplit // inner trees
5. if the search path goes left at ν
6. ReportInSubtree( rc(ν), qx )   // report right subtree
7. for each node ν on the path of q’y in right subtree of νsplit
8. if the search path goes right at ν
9. ReportInSubtree( lc(ν), qx )   // rep. left subtree

[Berg]



Input:
Output:

(35 / 59)

Reporting of subtrees between the paths
ReportInSubtree( ν, qx )

The root ν of a subtree of a priority search tree and a value qx.
All points in the subtree with x-coordinate at most qx.

1. if ν is not a leaf and x( p(ν) ) § qx // x œ (–¶ : qx] -- heap condition

2. Report p(ν).
3. ReportInSubtree( lc(ν), qx )
4. ReportInSubtree( rc(ν), qx )



Priority search tree query
1. select y range (y-BVS~ 1D range tree)
2. report points on paths (x-heap)
3. report subtrees (x-heap)

11 15

128

4

2

11

15

8

12

10

13

9

14

4

6

5

7

3

2

1

1 3

5

7

9
14

13

10
6

vsplit

x too high – stop

x ok – report this point

Based on [Schirra] [Berg]

y-range path

qy

q’y

Given interval ymin..ymax

Given xmax

Segment left end-points

(36 / 59)



Priority search tree complexity

For set of n points in the plane
 Build O(n log n)
 Storage O(n)
 Query O( k + log n)

– points in query range (–¶ : qx] μ [qy ; q’y ])
– k is number of reported points

 Use Priority search tree as associated data 
structure for interval trees for storage of M (one 
for ML, one for MR)

(37 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)

i. Line stabbing (standard IT with sorted lists )
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(38 / 59)



2. Windowing of line segments in general position

[Vakken]

(39 / 59)



 Two cases of intersection
a,b) Endpoint inside the query window => range tree
c) Segment intersects side of query window => ???

 Intersection with BBOX (segment bounding box)?
– Intersection with 4n sides
– But segments may not intersect the window –> query y

Windowing of arbitrary oriented line segments

(40 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)

i. Line stabbing (IT with sorted lists )
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(41 / 59)



Segment tree [Bentley, 1977]

 Exploits locus approach 
– Partition parameter space into regions of same answer
– Localization of such region = knowing the answer

 For given set S of n intervals (segments) on real line
– Finds m elementary intervals (induced by interval end-points)

– Partitions 1D parameter space into these elementary 
intervals

– Stores intervals si with the elementary intervals
– Reports the intervals si containing query point qx.

p1-∞ p2 p3 p4 +∞ 

(42 / 59)



[p2: p3][p2: p2]

Segment tree example

x

Intervals

Elementary Intervals

[p1: p1]
…

…

Intervals
S = { [x1 : x1’], [x2 : x2’], …,  [xn : xn’] } 
si = [xi : xi’]

(-∞ : p1 ) (p1 : p2 ) (pm : +∞ )

[Berg]

(43 / 59)



Segment tree definition

Segment tree
 Skeleton is a balanced binary tree T
 Leaves ~ elementary intervals Int(v)
 Internal nodes v

~ union of elementary intervals of its children 
– Store: 1. interval Int(v) = union of elementary intervals

of its children 
2. canonical set S(v) of intervals [x : x’] œ S

– Holds Int(v) Œ [x : x’] and Int(parent(v)] [x : x’] 
(node interval is not larger than the segment)

– Intervals [x : x’] are stored as high as possible, such that 
Int(v) is completely contained in the segment

segments si

(44 / 59)



Segments span the slab
Segments span the slab of the node, 
but not of its parent
(stored as up as possible)

Int(v2)
Int(v1)

Int(v3)

Int(vj) Œ si

and 
Int(parent(vj)] si

[Berg]

(45 / 59)



Input:
Output:

(46 / 59)

Query segment tree – stabbing query
QuerySegmentTree(v, qx)

The root of a (subtree of a) segment tree and a query point qx
All intervals in the tree containing qx.

1. Report all the intervals si in S(ν). // current node
2. if ν is not a leaf
3. if qx œ Int( lc(ν) ) // go left
4. QuerySegmentTree( lc(ν), qx )
5. else // or go right
6. QuerySegmentTree( rc(ν), qx )

Query time O( log n  + k ), where k is the number of reported intervals
O( 1 + kv ) for one node
Height O( log n ) 



Input:
Output:

(47 / 59)

Segment tree construction 
ConstructSegmentTree( S )

Set of intervals S - segments
segment tree

1. Sort endpoints of segments in S -> get elemetary intervals …O(n log 
n)

2. Construct a binary search tree T on elementary intervals …O(n)
(bottom up) and determine the interval Int(v) it represents

3. Compute the canonical subsets for the nodes (lists of their segments):
4. v = root( T )
5. for all segments si = [x : x’] œ S
6. InsertSegmentTree( v, [x : x’] )



Input:
Output:

(48 / 59)

Segment tree construction – interval insertion

InsertSegmentTree( v, [x : x’] ) 
The root of (a subtree of) a segment tree and an interval.
The interval will be stored in the subtree.

1. if Int(v) Œ [ x : x’ ] // Int(v) contains si = [ x : x’ ]
2. store [ x : x’ ] at ν
3. else if Int( lc(ν) ) ∩ [ x : x’ ] ∫ «
4. InsertSegmentTree( lc(ν), [x : x’ ] )
5. if Int( rc(ν) ) ∩ [ x : x’ ] ∫ «
6. InsertSegmentTree(rc(ν), [x : x’ ] )

One interval is stored at most twice in one level =>
Single interval insert ܱ log	݊ , insert ݊ intervals ܱ 2݊	log	݊
Construction total ܱ ݊	log	݊

Storage ܱ ݊	log	݊
Tree height ܱ log	݊ , name stored max 2x in one level
Storage total ܱ ݊	log	݊ – see next slide



Space complexity - notes

Worst case – ܱ(݊ଶ) segments in leaf
But 

Store segments as high, as possible
Segment max 2 times in one levelmax4݊ + 1 elementary intervals (leaves)⇒ ܱ ݊ space for the tree ⇒ ܱ ݊	log	݊ space for interval names 

ݏ covered by ଵݒ and ݒଷ⇒ ଶݒ covered, (ଶݒ)ݐ݊ܫ 	∈ ݏ
As ݒଶ lies between ଵݒ and ݒଷ⇒ ((ଶݒ)ݐ݊݁ݎܽ݌)ݐ݊ܫ 	∈ ݏ ⇒					segment ݏ	will not be

stored in ݒଶ

ݏ

(49 / 59)

[Berg]

[Berg]

⇐

ݏݏ ݏ



Segment tree complexity

A segment tree for set S of n intervals in the plane, 
 Build O(n log n)
 Storage O(n log n)
 Query O( k + log n)

– Report all intervals that contain a query point
– k is number of reported intervals

(50 / 59)



Segment tree versus Interval tree

 Segment tree
– O(n log n ) storage x O(n) of Interval tree  
– But returns exactly the intersected segments si, interval 

tree must search the lists ML and/or MR 

 Good for 
1. extensions (allows different structuring of intervals) 
2. stabbing counting queries 

– store number of intersected intervals in nodes
– O(n) storage and O(log n ) query time = optimal

3. higher dimensions – multilevel segment trees
(Interval and priority search trees do not exist in ^dims)

(51 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)

i. Line stabbing (standard IT with sorted lists )
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree
– the algorithm

(52 / 59)



2. Windowing of line segments in general position

qx

qy

q’y

[Vakken]

(53 / 59)



Windowing of arbitrary oriented line segments

 Let S be a set of arbitrarily oriented line segments 
in the plane. 

 Report the segments intersecting a vertical query 
segment q := qx μ [qy : q’y ]

 Segment tree T on x intervals of segments in S
– node v of T corresponds to vertical slab Int(v) μ (-¶ : ¶)
– segments span the slab of the

node, but not of its parent
– segments do not intersect  

=> segments in the slab (node)
can be vertically ordered – BST

[Berg]

(54 / 59)



Segments between vertical segment endpoints

 Segments (in the slab) do not mutually intersect
=> segments can be vertically ordered and stored in BST

– Each node v of the x segment tree 
has an associated y BST

– BST T(v) of node v stores the canonical subset S(v) 
according to the vertical order

– Intersected segments can be found by searching T(v) in 
O( kv + log n), kv is the number of intersected segments

(55 / 59)



Segments between vertical segment endpoints

 Segment s is intersected by vert.query segment q iff
– The lower endpoint (B) of q is below s and
– The upper endpoint (A) of q is above s

A

B

A above
B below

A below
B below

A above
B below

A above
B above

A above
B below

q

[Berg]

(56 / 59)



Windowing of arbitrary oriented line segments complexity

Structure associated to node (BST) uses storage 
linear in the size of S(v)

 Build O(n log n)
 Storage O(n log n)
 Query O( k + log2 n)

– Report all segments that contain a query point
– k is number of reported segments

(57 / 59)



Windowing of line segments in 2D – conclusions 

Construction: all variants O(n logn)
1. Axis parallel Search Memory

i. Line (sorted lists ) O( k + log n)    O(n)

ii. Segment (range trees) O( k + log2 n)   O(n log n)

iii. Segment (priority s. tr.) O( k + log n)     O(n)

2. In general position
– segment tree O( k + log2 n)    O(n log n)

(58 / 59)



References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: 

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture 
Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14, 
and 30.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Rourke] Joseph O´Rourke: Computational Geometry in C, Cambridge 
University Press, 1993, ISBN 0-521- 44592-2 
http://maven.smith.edu/~orourke/books/compgeom.html

[Vigneron] Segment trees and interval trees, presentation, INRA, France, 
http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

[Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester 
2009 http://wwwisg.cs.uni-
magdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

(59 / 59)


