
VORONOI DIAGRAM
PART II

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Reiberg] and [Nandy]

Version from 16.11.2017

Talk overview

 Incremental construction
 Voronoi diagram of line segments
 VD of order k
 Farthest-point VD

Felkel: Computational geometry

(2 / 45)

Summary of the VD terms

 Site = input point, line segment, …
 Cell = area around the site, in VD1 the nearest to

site
 Edge, arc = part of Voronoi diagram

(border between cells)
 Vertex = intersection of VD edges

Felkel: Computational geometry

(3 / 45)

Incremental construction – bounded cell

x

Felkel: Computational geometry

(4 / 45)

Incremental construction – bounded cell

x

y

Felkel: Computational geometry

(4 / 45)

Incremental construction – bounded cell

b

a

x

y

Felkel: Computational geometry

(4 / 45)

Incremental construction – bounded cell

b

a

c

x

y

Felkel: Computational geometry

(4 / 45)

Incremental construction – bounded cell

b

a

c

d

x

y

Felkel: Computational geometry

(4 / 45)

Incremental construction – bounded cell

b

a

c

d

x

y

Felkel: Computational geometry

(4 / 45)

Incremental construction – bounded cell

b

a

c

d

x

y

Felkel: Computational geometry

(4 / 45)

Incremental construction – unbounded cell

x

Felkel: Computational geometry

(5 / 45)

Incremental construction – unbounded cell

x
y

Felkel: Computational geometry

(5 / 45)

Incremental construction – unbounded cell

x
y

b
a

Felkel: Computational geometry

(5 / 45)

Incremental construction – unbounded cell

x
y

b
a

Felkel: Computational geometry

(5 / 45)

Incremental construction – unbounded cell

x
y

b
a

Felkel: Computational geometry

(5 / 45)

Incremental construction – unbounded cell

x
y

b
a

Felkel: Computational geometry

(5 / 45)

Incremental construction – unbounded cell

x
y

b
a

Felkel: Computational geometry

(5 / 45)

Input:
Output:

Incremental construction algorithm
InsertPoint(S, Vor(S), y) … y = a new site

Point set S, its Voronoi diagram, and inserted point y–S
VD after insertion of y

1. Find the site x in which cell point y falls, …O(log n)
2. Detect the intersections {a,b} of bisector L(x,y) with cell x boundary

=> create the first edge e = ab on the border of site x …O(n)
3. Set start intersection point p = b, set new intersection c = undef
4. site z = neighbor site across the border with intersection b …O(1)
5. while(exists(p) and c ∫ a) // trace the bisectors from b in one direction

a. Detect intersection c of L(y,z) with border of cell z
b. Report Voronoi edge pc …O(n2)
c. p = c, z=neighbor site across border with intersec. c

5. if(c ∫ a) then // trace the bisectors from a in other direction
a. p = a
b. Similarly as in steps 3,4,5 with a

O(n2) worst-case, O(n) expected time for some distributions

Voronoi diagram of line segments
Input: S = {s1, …, sn} = set of n disjoint line segments (sites)




[Berg]

Felkel: Computational geometry

(8 / 45)

Voronoi diagram of line segments
Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments

parabolic arcs

[Berg]

Felkel: Computational geometry

(8 / 45)

Voronoi diagram of line segments

Distance measured
perpendicularly to the object
(line segment)

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments

parabolic arcs

[Berg]

Felkel: Computational geometry

(8 / 45)

Voronoi diagram of line segments

Distance measured
perpendicularly to the object
(line segment)

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments

parabolic arcs
Type 1

[Berg]

Felkel: Computational geometry

(8 / 45)

Voronoi diagram of line segments

Distance measured
perpendicularly to the object
(line segment)

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments

parabolic arcs
Type 1

Type 2

[Berg]

Felkel: Computational geometry

(8 / 45)

Voronoi diagram of line segments

Distance measured
perpendicularly to the object
(line segment)

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments

parabolic arcs
Type 1

Type 2

Type 3

[Berg]

Felkel: Computational geometry

(8 / 45)

Voronoi diagram of line segments
Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments

parabolic arcs
Type 1

Type 2

Type 3

[Berg]

Felkel: Computational geometry

(8 / 45)

VD of line segments with bounding box

BBOX
=>

standard
DCEL

[Berg]

Felkel: Computational geometry

(9 / 45)

Bisector of 2 line-segments in detail

 Consists of line segments and parabolic arcs
Distance from point-to-object is measured to the closest point on the object
(perpendicularly to the object silhouette)

– Line segment – bisector of end-points(1) or of interiors(2)

– Parabolic arc – of point and interior(3) of a line segment

Input line segments

[Berg]

Type 1

Type 2

Type 3

Felkel: Computational geometry

(10 / 45)

Bisector of 2 line-segments in detail

 Consists of line segments and parabolic arcs
Distance from point-to-object is measured to the closest point on the object
(perpendicularly to the object silhouette)

– Line segment – bisector of end-points(1) or of interiors(2)

– Parabolic arc – of point and interior(3) of a line segment

Input line segments

[Berg]

Type 1

Type 2

Type 3

Felkel: Computational geometry

(10 / 45)

Bisector of 2 line-segments in detail

 Consists of line segments and parabolic arcs
Distance from point-to-object is measured to the closest point on the object
(perpendicularly to the object silhouette)

– Line segment – bisector of end-points(1) or of interiors(2)

– Parabolic arc – of point and interior(3) of a line segment

Bisector of two disjoint
line segments has ≤7 parts

Input line segments

[Berg]

Type 1

Type 2

Type 3

Felkel: Computational geometry

(10 / 45)

Bisector of 2 line-segments in detail

 Consists of line segments and parabolic arcs
Distance from point-to-object is measured to the closest point on the object
(perpendicularly to the object silhouette)

– Line segment – bisector of end-points(1) or of interiors(2)

– Parabolic arc – of point and interior(3) of a line segment

Bisector of two disjoint
line segments has ≤7 parts

Input line segments

[Berg]

Type 1

Type 2

Type 3

Felkel: Computational geometry

(10 / 45)

Bisector of 2 line-segments in detail

 Consists of line segments and parabolic arcs
Distance from point-to-object is measured to the closest point on the object
(perpendicularly to the object silhouette)

– Line segment – bisector of end-points(1) or of interiors(2)

– Parabolic arc – of point and interior(3) of a line segment

Bisector of two disjoint
line segments has ≤7 parts

Input line segments

[Berg]

Type 1

Type 2

Type 3

Felkel: Computational geometry

(10 / 45)

Bisector in greater details

Bisector of two
line segment interiors

(in intersection of perpendicular slabs only)

Bisector of (end-)point and
line segment interior

[Reiberg]

Type 2 Type 3

Felkel: Computational geometry

(11 / 45)

VD of points and line segments examples

[Reiberg]

2 points Point & segment 2 line segments

E2

Felkel: Computational geometry

(12 / 45)

Voronoi diagram of line segments

 More complex bisectors of line segments
– VD contains line segments and parabolic arcs

 Still combinatorial complexity of O(n)
 Assumptions on the input line segments:

– non-crossing
– strictly disjoint end-points (slightly shorten the segm.)

[Berg]

Felkel: Computational geometry

(13 / 45)

if(we allow touching segments)
Shared endpoints cause complication:
The whole region is equally close
to two line segments

Shape of Beach line for line segments

= Points with distance to the closest site above sweep line l
equal to the distance to l

 Beach line contains
– parabolic arcs when closest to a site end-point
– straight line segments when closest to a site interior

(or just the part of the site interior above l if the site s intersects l)

[Berg]

(This is the shape of the beach line)
Felkel: Computational geometry

(15 / 45)

Beach line breakpoints types

Breakpoint p is equidistant from l and
equidistant and closest to:

1. two site end-points => p traces a VD line segment
2. two site interiors => p traces a VD line segment
3. end-point and interior => p traces a VD parabolic arc
4. one site end-point => p traces a line segment

(border of the slab
perpendicular to the site)

5. site interior intersects => p = intersection, traces
the scan line l the input line segment

Cases 4 and 5 involve only one site and therefore do
not form a Voronoi diagram edge (are used by alg.only)

Felkel: Computational geometry

(16 / 45)

points

segments

Breakpoints types and what they trace

 1,2 trace a Voronoi line segment (part of VD edge) DRAW

 3 traces a Voronoi parabolic arc (part of VD edge) DRAW

 4,5 trace a line segment (used only by the algorithm) MOVE

– 4 limits the slab perpendicular to the line segment
– 5 traces the intersection of input segment with a sweep line

1
24

5

3 4
4 4 4

4

3

3

2

Traced parabolic arcParabolic arc on the
beach line

[Berg]

(This is the shape of the traced VD arcs)
Felkel: Computational geometry

(17 / 45)

Site event – sweep line reaches an endpoint

I. At upper endpoint of
– Arc above is split into two
– four new arcs are created

(2 segments + 2 parabolas)
– Breakpoints for two segments

are of type 4-5-4
– Breakpoints for parabolas

depend on the surrounding
sites

• Type 1 for two end-points
• Type 3 for endpoint and interior
• etc… 4 5

4

1

1 (1 or 3 or even 2
depending on
mutual positions)

dangling
VD edge
(for 1 – 1)

4 5

4

4

4

[Berg]

Felkel: Computational geometry

(18 / 45)

Site event – sweep line reaches an endpoint

II. At lower endpoint of
– Intersection with interior

(breakpoint of type 5)

– is replaced by two breakpoints
(of type 4)
with parabolic arc between them

4 5

5
4

4

4

4

l

l

l

Felkel: Computational geometry

(19 / 45)

Circle event – lower point of circle of 3 sites

 Two breakpoints meet (on the beach-line)
 Solution depends on their type

– Any of first three types (1,2,or 3) meet
– 3 sites involved – Voronoi vertex created

– Type 4 with something else
– two sites involved – breakpoint changes its type
– Voronoi vertex not created

(Voronoi edge may change its shape)
– Type 5 with something else

– never happens for disjoint segments
(meet with type 4 happens before)

Felkel: Computational geometry

(20 / 45)

Motion planning example - retraction

qend qstart

Find path for a circular robot of radius r from Qstart to Qend
Rušení hran

[Berg]

Felkel: Computational geometry

(21 / 45)

Motion planning example - retraction

qend qstart

Find path for a circular robot of radius r from Qstart to Qend
Rušení hran

[Berg]

Felkel: Computational geometry

(21 / 45)

Motion planning example - retraction

qend qstart

Find path for a circular robot of radius r from Qstart to Qend
Rušení hran

[Berg]

Felkel: Computational geometry

(21 / 45)

Motion planning example - retraction

qend qstart

Find path for a circular robot of radius r from Qstart to Qend
Rušení hran

[Berg]

Felkel: Computational geometry

(21 / 45)

Motion planning example - retraction

qend qstart

Find path for a circular robot of radius r from Qstart to Qend
Rušení hran

[Berg]

Felkel: Computational geometry

(21 / 45)

Motion planning example - retraction

qend qstart

Find path for a circular robot of radius r from Qstart to Qend
Rušení hran

[Berg]

Felkel: Computational geometry

(21 / 45)

Motion planning example - retraction
Find path for a circular robot of radius r from Qstart to Qend

 Create Voronoi diagram of line segments,
take it as a graph

 Project Qstart to Pstart on VD and Qend to Pend

 Remove segments with distance to sites smaller than
radius r of a robot

 Depth first search if path from Pstart to Pend exists
 Report path Qstart Pstart…path… Pend to Qend

 O(n log n) time using O(n) storage

Rušení hran

Felkel: Computational geometry

(22 / 45)

Order-2 Voronoi diagram

[Nandy]

Felkel: Computational geometry

(23 / 45)

Order-2 Voronoi diagram

V(pi,pj) : the set of points
of the plane closer
to each of pi and pj
than to any other site

[Nandy]

Felkel: Computational geometry

(23 / 45)

Order-2 Voronoi diagram

V(pi,pj) : the set of points
of the plane closer
to each of pi and pj
than to any other site

[Nandy]

Felkel: Computational geometry

(23 / 45)

Order-2 Voronoi diagram

V(pi,pj) : the set of points
of the plane closer
to each of pi and pj
than to any other site

Property
The order-2 Voronoi
regions are convex

[Nandy]

Felkel: Computational geometry

(23 / 45)

Construction of V(3,5) = V(5,3)

Intersection of all halfplanes
except h(3,5) and h(5,3)

[Nandy]


35

),5(),3(



xx

xhxh

Felkel: Computational geometry

(24 / 45)

Construction of V(3,5) = V(5,3)

Intersection of all halfplanes
except h(3,5) and h(5,3)

[Nandy]


35

),5(),3(



xx

xhxh

Felkel: Computational geometry

(24 / 45)

Construction of V(3,5) = V(5,3)

Intersection of all halfplanes
except h(3,5) and h(5,3)

[Nandy]


35

),5(),3(



xx

xhxh

Felkel: Computational geometry

(24 / 45)

Construction of V(3,5) = V(5,3)

Intersection of all halfplanes
except h(3,5) and h(5,3)

[Nandy]


35

),5(),3(



xx

xhxh

Felkel: Computational geometry

(24 / 45)

Construction of V(3,5) = V(5,3)

Intersection of all halfplanes
except h(3,5) and h(5,3)

[Nandy]


35

),5(),3(



xx

xhxh

Felkel: Computational geometry

(24 / 45)

Order-2 Voronoi edges

[Nandy]

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi edges

[Nandy]

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi edges

c3(1,2)

edge : set of centers of
circles passing through
2 sites s and t and
containing one site p
=> cp(s,t)

[Nandy]

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?

c3(1,2)

edge : set of centers of
circles passing through
2 sites s and t and
containing one site p
=> cp(s,t)

[Nandy]

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?

c3(1,2)

V(2,3)

edge : set of centers of
circles passing through
2 sites s and t and
containing one site p
=> cp(s,t)

[Nandy]

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?

c3(1,2)

V(2,3)

edge : set of centers of
circles passing through
2 sites s and t and
containing one site p
=> cp(s,t)

[Nandy]

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?

c3(1,2)

V(2,3)

V(1,3)

edge : set of centers of
circles passing through
2 sites s and t and
containing one site p
=> cp(s,t)

[Nandy]

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?

=> V(p,s) and V(p,t)

c3(1,2)

V(2,3)

V(1,3)

edge : set of centers of
circles passing through
2 sites s and t and
containing one site p
=> cp(s,t)

[Nandy]

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?

=> V(p,s) and V(p,t)

c3(1,2)

V(2,3)

V(1,3)

edge : set of centers of
circles passing through
2 sites s and t and
containing one site p
=> cp(s,t)

[Nandy]

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?

=> V(p,s) and V(p,t)

c3(1,2)

V(2,3)

V(1,3)

edge : set of centers of
circles passing through
2 sites s and t and
containing one site p
=> cp(s,t)

[Nandy]

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?

=> V(p,s) and V(p,t)

c3(1,2)

V(2,3)

V(1,3)

edge : set of centers of
circles passing through
2 sites s and t and
containing one site p
=> cp(s,t)

[Nandy]

V(5,7)

Felkel: Computational geometry

(25 / 45)

Order-2 Voronoi vertices

[Nandy]

Felkel: Computational geometry

(26 / 45)

Order-2 Voronoi vertices

vertex : center of a circle
passing through at least
3 sites and containing
either site p or nothing

[Nandy]

Felkel: Computational geometry

(26 / 45)

Order-2 Voronoi vertices

 up(Q)
u5(2,3,7),

vertex : center of a circle
passing through at least
3 sites and containing
either site p or nothing

[Nandy]

Felkel: Computational geometry

(26 / 45)

Order-2 Voronoi vertices

 up(Q)
u5(2,3,7),

u5(2,3,7)vertex : center of a circle
passing through at least
3 sites and containing
either site p or nothing

[Nandy]

Felkel: Computational geometry

(26 / 45)

Order-2 Voronoi vertices

 up(Q)
u5(2,3,7),

u5(2,3,7)

u(3,6,7,5)

vertex : center of a circle
passing through at least
3 sites and containing
either site p or nothing

[Nandy]

or u(Q (p)
u(3,6,7)

Felkel: Computational geometry

(26 / 45)

Order-2 Voronoi vertices

 up(Q)
u5(2,3,7),

u5(2,3,7)

u(3,6,7,5)

vertex : center of a circle
passing through at least
3 sites and containing
either site p or nothing

(circle circumscribed to Q)

[Nandy]

or u(Q (p)
u(3,6,7)

Felkel: Computational geometry

(26 / 45)

Order-2 Voronoi vertex up(Q)

[Nandy]

u5(2,3,7)
C5(2,7)

Case up(Q)
u5(2,3,7)

5 is inside for all
incident edges:
C5(2,3)
C5(2,7)
C5(3,7)
=> is inside for circle
with center in vertex

vertex : center of a circle
passing through at least
3 sites and containing
either site p or nothing

C5(3,7)

C5(2,3)

Felkel: Computational geometry

(27 / 45)

Order-2 Voronoi vertex u(Q (p)

[Nandy]

u(3,6,7,5)
C6(3,7)

C3(5,6)

Case u(Q (p)
u(3,6,7,5)

vertex : center of a circle
passing through at least
3 sites and containing
either site p or nothing

C7(5,6)

C5(3,7)

Felkel: Computational geometry

(28 / 45)

Order-k Voronoi Diagram

Theorem věta

The size of the order-k
diagrams is O(k(n-k))

Theorem věta

The order-k diagrams
can be constructed from
the order-(k-1) diagrams
in O(k(n-k)) time

Corollary důsledek

The order-k diagrams can
be iteratively constructed
in O(n log n + k2(n-k)) time

[Nandy]

Felkel: Computational geometry

(29 / 45)

Order n-1 = Farthest-point Voronoi diagram
cell V-1(7)
= set of points in the
plane farther from pi=7
than from any other
site



[Nandy]

= Vn-1({1,2,3,4,5,6})

Felkel: Computational geometry

(30 / 45)

Order n-1 = Farthest-point Voronoi diagram
cell V-1(7)
= set of points in the
plane farther from pi=7
than from any other
site



[Nandy]

= Vn-1({1,2,3,4,5,6})

Felkel: Computational geometry

(30 / 45)

Order n-1 = Farthest-point Voronoi diagram
cell V-1(7)
= set of points in the
plane farther from pi=7
than from any other
site



[Nandy]

= Vn-1({1,2,3,4,5,6})

Felkel: Computational geometry

(30 / 45)

Order n-1 = Farthest-point Voronoi diagram
cell V-1(7)
= set of points in the
plane farther from pi=7
than from any other
site



[Nandy]

= Vn-1({1,2,3,4,5,6})

Felkel: Computational geometry

(30 / 45)

Order n-1 = Farthest-point Voronoi diagram
cell V-1(7)
= set of points in the
plane farther from pi=7
than from any other
site



[Nandy]

= Vn-1({1,2,3,4,5,6})

Felkel: Computational geometry

(30 / 45)

Order n-1 = Farthest-point Voronoi diagram
cell V-1(7)
= set of points in the
plane farther from pi=7
than from any other
site

Vor-1(P) = Vorn-1(P)
= partition of the plane
formed by the farthest
point Voronoi regions,
their edges, and
vertices

[Nandy]

= Vn-1({1,2,3,4,5,6})

Felkel: Computational geometry

(30 / 45)

a) 3 in – 1 out

Farthest-point Voronoi diagrams example
Roundness of manufactured objects
 Input: set of measured points in 2D
 Output: width of the smallest-width annulus mezikruží s nejmenší šířkou

(region between two concentric circles Cinner and Couter)
Three cases to test – one will win:

b) 1 point in – 3 out c) 2 in – 2 out
[Berg]

Felkel: Computational geometry

(31 / 45)

Couter

Cinner

Smallest width annulus – cases with 3 pts
a) Cinner contains at least 3 points
 Center is the vertex of normal Voronoi

diagram (1st order VD)
 The remaining point on Couter in O(n) for

each vertex
3 in – 1 out

1 point in – 3 out

Cinner
Couter b) Couter contains at least 3 points

 Center is the vertex of the
farthest Voronoi diagram

 The remaining point on Cinner in
O(n)

[Berg]

[Berg]

 not the largest (inscribed) empty circle - as discussed on seminar
as we must test all VD vertices in combination with point on C outer

 O(n2)

 not the smallest enclosing circle - as discussed on seminar
as we must test all vertices in combination with point on C inner

 O(n2)

Felkel: Computational geometry

(32 / 45)

[Berg]

Smallest width annulus – case with 2+2 pts
c) Cinner and Couter contain 2 points each
 Generate vertices of overlay of Voronoi (__)

and farthest-point Voronoi (- - -) diagrams
=> O(n2) candidates for centers

(we need only vertices,
not the complete overlay)

 annulus computed in O(1)
from center and 4 points
(same for all 3 cases)

 O(n2)

2 in – 2 out

Felkel: Computational geometry

(33 / 45)

[Berg]

3 in – 1 out

Smallest width annulus – case with 2+2 pts
c) Cinner and Couter contain 2 points each
 Generate vertices of overlay of Voronoi (__)

and farthest-point Voronoi (- - -) diagrams
=> O(n2) candidates for centers

(we need only vertices,
not the complete overlay)

 annulus computed in O(1)
from center and 4 points
(same for all 3 cases)

 O(n2)

2 in – 2 out

Felkel: Computational geometry

(33 / 45)

[Berg]

3 in – 1 out

1 in
– 3 out

Smallest width annulus – case with 2+2 pts
c) Cinner and Couter contain 2 points each
 Generate vertices of overlay of Voronoi (__)

and farthest-point Voronoi (- - -) diagrams
=> O(n2) candidates for centers

(we need only vertices,
not the complete overlay)

 annulus computed in O(1)
from center and 4 points
(same for all 3 cases)

 O(n2)

2 in – 2 out

Felkel: Computational geometry

(33 / 45)

[Berg]

3 in – 1 out

1 in
– 3 out

2 in – 2 out

Smallest width annulus – case with 2+2 pts
c) Cinner and Couter contain 2 points each
 Generate vertices of overlay of Voronoi (__)

and farthest-point Voronoi (- - -) diagrams
=> O(n2) candidates for centers

(we need only vertices,
not the complete overlay)

 annulus computed in O(1)
from center and 4 points
(same for all 3 cases)

 O(n2)

2 in – 2 out

Felkel: Computational geometry

(33 / 45)

Input:
Output:

Smallest width annulus
Smallest-Width-Annulus

Set P of n points in the plane
Smallest width annulus center and radii r and R (roundness)

1. Compute Voronoi diagram Vor(P)
and farthest-point Voronoi diagram Vor-1(P) of P

2. For each vertex of Vor(P) (r) determine the farthest point (R) from P
=> O(n) sets of four points defining candidate annuli – case a)

3. For each vertex of Vor-1(P) (R) determine the closest point (r) from P
=> O(n) sets of four points defining candidate annuli – case b)

4. For every pair of edges Vor(P) and Vor-1(P) test if they intersect
=> another set of four points defining candidate annulus – c)

5. For all candidates of all three types
chose the smallest-width annulus

O(n2) time using O(n) storage

1. O(n log n)
2. O(n2)
3. O(n2)
4. O(n2)
5. O(n2)

Farthest-point Voronoi diagram
V-1(pi) cell
= set of points in the
plane farther from pi
than from any other
site



[Nandy]

Felkel: Computational geometry

(35 / 45)

Farthest-point Voronoi diagram
V-1(pi) cell
= set of points in the
plane farther from pi
than from any other
site



[Nandy]

Felkel: Computational geometry

(35 / 45)

Farthest-point Voronoi diagram
V-1(pi) cell
= set of points in the
plane farther from pi
than from any other
site



[Nandy]

Felkel: Computational geometry

(35 / 45)

Farthest-point Voronoi diagram
V-1(pi) cell
= set of points in the
plane farther from pi
than from any other
site



[Nandy]

Felkel: Computational geometry

(35 / 45)

Farthest-point Voronoi diagram
V-1(pi) cell
= set of points in the
plane farther from pi
than from any other
site

Vor-1(P) diagram
= partition of the plane
formed by the farthest
point Voronoi regions,
their edges, and
vertices

[Nandy]

Felkel: Computational geometry

(35 / 45)

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V-1(7)

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௡௫ୀଵݔ , ݕ ≠ ݔ

Felkel: Computational geometry

(36 / 45)

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V-1(7)

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௡௫ୀଵݔ , ݕ ≠ ݔ

Felkel: Computational geometry

(36 / 45)

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V-1(7)

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௡௫ୀଵݔ , ݕ ≠ ݔ

Felkel: Computational geometry

(36 / 45)

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V-1(7)

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௡௫ୀଵݔ , ݕ ≠ ݔ

Felkel: Computational geometry

(36 / 45)

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V-1(7)

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௡௫ୀଵݔ , ݕ ≠ ݔ

Felkel: Computational geometry

(36 / 45)

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V-1(7)

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௡௫ୀଵݔ , ݕ ≠ ݔ

Felkel: Computational geometry

(36 / 45)

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V-1(7)

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௡௫ୀଵݔ , ݕ ≠ ݔ

Felkel: Computational geometry

(36 / 45)

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V-1(7)

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௡௫ୀଵݔ , ݕ ≠ ݔ

Felkel: Computational geometry

(36 / 45)

Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V-1(7)

Property
The farthest point Voronoi
regions are convex
and unbounded

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௡௫ୀଵݔ , ݕ ≠ ݔ

Felkel: Computational geometry

(36 / 45)

Farthest-point Voronoi region
Properties:






[Nandy]

Felkel: Computational geometry

(37 / 45)

Farthest-point Voronoi region
Properties:
 Only vertices of the convex hull have their cells in farthest

Voronoi diagram




[Nandy]

Felkel: Computational geometry

(37 / 45)

Farthest-point Voronoi region
Properties:
 Only vertices of the convex hull have their cells in farthest

Voronoi diagram




[Nandy]

Felkel: Computational geometry

(37 / 45)

Farthest-point Voronoi region
Properties:
 Only vertices of the convex hull have their cells in farthest

Voronoi diagram
 The farthest point

Voronoi regions
are unbounded



[Nandy]

Felkel: Computational geometry

(37 / 45)

Farthest-point Voronoi region
Properties:
 Only vertices of the convex hull have their cells in farthest

Voronoi diagram
 The farthest point

Voronoi regions
are unbounded



[Nandy]

Felkel: Computational geometry

(37 / 45)

Farthest-point Voronoi region
Properties:
 Only vertices of the convex hull have their cells in farthest

Voronoi diagram
 The farthest point

Voronoi regions
are unbounded



[Nandy]

Felkel: Computational geometry

(37 / 45)

Farthest-point Voronoi region
Properties:
 Only vertices of the convex hull have their cells in farthest

Voronoi diagram
 The farthest point

Voronoi regions
are unbounded

 The farthest point
Voronoi edges and
vertices form a tree
(in the graph sense)

[Nandy]

Felkel: Computational geometry

(37 / 45)

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant
from 2 sites and closer to
all the other sites

[Nandy]

Felkel: Computational geometry

(38 / 45)

x

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant
from 2 sites and closer to
all the other sites

[Nandy]

Felkel: Computational geometry

(38 / 45)

x

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant
from 2 sites and closer to
all the other sites

[Nandy]

Felkel: Computational geometry

(38 / 45)

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant
from 2 sites and closer to
all the other sites

[Nandy]

Felkel: Computational geometry

(38 / 45)

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant
from 2 sites and closer to
all the other sites

[Nandy]

Felkel: Computational geometry

(38 / 45)

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant
from 2 sites and closer to
all the other sites

vertex : point equidistant from
at least 3 sites and closer to
all the other sites

[Nandy]

Felkel: Computational geometry

(38 / 45)

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant
from 2 sites and closer to
all the other sites

vertex : point equidistant from
at least 3 sites and closer to
all the other sites

[Nandy]

Felkel: Computational geometry

(38 / 45)

Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant
from 2 sites and closer to
all the other sites

vertex : point equidistant from
at least 3 sites and closer to
all the other sites

[Nandy]

Felkel: Computational geometry

(38 / 45)

Application of Vor-1(P) : Smallest enclosing circle

 Construct Vor-1(P) and find minimal circle with
center in Vor-1(P) vertices or on edges

V-1(2)

V-1(4)

V-1(7)

[Nandy]

Felkel: Computational geometry

(39 / 45)

Modified DCEL for farthest-point Voronoi d

 Half-infinite edges -> we adapt DCEL
 Half-edges with origin in infinity

– Special vertex-like record for origin in infinity
– Store direction instead of coordinates
– Next(e) or Prev(e) pointers undefined

 For each inserted site pj
– store a pointer to the most

CCW half-infinite half-edge
of its cell in DCEL

Felkel: Computational geometry

(40 / 45)

Modified DCEL for farthest-point Voronoi d

 Half-infinite edges -> we adapt DCEL
 Half-edges with origin in infinity

– Special vertex-like record for origin in infinity
– Store direction instead of coordinates
– Next(e) or Prev(e) pointers undefined

 For each inserted site pj
– store a pointer to the most

CCW half-infinite half-edge
of its cell in DCEL

Felkel: Computational geometry

(40 / 45)

Modified DCEL for farthest-point Voronoi d

 Half-infinite edges -> we adapt DCEL
 Half-edges with origin in infinity

– Special vertex-like record for origin in infinity
– Store direction instead of coordinates
– Next(e) or Prev(e) pointers undefined

 For each inserted site pj
– store a pointer to the most

CCW half-infinite half-edge
of its cell in DCEL

Felkel: Computational geometry

(40 / 45)

Idea of the algorithm

1. Create the convex hull
and number the CH points randomly

2. Remove the points starting in the last of this
random order and store cw(pi) and ccw(pi) points
at the time of removal.

3. Include the points back and compute V-1

ସ݌ ଶ݌
ଵ݌ଷ݌଺݌ହ݌ ସ݌ ଶ݌

ଵ݌ଷ݌଺݌ହ݌
௜݌ (௜݌)ݓܿܿ ଺݌(௜݌)ݓܿ ଷ݌ ହ݌ହ݌ ଷ݌ ଶ݌
…

Felkel: Computational geometry

(41 / 45)

Input:
Output:

Farthest-point Voronoi d. construction
Farthest-pointVoronoi O(nlog n) time in O(n) storage

Set of points P in plane
Farthest-point VD Vor-1(P)

1. Compute convex hull of P
2. Put points in CH(P) of P in random order p1,…,ph
3. Remove ph, … ,p4 from the cyclic order (around the CH).

When removing pi, store the neighbors: cw(pi) and ccw(pi) at the time of
removal. (This is done to know the neighbors needed in step 6.)

4. Compute Vor-1({ p1, p2, p3 }) as init
5. for i = 4 to h do
6. Add site pi to Vor-1({ p1, p2,…, pi-1 }) between site cw(pi) and ccw(pi)
7. - start at most CCW edge of the cell ccw(pi)
8. - continue CW to find intersection with bisector(ccw(pi), pi)
9. - trace borders of Voronoi cell pi in CCW order, add edges
10. - remove invalid edges inside of Voronoi cell pi

Farthest-point Voronoi d. construction

Insertion of site pi




Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)



Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

Insertion of site pi
Start with site ccw(pi)

and ccw edge of its cell

Felkel: Computational geometry

(43 / 45)

Farthest-point Voronoi d. construction

After insertion of site pi

Felkel: Computational geometry

(44 / 45)

Farthest-point Voronoi d. construction

After insertion of site pi

Felkel: Computational geometry

(44 / 45)

References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 7, http://www.cs.uu.nl/geobook/

[Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An
Introduction. Berlin, Springer-Verlag,1985. Chapters 5 and 6

[Reiberg] Reiberg, J: Implementierung Geometrischer Algoritmen.
Berechnung von Voronoi Diagrammen fuer Liniensegmente.
http://www.reiberg.net/project/voronoi/avortrag.ps.gz

[Nandy] Subhas C. Nandy: Voronoi Diagram – presentation. Advanced
Computing and Microelectronics Unit. Indian Statistical Institute.
Kolkata 700108 http://www.tcs.tifr.res.in/~igga/lectureslides/vor-July-08-2009.ppt

[CGAL] http://www.cgal.org/Manual/3.1/doc_html/cgal_manual/Segment
_Voronoi_diagram_2/Chapter_main.html

[applets] http://www.personal.kent.edu/~rmuhamma/Compgeometry/
MyCG/Voronoi/Fortune/fortune.htm a http://www.liefke.com/hartmut/cis677/

Felkel: Computational geometry

(45 / 45)

