
VORONOI DIAGRAM
PART II

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Reiberg] and [Nandy]

Version from 8.11.2012

Talk overview

 Incremental construction
 Voronoi diagram of line segments
 VD of order k
 Farthest-point VD

Felkel: Computational geometry

(2 / 40)

Felkel: Computational geometry

(3 / 40)

Incremental construction – bounded cell

b

a

c

d

x

y

Felkel: Computational geometry

(4 / 40)

Incremental construction – unbounded cell

x
y

b
a

Input:
Output:

Felkel: Computational geometry

(5 / 40)

Incremental construction algorithm
InsertPoint(S, Vor(S), y) … y = a new site

Point set S, its Voronoi diagram, and inserted point y–S
VD after insertion of y

1. Find the cell V(x) in which y falls …O(log n)
2. Detect the intersections {a,b} of bisector L(x,y) with boundary of cell V(x)

=> * first edge e = ab on the border of cells of sites x and y …O(n)
3. p = a, site z = neighbor site across the border with point a …O(1)
4. while(exists(p) and z ∫ a) // trace the bisectors from a in one direction

a. Detect the intersection c of bisector L(z,y) with V(z)
b. Report Voronoi edge pc …O(n2)
c. p = c

5. if(c ∫ a) then p = b …O(1)
6. while(exists(p) and z ∫ a) // trace the bisectors from b in other direction

1. Detect the intersection c of bisector L(z,y) with V(z)
2. Report Voronoi edge pc …O(n2)
3. p = c

O(n2) worst-case, O(n) expected time for some distributions

Felkel: Computational geometry

(6 / 40)

Voronoi diagram of line segments

Distance measured
perpendicularly to the object

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: – line segments

– parabolic arcs
Type 1

Type 2

Type 3

[Berg]

Felkel: Computational geometry

(7 / 40)

VD of line segments with bounding box

BBOX
=>

standard
DCEL

[Berg]

Felkel: Computational geometry

(8 / 40)

Bisector of 2 line-segments in detail

 Consists of line segments and parabolic arcs
Distance from point-to-object is measured to the closest point on the object
(perpendicularly to the object silhouette)

– Line segment – bisector of end-points or of interiors
– Parabolic arc – of point and interior of a line segment

Bisector of two disjoint
line segments has ≤7 parts

Input line segments

[Berg]

Type 1

Type 2

Type 3

Felkel: Computational geometry

(9 / 40)

Bisector in greater details

Bisector of two
line segment interiors

(in intersection of perpendicular slabs only)

Bisector of (end-)point and
line segment interior

[Reiberg]

Type 2 Type 3

Felkel: Computational geometry

(10 / 40)

Voronoi diagram of line segments

 More complex bisectors of line segments
– line segments and parabolic arcs

 Still combinatorial complexity of O(n)
 Assumptions on the input line segments:

– non-crossing
– strictly disjoint end-points (slightly shorten the segm.)

if(we allow touching segments)
Shared endpoints cause complication:
The whole region is equally close
to two line segments

[Berg]

Felkel: Computational geometry

(11 / 40)

VD of points and line segments examples

[Reiberg]

2 points Point & segment 2 line segments

E2

Felkel: Computational geometry

(12 / 40)

Beach line

= Points with distance to the closest site above sweep line l
equal to the distance to l

 Beach line contains
– parabolic arcs when closest to one site end-point
– straight line segments when closest to a site interior

(just the part of interior above l for intersection s with l)

[Berg]

(This is the shape of the beach line)

Note: site = line segment

Felkel: Computational geometry

(13 / 40)

Beach line breakpoints types

 Point p is equidistant from l and
(equidistant and closest to)
1. two site end-points => traces a VD line segment
2. two site interiors => traces a VD line segment
3. end-point and interior => traces a VD parabolic arc
4. one site end-point => traces a line segment

(border of the slab
perpendicular to the site)

5. site interior intersects => intersection traces a line
the scan line l segment

Cases 4 and 5 involve only one site and therefore do
not form a Voronoi diagram arc (used by alg. only)

Felkel: Computational geometry

(14 / 40)

Breakpoints types and what they trace

 1,2 trace a line segment (part of VD edge) DRAW

 3 traces a parabolic arc (part of VD edge) DRAW

 4,5 trace a line segment (used only by the algorithm) MOVE

– 4 limits the slab perpendicular to the line segment
– 5 traces the intersection of input segment with a sweep line

1
24

5

3 4
4 4 4

4

3

3

2

Traced parabolic arcParabolic arc on the
beach line

[Berg]

(This is the shape of the traced VD arcs)

Felkel: Computational geometry

(15 / 40)

Site event – sweep line reaches an endpoint

I. At upper endpoint of
– Arc above is split into two
– 4 new arcs are created

(2 segments + 2 parabolas)
– Breakpoints for 2 segments

are of type 4-5-4
– Breakpoints for parabolas

depend on the surrounding
sites

• Type 1 for two end-points
• Type 3 for endpoint and interior
• etc… 4 5

4

1

1 (1 or 3 or even 2
depending on
mutual positions)

dangling
VD edge
(for 1 – 1)

4 5

4

4

4

[Berg]

Felkel: Computational geometry

(16 / 40)

Site event – sweep line reaches an endpoint

II. At lower endpoint of
– Intersection with interior

(breakpoint of type 5)

– is replaced by two breakpoints
(of type 4)
with parabolic arc between them

4 5

5
4

4

4

4

l

l

l

Felkel: Computational geometry

(17 / 40)

Circle event – lower point of circle of 3 sites

 Two breakpoints meet (on the beach-line)
 Solution depends on their type

– Any of first three types meet
– 3 sites involved – Voronoi vertex created

– Type 4 with something else
– two sites involved – breakpoint changes its type
– Voronoi vertex not created

(Voronoi edge may change its shape)
– Type 5 with something else

– never happens for disjoint segments
(meet with type 4 happens before)

Felkel: Computational geometry

(18 / 40)

Motion planning example - retraction

qend qstart

Find path for a circular robot of radius r from Qstart to Qend
Rušení hran

[Berg]

Felkel: Computational geometry

(19 / 40)

Motion planning example - retraction
Find path for a circular robot of radius r from Qstart to Qend

 Create Voronoi diagram of line segments,
take it as a graph

 Project Qstart to Pstart on VD and Qend to Pend

 Remove segments with distance to sites smaller than
radius r of a robot

 Depth first search if path from Pstart to Pend exists
 Report path Qstart Pstart…path… Pend to Qend

 O(n log n) time using O(n) storage

Rušení hran

Felkel: Computational geometry

(20 / 40)

Order-2 Voronoi diagram

V(pi,pj) : the set of points
of the plane closer
to each of pi and pj
than to any other site

Property
The order-2 Voronoi
regions are convex

[Nandy]

Felkel: Computational geometry

(21 / 40)

Construction of V(3,5)

Intersection of all halfplanes
except H(3,5) and H(5,3)

[Nandy]


35

),5(),3(
≠≠

∩
xx

xhxh

Felkel: Computational geometry

(22 / 40)

Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?

=> V(p,s) and V(p,t)

c3(1,2)

V(2,3)

V(1,3)

edge : set of centers of
circles passing through
2 sites s and t and
containing 1 site p
=> cp(s,t)

[Nandy]

V(5,7)

Felkel: Computational geometry

(23 / 40)

Order-2 Voronoi vertices

=> up(Q) or u∅(Q (p)

u5(2,3,7)

u∅(3,6,7,5)

vertex : center of a circle
passing through at least
3 sites and containing
either 1 or 0 site

(circle circumscribed to Q)

[Nandy]

Types of order-2 Voronoi vertices

Felkel: Computational geometry

(24 / 39)

[Nandy]

u5(2,3,7)

u∅(3,6,7,5)

C5(2,7)

C6(3,7)

C3(5,6)

=> up(Q) or u∅(Q (p)

vertex : center of a circle
passing through at least
3 sites and containing
either 1 or 0 site

(circle circumscribed to Q)

Felkel: Computational geometry

(25 / 40)

Order-k Voronoi Diagram

Theorem
The size of the order-k
diagrams is O(k(n-k))

Theorem
The order-k diagrams
can be constructed from
the order-(k-1) diagrams
in O(k(n-k)) time

Corollary
The order-k diagrams can
be iteratively constructed
in O(n log n + k2(n-k)) time

[Nandy]

Felkel: Computational geometry

(26 / 40)

Order n-1 = Farthest-point Voronoi diagram
cell V-1(7)
= set of points in the
plane farther from pi=7
than from any other
site

Vor-1(P) = Vorn-1(P)
= partition of the plane
formed by the farthest
point Voronoi regions,
their edges, and
vertices

[Nandy]

= Vn-1({1,2,3,4,5,6})

Felkel: Computational geometry

(27 / 40)

Farthest-point Voronoi diagrams example
Roundness of manufactured objects
 Input: set of measured points in 2D
 Output: width of the smallest-width annulus

(region between two concentric circles Cinner and Couter)
Three cases to test – one will win:

a) 1 point in – 3 out

Cinner
Couter

b) 3 in – 1 out c) 2 in – 2 out
[Berg]

Felkel: Computational geometry

(28 / 40)

Smallest width annulus – cases with 3 pts
b) Cinner contains at least 3 points
 Center is the vertex of normal Voronoi

diagram (1st order VD)
 The remaining point on Couter in O(n) for

each vertex => not the largest (inscribed) empty circle - Seminar [13]
as we must test all vertices in combination with point on C outer

3 in – 1 out

1 point in – 3 out

Cinner
Couter a) Couter contains at least 3 points

 Center is the vertex of the
farthest Voronoi diagram

 The remaining point on Cinner in
O(n) => not the smallest enclosing circle - Seminar [12]

as we must test all vertices in combination with point on C
inner

[Berg]

[Berg]

Felkel: Computational geometry

(29 / 40)

Smallest width annulus – case with 2+2 pts
c) Cinner and Couter contain 2 points each
 Generate vertices of overlay of Voronoi and

farthest-point Voronoi diagrams
=> O(n2) candidates for centers

(we need vertices, not the
whole overlay)

 annulus computed in O(1)
from center and 4 points
(same for all 3 cases)

2 in – 2 out

[Berg]

3 in – 1 out

1 in
– 3 out

2 in – 2 out

Input:
Output:

Felkel: Computational geometry

(30 / 40)

Smallest width annulus
Smallest-Width-Annulus

Set P of n points in the plane
Smallest width annulus center and radii r and R (roundness)

1. Compute Voronoi diagram Vor(P)
and farthest-point Voronoi diagram Vor-1(P) of P

2. For each vertex of Vor-1(P) (R) determine the closest point (r) from P
=> O(n) sets of four points defining candidate annuli

3. For each vertex of Vor(P) (r) determine the farthest point (R) from P
=> O(n) sets of four points defining candidate annuli

4. For every pair of edges Vor(P) and Vor-1(P) test if they intersect
=> another set of four points defining candidate annulus

5. For all candidates of all three types
chose the smallest-width annulus

O(n2) time using O(n) storage

1. O(n log n)
2. O(n2)
3. O(n2)
4. O(n2)
5. O(n2)

Felkel: Computational geometry

(31 / 40)

Farthest-point Voronoi diagram
V-1(pi) cell
= set of points in the
plane farther from pi
than from any other
site

Vor-1(P) diagram
= partition of the plane
formed by the farthest
point Voronoi regions,
their edges, and
vertices

[Nandy]

Felkel: Computational geometry

(32 / 40)

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V-1(7)

Property
The farthest point Voronoi
regions are convex
and unbounded

[Nandy]

Felkel: Computational geometry

(33 / 40)

Farthest-point Voronoi region
Properties:
 Only vertices of the convex hull have their cells in farthest

Voronoi diagram
 The farthest point

Voronoi regions
are unbounded

 The farthest point
Voronoi edges and
vertices form a tree
(in the graph sense)

[Nandy]

x

Felkel: Computational geometry

(34 / 40)

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant
from 2 sites and closer to
all the other sites

vertex : point equidistant from
at least 3 sites and closer to
all the other sites

[Nandy]

Felkel: Computational geometry

(35 / 40)

Application of Vor-1(P) : Smallest enclosing circle

 Construct Vor-1(P) and find minimal circle with
center in Vor-1(P) vertices or on edges

V-1(2)

V-1(4)

V-1(7)

[Nandy]

Felkel: Computational geometry

(36 / 40)

Modified DCEL for farthest-point Voronoi d

 Half-infinite edges -> we adapt DCEL
 Half-edges with origin in infinity

– Special vertex-like record for origin in infinity
– Store direction instead of coordinates
– Next(e) or Prev(e) pointers undefined

 For each inserted site pj
– store a pointer to the most

CCW half-infinite half-edge
of its cell in DCEL

Input:
Output:

Felkel: Computational geometry

(37 / 40)

Farthest-point Voronoi d. construction
Farthest-pointVoronoi O(nlog n) time in O(n) storage

Set of points P in plane
Farthest-point VD Vor-1(P)

1. Compute convex hull of P
2. Put points in CH(P) of P in random order p1,…,ph
3. Remove ph, … ,p4 from the cyclic order (around the CH).

When removing pi, store the neighbors: cw(pi) and ccw(pi) at the time of
removal. (This is done to know the neighbors needed in step 6.)

4. Compute Vor-1({ p1, p2, p3 }) as init
5. for i = 4 to h do
6. Add site pi to Vor-1({ p1, p2,…, pi-1 }) between site cw(pi) and ccw(pi)
7. - start at most CCW edge of the cell ccw(pi)
8. - continue CW to find intersection with bisector(ccw(pi), pi)
9. - trace borders of Voronoi cell pi in CCW order, add edges
10. - remove invalid edges inside of Voronoi cell pi

Felkel: Computational geometry

(38 / 40)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(39 / 40)

Farthest-point Voronoi d. construction

After insertion of site pi

Felkel: Computational geometry

(40 / 40)

References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 7, http://www.cs.uu.nl/geobook/

[Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An
Introduction. Berlin, Springer-Verlag,1985. Chapters 5 and 6

[Reiberg] Reiberg, J: Implementierung Geometrischer Algoritmen.
Berechnung von Voronoi Diagrammen fuer Liniensegmente.
http://www.reiberg.net/project/voronoi/avortrag.ps.gz

[Nandy] Subhas C. Nandy: Voronoi Diagram – presentation. Advanced
Computing and Microelectronics Unit. Indian Statistical Institute.
Kolkata 700108 http://www.tcs.tifr.res.in/~igga/lectureslides/vor-July-08-2009.ppt

[CGAL] http://www.cgal.org/Manual/3.1/doc_html/cgal_manual/Segment
_Voronoi_diagram_2/Chapter_main.html

[applets] http://www.personal.kent.edu/~rmuhamma/Compgeometry/
MyCG/Voronoi/Fortune/fortune.htm a http://www.liefke.com/hartmut/cis677/

