
TRIANGULATIONS

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 30.11.2017

Felkel: Computational geometry

Talk overview

 Polygon triangulation
– Monotone polygon triangulation
– Monotonization of non-monotone polygon

 Delaunay triangulation (DT) of points
– Input: set of 2D points
– Properties
– Incremental Algorithm
– Relation of DT in 2D and lower envelope (CH) in 3D

and
relation of VD in 2D to upper envelope in 3D

(2 / 79)

Felkel: Computational geometry

Polygon triangulation problem

 Triangulation (in general)
= subdividing a spatial domain into simplices

 Application
– decomposition of complex shapes into simpler shapes
– art gallery problem (how many cameras and where)

 We will discuss
– Triangulation of a simple polygon
– without demand on triangle shapes

 Complexity of polygon triangulation
– O(n) alg. exists [Chazelle91], but it is too complicated
– practical algorithms run in O(n log n)

(3 / 79)

Felkel: Computational geometry

Terminology

Simple polygon
= region enclosed by a closed polygonal chain that

does not intersect itself
Visible points
= two points on the boundary are visible if the

interior of the line segment joining them lies
entirely in the interior of the polygon

Diagonal
= line segment joining any pair of visible vertices

!

(4 / 79)

Felkel: Computational geometry

Terminology

 A polygonal chain C is strictly monotone with
respect to line L, if any line orthogonal to L
intersects C in at most one point

 A chain C is monotone with respect to line L, if any
line orthogonal to L intersects C in at most one
connected component (point, line segment,...)

 Polygon P is monotone with respect to line L, if its
boundary (bnd(P), ∂P) can be split into two chains,
each of which is monotone with respect to L

(5 / 79)

Felkel: Computational geometry

Terminology

 Horizontally monotone polygon
= monotone with respect to x-axis

– Can be tested in O(n)
– Find leftmost and rightmost point in O(n)
– Split boundary to upper and lower chain
– Walk left to right, verifying that x-coord are non-

decreasing

[Mount]

(6 / 79)

Felkel: Computational geometry

Terminology

 Every simple polygon can be triangulated
 Simple polygon with n vertices consists of

– exactly n-2 triangles
– exactly n-3 diagonals
– Each diagonal is added once

=> O(n) sweep line algorithm exist

n = 3 => 0 diagonal n = 4 => 1 diagonal n := n+1 => n + 1 – 3 diagonals
n + 1 = 7 => 4 diagonals)

Proof by induction

(7 / 79)

n – 3

Felkel: Computational geometry

Simple polygon triangulation

 Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)

(8 / 79)

Felkel: Computational geometry

Simple polygon triangulation

 Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)

(8 / 79)

Felkel: Computational geometry

2. Triangulation of the monotone polygon

 Sweep left to right - in O(n) time
 Triangulate everything you can by adding

diagonals between visible points
 Remove triangulated region from further

consideration – mark as DONE

[Mount]

(9 / 79)

Felkel: Computational geometry

2. Triangulation of the monotone polygon

 Sweep left to right - in O(n) time
 Triangulate everything you can by adding

diagonals between visible points
 Remove triangulated region from further

consideration – mark as DONE

[Mount]

(9 / 79)

u

Felkel: Computational geometry

2. Triangulation of the monotone polygon

 Sweep left to right - in O(n) time
 Triangulate everything you can by adding

diagonals between visible points
 Remove triangulated region from further

consideration – mark as DONE

[Mount]

(9 / 79)

u u

Felkel: Computational geometry

2. Triangulation of the monotone polygon

 Sweep left to right - in O(n) time
 Triangulate everything you can by adding

diagonals between visible points
 Remove triangulated region from further

consideration – mark as DONE

[Mount]To stack

(9 / 79)

u u

Felkel: Computational geometry

2. Triangulation of the monotone polygon

 Sweep left to right - in O(n) time
 Triangulate everything you can by adding

diagonals between visible points
 Remove triangulated region from further

consideration – mark as DONE

[Mount]To stack

(9 / 79)

u u

Felkel: Computational geometry

2. Triangulation of the monotone polygon

 Sweep left to right - in O(n) time
 Triangulate everything you can by adding

diagonals between visible points
 Remove triangulated region from further

consideration – mark as DONE

[Mount]To stack

(9 / 79)

u u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

(10 / 79)

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

(10 / 79)

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

(10 / 79)

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

(10 / 79)

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

(10 / 79)

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

(10 / 79)

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

(10 / 79)

u
u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

from stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

from stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

from stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

from stack

from stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

from stack

from stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

from stack

from stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

from stack

from stack

(10 / 79)

u
u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

from stack

from stack

(10 / 79)

u
u

u

u

Felkel: Computational geometry

Main invariant of the untriangulated region

Main invariant
 Let vi be the vertex being just processed
 The untriangulated region left of vi consists of

two x-monotone chains (upper and lower)
 Each chain has at least one edge
 If it has more than one edge

– these edges form a reflex chain
= sequence of vertices

with interior angle ≥ 180°
– the other chain consist of single edge u vi

 Left vertex of the last added diagonal is u
 Vertices between u and vi are waiting in the stack

[Mount]

(11 / 79)

Felkel: Computational geometry

Triangulation cases for vi (vertex being just processed)

[Mount]

 Case 1: vi lies on the opposite chain
– Add diagonals from next(u) to vi-1 (empty the stack-pop)
– Set u = vi-1. Last diagonal (invariant) is vivi-1

 Case 2: vi is on the same chain as vi-1
a) walk back, adding diagonals joining vi to prior vertices

until the angle becomes > 180° or u is reached - pop)

– s

b) push to stack

(12 / 79)

Felkel: Computational geometry

Simple polygon triangulation

 Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)

(13 / 79)

Felkel: Computational geometry

Simple polygon triangulation

 Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)

(13 / 79)

 X-monotonicity breaks the polygon in vertices with
edges directed both left or both right

 The monotone polygons parts are separated by
the splitting diagonals (joining vertex and helper)

Felkel: Computational geometry

1. Polygon subdivision into monotone pieces

[Mount]

(14 / 79)

Felkel: Computational geometry

Data structures for subdivision

 Events
– Endpoints of edges, known from the beginning
– Can be stored in sorted list – no priority queue

 Sweep status
– List of edges intersecting sweep line (top to bottom)
– Stored in O(log n) time dictionary (like balanced tree)

 Event processing
– Six event types based on local structure of edges

around vertex v

(15 / 79)

Helper – definition

Felkel: Computational geometry

helper(ea)
= the rightmost vertically visible processed vertex u on or

below edge ea on polygonal chain between edges ea & eb

is visible to every point along the sweep line between ea & eb

v = current vertex
(sweep line stop)

all these vertices
see u = helper(ea)

(16 / 79)

Helper

Felkel: Computational geometry

helper(ea)
is defined only for edges intersected by the sweep line

Previous
helper h(e)

)

(17 / 79)

- Start point of the edge itself

rightmost vertically visible
processed vertex

- Start point of the edge below

Felkel: Computational geometry

Six event types of vertex v

1. Split vertex
– Find edge e above v,

connect v with helper(e) by diagonal
– Add 2 new edges incident to v into SL status
– Set new helper(e) = helper(lower edge of these two) = v

2. Merge vertex
– Find two edges incident with v in SL status
– Delete both from SL status
– Let e is edge immediately above v
– Make helper(e) = v
(Interior angle >180° for both – split & merge vertices)

[Mount]

Polygon
interior is

white

Previous
helper h(e)

out

in

(18 / 79)

in

in

in

Felkel: Computational geometry

Six event types of vertex v

3. Start vertex
– Both incident edges lie right from v
– But interior angle <180°
– Insert both edges to SL status
– Set helper(upper edge) = v

4. End vertex
– Both incident edges lie left from v
– But interior angle <180°
– Delete both edges from SL status
– No helper set – we are out of the polygon

[Mount]

(19 / 79)

in

in

in

in

Felkel: Computational geometry

Six event types of vertex v

5. Upper chain-vertex
– one side is to the left, one side to the right,

interior is below
– replace the left edge with the right edge

in SL status
– Make v helper of the new (upper) edge

6. Lower chain-vertex
– one side is to the left, one side to the right,

interior is above
– replace the left edge with the right edge

in SL status
– Make v helper of the edge e above [Mount]

(20 / 79)

in

in

in

in

Felkel: Computational geometry

Polygon subdivision complexity

 Simple polygon with n vertices can be partitioned
into x-monotone polygons in

– O(n log n) time (n steps of SL, log n search each)
– O(n) storage

 Complete simple polygon triangulation
– O(n log n) time for partitioning into monotone polygons
– O(n) time for triangulation
– O(n) storage

(21 / 79)

Felkel: Computational geometry

(22 / 79)

Delaunay triangulation

Felkel: Computational geometry

Dual graph G for a Voronoi diagram
Graph G: Node for each Voronoi-diagram cell V(p) ~ VD site p
Arc connects neighboring cells
(arc for every voronoi edge)

[Berg]

(23 / 79)

Felkel: Computational geometry

Delaunay graph DG(P)
= straight line embedding of G

(straight-line dual of Voronoi diagram)
 Node for cell V(p) is site p
 Arc (DG edge)

connecting cells
V(p) and V(q)
is the segment pq

[Борис Николаевич Делоне]

VD cell V(p)

site (point) p
= DG node

VD vertex

DG arc

[Berg]

(24 / 79)

Felkel: Computational geometry

Delaunay graph and Delaunay triangulation

 Delaunay graph DG(P) has convex polygonal faces
(with number of vertices ≥3, equal
to the degree of Voronoi vertex)

 Delaunay triangulation DT(P)
= Delaunay graph for sites in

general position
– No four sites on a circle
– Faces are triangles (Voronoi vertices have degree = 3)
– DT is unique (DG not! Can be triangulated differently)

DG(P) sites not in general position
– Triangulate larger faces – such triangulation is not

unique

[Berg]

vf

(25 / 79)

Felkel: Computational geometry

Delaunay graph and Delaunay triangulation

 Delaunay graph DG(P) has convex polygonal faces
(with number of vertices ≥3, equal
to the degree of Voronoi vertex)

 Delaunay triangulation DT(P)
= Delaunay graph for sites in

general position
– No four sites on a circle
– Faces are triangles (Voronoi vertices have degree = 3)
– DT is unique (DG not! Can be triangulated differently)

DG(P) sites not in general position
– Triangulate larger faces – such triangulation is not

unique

[Berg]

vf

(25 / 79)

Felkel: Computational geometry

Delaunay triangulation properties 1/2
Circumcircle property
 The circumcircle of any triangle in DT is empty (no sites)

Proof: It’s center is the Voronoi vertex
 Three points a,b,c are vertices of the same face of DG(P)

iff circle through a,b,c contains no point of P in its interior
Empty circle property and legal edge
 Two points a,b form an edge of DG(P) – it is a legal edge

iff  closed disc with a,b on its boundary that contains
no other point of P in its interior … disc minimal diameter = dist(a,b)

Closest pair property
 The closest pair of points in P are neighbors in DT(P)

(26 / 79)

Felkel: Computational geometry

Delaunay triangulation properties 2/2
 DT edges do not intersect
 Triangulation T is legal, iff T is a Delaunay triangulation

(i.e., if it does not contain illegal edges)
 Edge that was legal before

may become illegal if one
of the triangles incident to it
changes

 In convex quadrilateral abcd
(abcd do not lie on common circle)
exactly one of ac, bd

is an illegal edge
and the other edge is legal

= principle of edge flip operation c

a

b

d

[Berg]

(27 / 79)

Felkel: Computational geometry

Delaunay triangulation properties 2/2
 DT edges do not intersect
 Triangulation T is legal, iff T is a Delaunay triangulation

(i.e., if it does not contain illegal edges)
 Edge that was legal before

may become illegal if one
of the triangles incident to it
changes

 In convex quadrilateral abcd
(abcd do not lie on common circle)
exactly one of ac, bd

is an illegal edge
and the other edge is legal

= principle of edge flip operation c

a

b

d

[Berg]

(27 / 79)

Felkel: Computational geometry

Edge flip operation
Edge flip
= a local operation, that increases the angle vector
 Given two adjacent triangles abc and cda such that

their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.

c

a

b

d

[Berg]

(28 / 79)

Felkel: Computational geometry

Edge flip operation
Edge flip
= a local operation, that increases the angle vector
 Given two adjacent triangles abc and cda such that

their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.

c

a

b

d

[Berg]

(28 / 79)

Felkel: Computational geometry

Edge flip operation
Edge flip
= a local operation, that increases the angle vector
 Given two adjacent triangles abc and cda such that

their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.

c

a

b

d

[Berg]

(28 / 79)

Felkel: Computational geometry

Edge flip operation
Edge flip
= a local operation, that increases the angle vector
 Given two adjacent triangles abc and cda such that

their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.

c

a

b

d

[Berg]

(28 / 79)

Felkel: Computational geometry

Delaunay triangulation
 Let T be a triangulation with m triangles (and 3m angles)
 Angle-vector

= non-decreasing ordered sequence (1, 2, … , 3m)
inner angles of triangles, i ≤ j, for i < j

 In the plane, Delaunay triangulation has the
lexicographically largest angle sequence

– It maximizes the minimal angle (the first angle in angle-vector)
– It maximizes the second minimal angle, …
– It maximizes all angles
– It is an angle sequence optimal triangulation

(29 / 79)

Delaunay triangulation

 It maximizes the minimal angle
– The smallest angle in the DT is at least as large as the

smallest angle in any other triangulation.

 However, the Delaunay triangulation
– does not necessarily minimize the maximum angle.
– does not necessarily minimize the length of the edges.

Felkel: Computational geometry

(30 / 79)

Thales’s theorem (624-546 BC)

Felkel: Computational geometry

 Let = circle,
 =line intersecting in points

 = points on the same
side of
p,q on , is in, is out

 Then for the angles holds:

http://www.mathopenref.com/arccentralangletheorem.html

Respective Central Angle Theorem

[Berg]

(31 / 79)

Felkel: Computational geometry

Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd

(32 / 79)

Felkel: Computational geometry

Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd

(32 / 79)

Felkel: Computational geometry

Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd

(32 / 79)

Felkel: Computational geometry

Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd

(32 / 79)

Felkel: Computational geometry

Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd

(32 / 79)

Felkel: Computational geometry

Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd

(32 / 79)

Felkel: Computational geometry

Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd

(32 / 79)

θab

Felkel: Computational geometry

Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd

(32 / 79)

θab

Felkel: Computational geometry

Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd

(32 / 79)

θab

Felkel: Computational geometry

Incremental algorithm principle

1. Create a large triangle containing all points
(to avoid problems with unbounded cells)
– must be larger than the largest circle through 3 points
– will be discarded at the end

2. Insert the points in random order
– Find triangle with inserted point p
– Add edges to its vertices

(these new edges are correct)
– Check correctness of the old edges (triangles)

“around p” and legalize (flip) potentially illegal edges

3. Discard the large triangle and incident edges

(33 / 79)

Input:
Output:

Incremental algorithm in detail
DelaunayTriangulation(P)

Set P of n points in the plane
A Delaunay triangulation T of P

1. Let p–2, p–1, p0 form a triangle large enough to contain P
2. Initialize T as the triangulation consisting a single triangle p–2p–1p0
3. Compute random permutation p1, p2 , … , pn of P \ {p0}
4. for r = 1 to n do
5. T = Insert(pr , T)
6. Discard p–1, p–2 with all incident edges from T
7. return T

[Berg]

Input:
Output:

Insert(p, T)
Point p being inserted into triangulation T
Correct Delaunay triangulation after insertion of p

1. Find a triangle abc  T containing p
2. if p lies in the interior of abc then
3. Insert edges pa, pb, pc into triangulation T

(splitting abc into 3 triangles pab, pbc, pca)
4. LegalizeEdge(p, ab, T)
5. LegalizeEdge(p, bc, T)
6. LegalizeEdge(p, ca, T)
7. else // p lies on the edge of abc, say ab, point d is right from edge ab
8. Remove ab and insert edges pa, pb, pc, pd into triangulation T

(splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
9. LegalizeEdge(p, ab, T)
10. LegalizeEdge(p, bc, T)
11. LegalizeEdge(p, cd, T)
12. LegalizeEdge(p, da, T)
13. return T

Incremental algorithm – insertion of a point

a
b

c

a

b

d

c [Berg]

[Berg]

Input:
Output:

Insert(p, T)
Point p being inserted into triangulation T
Correct Delaunay triangulation after insertion of p

1. Find a triangle abc  T containing p
2. if p lies in the interior of abc then
3. Insert edges pa, pb, pc into triangulation T

(splitting abc into 3 triangles pab, pbc, pca)
4. LegalizeEdge(p, ab, T)
5. LegalizeEdge(p, bc, T)
6. LegalizeEdge(p, ca, T)
7. else // p lies on the edge of abc, say ab, point d is right from edge ab
8. Remove ab and insert edges pa, pb, pc, pd into triangulation T

(splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
9. LegalizeEdge(p, ab, T)
10. LegalizeEdge(p, bc, T)
11. LegalizeEdge(p, cd, T)
12. LegalizeEdge(p, da, T)
13. return T

Incremental algorithm – insertion of a point

a
b

c

p

a

b

d

c [Berg]

[Berg]

Input:
Output:

Insert(p, T)
Point p being inserted into triangulation T
Correct Delaunay triangulation after insertion of p

1. Find a triangle abc  T containing p
2. if p lies in the interior of abc then
3. Insert edges pa, pb, pc into triangulation T

(splitting abc into 3 triangles pab, pbc, pca)
4. LegalizeEdge(p, ab, T)
5. LegalizeEdge(p, bc, T)
6. LegalizeEdge(p, ca, T)
7. else // p lies on the edge of abc, say ab, point d is right from edge ab
8. Remove ab and insert edges pa, pb, pc, pd into triangulation T

(splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
9. LegalizeEdge(p, ab, T)
10. LegalizeEdge(p, bc, T)
11. LegalizeEdge(p, cd, T)
12. LegalizeEdge(p, da, T)
13. return T

Incremental algorithm – insertion of a point

a
b

c

p

a

b

d

c [Berg]

[Berg]

Input:
Output:

Insert(p, T)
Point p being inserted into triangulation T
Correct Delaunay triangulation after insertion of p

1. Find a triangle abc  T containing p
2. if p lies in the interior of abc then
3. Insert edges pa, pb, pc into triangulation T

(splitting abc into 3 triangles pab, pbc, pca)
4. LegalizeEdge(p, ab, T)
5. LegalizeEdge(p, bc, T)
6. LegalizeEdge(p, ca, T)
7. else // p lies on the edge of abc, say ab, point d is right from edge ab
8. Remove ab and insert edges pa, pb, pc, pd into triangulation T

(splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
9. LegalizeEdge(p, ab, T)
10. LegalizeEdge(p, bc, T)
11. LegalizeEdge(p, cd, T)
12. LegalizeEdge(p, da, T)
13. return T

Incremental algorithm – insertion of a point

a
b

c

p

a

b

d

c [Berg]

[Berg]

Input:
Output:

Insert(p, T)
Point p being inserted into triangulation T
Correct Delaunay triangulation after insertion of p

1. Find a triangle abc  T containing p
2. if p lies in the interior of abc then
3. Insert edges pa, pb, pc into triangulation T

(splitting abc into 3 triangles pab, pbc, pca)
4. LegalizeEdge(p, ab, T)
5. LegalizeEdge(p, bc, T)
6. LegalizeEdge(p, ca, T)
7. else // p lies on the edge of abc, say ab, point d is right from edge ab
8. Remove ab and insert edges pa, pb, pc, pd into triangulation T

(splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
9. LegalizeEdge(p, ab, T)
10. LegalizeEdge(p, bc, T)
11. LegalizeEdge(p, cd, T)
12. LegalizeEdge(p, da, T)
13. return T

Incremental algorithm – insertion of a point

a
b

c

p

a

b

d

cp [Berg]

[Berg]

Input:
Output:

Insert(p, T)
Point p being inserted into triangulation T
Correct Delaunay triangulation after insertion of p

1. Find a triangle abc  T containing p
2. if p lies in the interior of abc then
3. Insert edges pa, pb, pc into triangulation T

(splitting abc into 3 triangles pab, pbc, pca)
4. LegalizeEdge(p, ab, T)
5. LegalizeEdge(p, bc, T)
6. LegalizeEdge(p, ca, T)
7. else // p lies on the edge of abc, say ab, point d is right from edge ab
8. Remove ab and insert edges pa, pb, pc, pd into triangulation T

(splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
9. LegalizeEdge(p, ab, T)
10. LegalizeEdge(p, bc, T)
11. LegalizeEdge(p, cd, T)
12. LegalizeEdge(p, da, T)
13. return T

Incremental algorithm – insertion of a point

a
b

c

p

a

b

d

cp [Berg]

[Berg]

Input:
Output:

Insert(p, T)
Point p being inserted into triangulation T
Correct Delaunay triangulation after insertion of p

1. Find a triangle abc  T containing p
2. if p lies in the interior of abc then
3. Insert edges pa, pb, pc into triangulation T

(splitting abc into 3 triangles pab, pbc, pca)
4. LegalizeEdge(p, ab, T)
5. LegalizeEdge(p, bc, T)
6. LegalizeEdge(p, ca, T)
7. else // p lies on the edge of abc, say ab, point d is right from edge ab
8. Remove ab and insert edges pa, pb, pc, pd into triangulation T

(splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
9. LegalizeEdge(p, ab, T)
10. LegalizeEdge(p, bc, T)
11. LegalizeEdge(p, cd, T)
12. LegalizeEdge(p, da, T)
13. return T

Incremental algorithm – insertion of a point

a
b

c

p

a

b

d

cp [Berg]

[Berg]

Input:
Output:

Incremental algorithm – edge legalization
LegalizeEdge(p, ab, T)

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if(ab is edge on the exterior face) return
2. let d be the vertex to the right of edge ab
3. if(inCircle(p, a, b, d)) // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge(p, ad, T)
6. LegalizeEdge(p, db, T)

a

b

p

d

[Berg]

Inserted point p









c

Input:
Output:

Incremental algorithm – edge legalization
LegalizeEdge(p, ab, T)

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if(ab is edge on the exterior face) return
2. let d be the vertex to the right of edge ab
3. if(inCircle(p, a, b, d)) // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge(p, ad, T)
6. LegalizeEdge(p, db, T)

a

b

p

d

[Berg]

Inserted point p

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d)






c

Input:
Output:

Incremental algorithm – edge legalization
LegalizeEdge(p, ab, T)

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if(ab is edge on the exterior face) return
2. let d be the vertex to the right of edge ab
3. if(inCircle(p, a, b, d)) // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge(p, ad, T)
6. LegalizeEdge(p, db, T)

a

b

p

d

[Berg]

Inserted point p

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d)
After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles
pdb, and pad will bee empty)




c

Input:
Output:

Incremental algorithm – edge legalization
LegalizeEdge(p, ab, T)

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if(ab is edge on the exterior face) return
2. let d be the vertex to the right of edge ab
3. if(inCircle(p, a, b, d)) // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge(p, ad, T)
6. LegalizeEdge(p, db, T)

a

b

p

d

[Berg]

Inserted point p

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d)
After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles
pdb, and pad will bee empty)




c

Input:
Output:

Incremental algorithm – edge legalization
LegalizeEdge(p, ab, T)

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if(ab is edge on the exterior face) return
2. let d be the vertex to the right of edge ab
3. if(inCircle(p, a, b, d)) // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge(p, ad, T)
6. LegalizeEdge(p, db, T)

a

b

p

d

[Berg]

Inserted point p

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d)
After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles
pdb, and pad will bee empty)
We must check and possibly flip edges ad, db


c

Input:
Output:

Incremental algorithm – edge legalization
LegalizeEdge(p, ab, T)

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if(ab is edge on the exterior face) return
2. let d be the vertex to the right of edge ab
3. if(inCircle(p, a, b, d)) // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge(p, ad, T)
6. LegalizeEdge(p, db, T)

a

b

p

d

[Berg]

Inserted point p

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d)
After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles
pdb, and pad will bee empty)
We must check and possibly flip edges ad, db


c

Input:
Output:

Incremental algorithm – edge legalization
LegalizeEdge(p, ab, T)

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if(ab is edge on the exterior face) return
2. let d be the vertex to the right of edge ab
3. if(inCircle(p, a, b, d)) // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge(p, ad, T)
6. LegalizeEdge(p, db, T)

a

b

p

d

[Berg]

Inserted point p

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d)
After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles
pdb, and pad will bee empty)
We must check and possibly flip edges ad, db


c

Input:
Output:

Incremental algorithm – edge legalization
LegalizeEdge(p, ab, T)

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if(ab is edge on the exterior face) return
2. let d be the vertex to the right of edge ab
3. if(inCircle(p, a, b, d)) // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge(p, ad, T)
6. LegalizeEdge(p, db, T)

a

b

p

d

[Berg]

Inserted point p

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d)
After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles
pdb, and pad will bee empty)
We must check and possibly flip edges ad, db
(We must check and possibly flip edges bc & ca
- lines 5,6 in Insert(p, T)) c

Felkel: Computational geometry

Correctness of edge flip of illegal edge
 Assume point is in (it violates DT criteria for)
 was a triangle of DT => was an empty circle
 Create circle ᇱ trough point , ᇱ is inscribed to , ᇱ

=> ᇱ is also an empty circle ()
=> new edge pd is a Delaunay edge

a

b

p

d

[Berg]

Inserted point p

(37 / 79)

Felkel: Computational geometry

Correctness of edge flip of illegal edge
 Assume point is in (it violates DT criteria for)
 was a triangle of DT => was an empty circle
 Create circle ᇱ trough point , ᇱ is inscribed to , ᇱ

=> ᇱ is also an empty circle ()
=> new edge pd is a Delaunay edge

a

b

p

d

[Berg]

Inserted point p

(37 / 79)

Felkel: Computational geometry

Correctness of edge flip of illegal edge
 Assume point is in (it violates DT criteria for)
 was a triangle of DT => was an empty circle
 Create circle ᇱ trough point , ᇱ is inscribed to , ᇱ

=> ᇱ is also an empty circle ()
=> new edge pd is a Delaunay edge

a

b

p

d

[Berg]

Inserted point p

(37 / 79)

Felkel: Computational geometry

DT- point insert and mesh legalization

Every new edge created due to insertion of p will be incident to p

[Berg]

(38 / 79)

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later

(39 / 79)

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later

(39 / 79)

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later

(39 / 79)

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(40 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(40 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(40 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(41 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(42 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(42 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(42 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(43 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(43 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(44 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(45 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(45 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(45 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(46 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(46 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(47 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(47 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Delaunay triangulation – other point insert

[Mount]

(47 / 79)

Legalize now

Legal edge

Legalize later

Felkel: Computational geometry

Correctness of the algorithm

 Every new edge (created due to insertion of p)
– is incident to p
– must be legal

=> no need to test them

 Edge can only become illegal if one of its incident
triangle changes

– Algorithm tests any edge that may become illegal
=> the algorithm is correct

 Every edge flip makes the angle-vector larger
=> algorithm can never get into infinite loop

(48 / 79)

Felkel: Computational geometry

Point location data structure

 For finding a triangle abc  T containing p
– Leaves for active (current) triangles
– Internal nodes for destroyed triangles
– Links to new triangles

 Search p: start in root (initial triangle)
– In each inner node of T:

• Check all children (max three)
• Descend to child containing p

(49 / 79)

Felkel: Computational geometry

Point location data structure

Simplified
- it should also contain the root node

[Berg]

(50 / 79)

Felkel: Computational geometry

Point location data structure

[Berg]

(51 / 79)

Felkel: Computational geometry

Point location data structure

[Berg]

2 nodes (triangles)=> new 2 nodes

(52 / 79)

Felkel: Computational geometry

Point location data structure

[Berg]

(53 / 79)

Felkel: Computational geometry

InCircle test

 a,b,c are counterclockwise in the plane
 Test, if d lies to the left of the oriented circle

through a,b,c

c

a

b

d

> 0

[Mount]

(54 / 79)

Felkel: Computational geometry

Creation of the initial triangle
Idea: For given points set P:
 Initial triangle p–2p–1p0

– Must contain all points of P
– Must not be (none of its points)

in any circle defined
by non-collinear points of P

 l–2 = horizontal line above P
 l–1 = horizontal line below P
 p–2 = lies on l–2 as far left that p–2 lies outside every circle
 p–1 = lies on l–1 as far right that p–1 lies outside every circle

defined by 3 non-collinear points of P

Symbolical tests with this triangle => p–1 and p–2 always out

[Mount]

(55 / 79)

l–2

l–1

Felkel: Computational geometry

Complexity of incremental DT algorithm

 Delaunay triangulation of a set P in the plane can
be computed in

– O(n log n) expected time
– using O(n) storage

 For details see [Berg, Section 9.4]
Idea
– expected number of created triangles is 9n+1
– expected search O(log n) in the search structure

done n times for n inserted points

(56 / 79)

Felkel: Computational geometry

Delaunay triangulations and Convex hulls

 Delaunay triangulation in Rd can be computed
as part of the convex hull in Rd+1 (lower CH)

 2D: Connection is the paraboloid: 22 yxz 

[Mount]

(60 / 79)

Felkel: Computational geometry

Vertical projection of points to paraboloid

 Vertical projection of 2D point to paraboloid in 3D

 Lower convex hull
= portion of CH visible from (forms DT)

   22,,, yxyxyx 

z

[Rourke]

(61 / 79)

Felkel: Computational geometry

Relation between CH and DT

 Delaunay condition (2D)
Points p,q,r  S form a Delaunay triangle iff the
circumcircle of p,q,r is empty (contains no point)

 Convex hull condition (3D)
Points p’,q’,r’  S’ form a face of CH(S’) iff the
plane passing through p’,q’,r’ is supporting S’

– all other points lie to one side of the plane
– plane passing through p’,q’,r’ is supporting hyperplane

of the convex hull CH(S’)

(62 / 79)

Felkel: Computational geometry

Relation between CH and DT

 4 distinct points p,q,r,s in the plane, and let p’, q’, r’, s’ be
their respective projections onto the paraboloid, z = x2 + y2.

 The point s lies within the circumcircle of pqr iff s’ lies on
the lower side of the plane passing through p’, q’, r’.

[Rourke]

(63 / 79)

Felkel: Computational geometry

Relation between CH and DT

 4 distinct points p,q,r,s in the plane, and let p’, q’, r’, s’ be
their respective projections onto the paraboloid, z = x2 + y2.

 The point s lies within the circumcircle of pqr iff s’ lies on
the lower side of the plane passing through p’, q’, r’.

[Rourke]

(63 / 79)

Felkel: Computational geometry

Relation between CH and DT

 4 distinct points p,q,r,s in the plane, and let p’, q’, r’, s’ be
their respective projections onto the paraboloid, z = x2 + y2.

 The point s lies within the circumcircle of pqr iff s’ lies on
the lower side of the plane passing through p’, q’, r’.

[Rourke]

(63 / 79)

Felkel: Computational geometry

Relation between CH and DT

 4 distinct points p,q,r,s in the plane, and let p’, q’, r’, s’ be
their respective projections onto the paraboloid, z = x2 + y2.

 The point s lies within the circumcircle of pqr iff s’ lies on
the lower side of the plane passing through p’, q’, r’.

[Rourke]

(63 / 79)

Tangent and secant planes

Felkel: Computational geometry

ଶݎ

(ܽ,b)

x

z
’ݍ

p'

Tangent plane

Secant plane

Cross section of the paraboloid

Circle in xy planexݕ×
ݕ

rp ݍ
(64 / 79)

Felkel: Computational geometry

Tangent plane to paraboloid

 Non-vertical tangent plane through


 Derivation at this point

 Evaluates to and
 Plane:

[Mount]

 Tangent plane through point

Paraboloid ଶ+ ଶ

ଶ ଶ ଶ ଶ

ଶ ଶ

ଶ ଶ
(65 / 79)

Felkel: Computational geometry

Plane intersecting the paraboloid (secant plane)

 Non-vertical tangent plane through

 Shift this plane upwards –> secant plane
intersects the paraboloid in an ellipse in 3D

 Eliminate z (project to 2D)

 This is a circle projected to 2D with center (a, b):

[Mount]

ଶ
ଶ ଶଶ ଶ

ଶ ଶ + ଶ
ଶ+ ଶ ଶ ଶ + ଶଶ+ ଶ

ଶ ଶ ଶ
(66 / 79)

Secant plane defined by three points

Felkel: Computational geometry

[Mount]

(67 / 79)

Felkel: Computational geometry

Test inCircle – meaning in 3D

[Mount]

 Points p,q,r are counterclockwise in the plane
 Test, if s lies in the circumcircle of pqr is equal to

= test, weather s’ lies within a lower half space of the
plane passing through p’,q’,r’ (3D)

= test, if quadruple p’,q’,r’,s’ is positively oriented (3D)
= test, if s lies to the left of the oriented circle through pqr

(2D)

(68 / 79)

ݏ

Delaunay triangulation and inCircle test
 DT splits each quadrangle by one of its two diagonals
 For a valid diagonal, the fourth point is not inCircle

=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(….) < 0 for CCW orientation

 inCircle(P,Q,R,S) = inCircle(P,R,S,Q) = – inCircle(P,Q,S,R) = – inCircle(S,Q,R,P)

Felkel: Computational geometry

Q

R

S

P

RP QS
Invalid diagonal Valid diagonal

inCircle(…) > 0 inCircle(…) < 0

(69 / 79)

Delaunay triangulation and inCircle test
 DT splits each quadrangle by one of its two diagonals
 For a valid diagonal, the fourth point is not inCircle

=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(….) < 0 for CCW orientation

 inCircle(P,Q,R,S) = inCircle(P,R,S,Q) = – inCircle(P,Q,S,R) = – inCircle(S,Q,R,P)

Felkel: Computational geometry

Q

R

S

P

RP QS
Invalid diagonal Valid diagonal

inCircle(…) > 0 inCircle(…) < 0

(69 / 79)

Delaunay triangulation and inCircle test
 DT splits each quadrangle by one of its two diagonals
 For a valid diagonal, the fourth point is not inCircle

=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(….) < 0 for CCW orientation

 inCircle(P,Q,R,S) = inCircle(P,R,S,Q) = – inCircle(P,Q,S,R) = – inCircle(S,Q,R,P)

Felkel: Computational geometry

Q

R

S

P

RP QS
Invalid diagonal Valid diagonal

inCircle(…) > 0 inCircle(…) < 0

(69 / 79)

Delaunay triangulation and inCircle test
 DT splits each quadrangle by one of its two diagonals
 For a valid diagonal, the fourth point is not inCircle

=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(….) < 0 for CCW orientation

 inCircle(P,Q,R,S) = inCircle(P,R,S,Q) = – inCircle(P,Q,S,R) = – inCircle(S,Q,R,P)

Felkel: Computational geometry

Q

R

S

P

RP QS
Invalid diagonal Valid diagonal

inCircle(…) > 0 inCircle(…) < 0

(69 / 79)

Delaunay triangulation and inCircle test
 DT splits each quadrangle by one of its two diagonals
 For a valid diagonal, the fourth point is not inCircle

=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(….) < 0 for CCW orientation

 inCircle(P,Q,R,S) = inCircle(P,R,S,Q) = – inCircle(P,Q,S,R) = – inCircle(S,Q,R,P)

Felkel: Computational geometry

Q

R

S

P

RP QS
Invalid diagonal Valid diagonal

inCircle(…) > 0 inCircle(…) < 0

(69 / 79)

Delaunay triangulation and inCircle test
 DT splits each quadrangle by one of its two diagonals
 For a valid diagonal, the fourth point is not inCircle

=> the fourth point is right from the oriented circumcircle (outside)
=> inCircle(….) < 0 for CCW orientation

 inCircle(P,Q,R,S) = inCircle(P,R,S,Q) = – inCircle(P,Q,S,R) = – inCircle(S,Q,R,P)

Felkel: Computational geometry

Q

R

S

P

Q

R

S

P

RP QS
Invalid diagonal Valid diagonal

inCircle(…) > 0 inCircle(…) < 0

(69 / 79)

inCircle test detail

Felkel: Computational geometry

Q

R

S

P

Q

R

S

P

Q

R

S
P

Invalid diagonal Valid diagonal

Point P moves right toward point R
We test position of R in relation to oriented circle (P,Q,S)

inCircle(P,Q,S,R) = 0
R is on the circle

inCircle(P,Q,S,R) < 0
R is right (out)

inCircle(P,Q,S,R) > 0
R is left (in)

(70 / 79)

CCW

inCircle test detail

Felkel: Computational geometry

R

Q

R

S

P

Invalid diagonal Valid diagonal

Q

S

P

inCircle(P,Q,S,R) > 0
R is left

inCircle(P,Q,S,R) > 0
R is left

Circle of infinite diameter The circle flipped its orientation

(71 / 79)

CWCCW<->CW

An the Voronoi diagram?

 VD and DT are dual structures
 Points and lines in the plane

are dual to
points and planes in 3D space

 VD of points in the plane
can be transformed to
intersection of halfspaces in 3D space

Felkel: Computational geometry

(74 / 79)

Felkel: Computational geometry

Voronoi diagram as upper envelope in Rd+1

 For each point p = (a, b) a tangent plane to the
paraboloid is

 H+(p) is the set of points above this plane

[Mount]

ଶ ଶ
 VD of points in the plane can be

computed as intersection of
halfspaces H+(pi) in 3D

 This intersection of halfspaces
= unbounded convex polyhedron
= upper envelope of halfspaces

H+(pi)

ା ଶ ଶ

(75 / 79)

Upper envelope of planes

Felkel: Computational geometry

Upper envelope
of the tangent hyperplanes

= unbounded convex polytope

Lower envelope
of the tangent hyperplanes

[Mount]

(77 / 79)

Projection to 2D

 Upper envelope of
tangent hyperplanes
(through sites
projected upwards to
the cone)

 Projected to 2D gives
Voronoi diagram

Felkel: Computational geometry [Mount]

(78 / 79)

Felkel: Computational geometry

Voronoi diagram as upper envelope in 3D

[Fukuda]

(79 / 79)

Felkel: Computational geometry

Derivation of projected Voronoi edge

 2 points: and in the plane

 Intersect the planes, project onto xy (eliminate z)

 This line passes through midpoint between p and q

 It is perpendicular bisector with slope
[Mount]

Tangent planes
to paraboloid

ଶ ଶଶ ଶ
ଶ ଶ + ଶ ଶ

௔ା௖ଶ ௕ାௗଶ ଶ ଶ + ଶ ଶ

(80 / 79)

Felkel: Computational geometry

References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14,
and 30.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Rourke] Joseph O´Rourke: .: Computational Geometry in C, Cambridge
University Press, 1993, ISBN 0-521- 44592-2
http://maven.smith.edu/~orourke/books/compgeom.html

[Fukuda] Komei Fukuda: Frequently Asked Questions in Polyhedral
Computation. Version June 18, 2004
http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html

(81 / 79)

