
VORONOI DIAGRAM

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.fel.cvut.cz/wiki/courses/cg/
Based on [Berg] and [Mount]

Version from 8.11.2018

Talk overview

 Definition and examples

 Applications

 Algorithms in 2D
– D&C O(n log n)
– Sweep line O(n log n)

www.cguu.com

Felkel: Computational geometry

(2 / 43)

Voronoi diagram (VD)

 One of the most important structure in Comp. geom.
 Encodes proximity information

What is close to what?
 Standard VD – this lecture

– Set of points - nDim
– Euclidean space & metric

 Generalizations
– Set of line segments or curves
– Different metrics
– Higher order VD’s (furthest point)

Gershon Elber: IRIT

Felkel: Computational geometry

(3 / 43)

Voronoi cell (for points in plane)

 Let P = {p1, p2,…, pn} be a set of points (sites) in
dDim space … 2D space (plane) here

 Voronoi cell V(pi) – is open!
= set of points q closer to pi than to any other site:

, where
is the Euclidean distance between p and q

},,{)(ijqpqpqpV jii
pq

ij

jii pphpV

 ,
 ji pph , = open halfplane

= set of pts strictly closer to pi than to pj

= intersection of open halfplanes

[Berg]

Felkel: Computational geometry

(4 / 43)

Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells
= collection of line segments

(possibly unbounded)

Site (given point)
VoroGlide demo

Felkel: Computational geometry

(5 / 43)

Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells
= collection of line segments

(possibly unbounded)

Site (given point)
VoroGlide demo

Felkel: Computational geometry

(5 / 43)

Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells
= collection of line segments

(possibly unbounded)

Edge

Site (given point)
VoroGlide demo

Felkel: Computational geometry

(5 / 43)

Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells
= collection of line segments

(possibly unbounded)

Edge

Site (given point)

Vertex

VoroGlide demo

Felkel: Computational geometry

(5 / 43)

Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells
= collection of line segments

(possibly unbounded)

Edge

Site (given point)

Vertex

Region around
the site is cell

VoroGlide demo

Felkel: Computational geometry

(5 / 43)

Voronoi diagram examples

1 point

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points 3 points

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points 3 points

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points 3 points

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points 3 points

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

1 point 2 points 3 points

Cell
• The whole plain for 1 point
• Halfplane or strip for collinear points
• Convex (possibly unbounded) polygon
Edges of VD
• || lines for collinear points
• Halflines (for non-collinear CH points)
• Line segments (for bounded cells)

Felkel: Computational geometry

(6 / 43)

Voronoi diagram examples

16 points

[Håkan Jonsson]

Vertex with O(n) incident edges
From total |ne| ≤ 3n – 6

Felkel: Computational geometry

(7 / 43)

16 <= 42 17 <= 29

Voronoi diagram examples

16 points 17 points

Cell with O(n) vertices
From total |nv| 2n-5

[Håkan Jonsson]

Vertex with O(n) incident edges
From total |ne| ≤ 3n – 6

Felkel: Computational geometry

(7 / 43)

16 <= 42 17 <= 29

Voronoi diagram examples

Felkel: Computational geometry

(8 / 43)

Voronoi diagram (in plane)

= planar graph
– Subdivides plane into n cells (n = num. of input sites |P|)
– Edge = locus of equidistant pairs of points (cells)

= part of the bisector of these points
– Vertex = center of the circle defined by ≥ 3 points

=> vertices have degree ≥ 3
– Number of vertices nv ≤ 2n – 5 => O(n)
– Number of edges ne ≤ 3n – 6 => O(n)

(only O(n) from O(n2) intersections of bisectors)
– In higher dimensions complexity from O(n) up to O(n|d/2|)
– Unbounded cells belong to sites (points) on convex hull

Felkel: Computational geometry

(9 / 43)

Voronoi diagram O(n) complexity derivation
 For n collinear sites: = 0														 ≤ 2 − 5= − 1 		≤ 3 − 6
 For n non-collinear sites:

– Add extra VD vertex v in infinity = + 1
– Apply Euler’s formula: − + = 2
– Obtain + 1 −	 + 	 		 = 2
– Every VD edge has 2 vertices Sum of vertex degrees = 2
– Every VD vertex has degree ¥ 3 Sum of vertex degrees = 3 = 3(+ 1)
– Together 2 ≥ 3 + 1

Felkel: Computational geometry

(10 / 43)

2 ≥ 3 + 1 																2 ≥ 3 − + 1 + 12 ≥ 3 − 3 + 6≤ 3 − 6

= + − 1= − + 1

both hold

2 ≥ 3 + 12(+ − 1) ≥ 3 + 12 + 2 − 2 ≥ 3 + 3≤ 2 − 5

Voronoi diagram and convex hull

 Convex hull

Connects points from
unbounded cells

Felkel: Computational geometry

(11 / 43)

Delaunay triangulation

 point set triangulation (straight line dual to VD)
 maximize the minimal angle (tends to

equiangularity)

Felkel: Computational geometry

(12 / 43)

Delaunay triangulation

 point set triangulation (straight line dual to VD)
 maximize the minimal angle (tends to

equiangularity)

Felkel: Computational geometry

(12 / 43)

Largest empty circle CP(q) with center in
1. In VD vertex q: has 3 or more sites on its boundary
2. On VD edge: contains exactly 2 sites on its

boundary and no other site

Edges, vertices and largest empty circles

[Berg]

[Berg]

Felkel: Computational geometry

(13 / 43)

Largest empty circle CP(q) with center in
1. In VD vertex q: has 3 or more sites on its boundary
2. On VD edge: contains exactly 2 sites on its

boundary and no other site

Edges, vertices and largest empty circles

[Berg]

[Berg]

Felkel: Computational geometry

(13 / 43)

Largest empty circle CP(q) with center in
1. In VD vertex q: has 3 or more sites on its boundary
2. On VD edge: contains exactly 2 sites on its

boundary and no other site

Edges, vertices and largest empty circles

[Berg]

[Berg]

Felkel: Computational geometry

(13 / 43)

Some applications

 Nearest neighbor queries in Vor(P) of points P
– Point q œ P … search sites across the edges around

the cell q
– Point q – P … point location queries – see Lecture 2

(the cell where point q falls)

 Facility location (shop or power plant)
– Largest empty circle (better in Manhattan metric VD)

 Neighbors and Interpolation
– Interpolate with the nearest neighbor,

in 3D: surface reconstruction from points

 Art
 …

Felkel: Computational geometry

(14 / 43)

Voronoi Art

Boundary Functions
Scott Snibbe, 1998

Felkel: Computational geometry

(15 / 43)

Voronoi Art

Courtesy [Gold]

Felkel: Computational geometry

(16 / 43)

Algorithms in 2D

 D&C O(n log n)
 Fortune’s Sweep line O(n log n)

Felkel: Computational geometry

(17 / 43)

Voronoi diagram (VD)

Divide and Conquer method
1. Split points based on x-

coord into L and R
2. Recursion on L and R

1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(18 / 43)

Voronoi diagram (VD)

Divide and Conquer method
1. Split points based on x-

coord into L and R
2. Recursion on L and R

1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

VDL VDP

Felkel: Computational geometry

(19 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(20 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(21 / 43)

Voronoi diagram (VD)

Divide and Conquer method

VDL VDP

1. Split points based on x-
coord into L and R

2. Recursion on L and R
1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(22 / 43)

Voronoi diagram (VD)

Divide and Conquer method
1. Split points based on x-

coord into L and R
2. Recursion on L and R

1-3 points => return
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n)

Felkel: Computational geometry

(23 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

CCW

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]

CCW

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CW

CCW

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CW

CCW

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CW

CCW

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CW

CCW

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CWCW

CCW

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CWCW

CCW

Felkel: Computational geometry

(24 / 43)

Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW
 Image shows CW search on cell and CCW on cells ri :

l0

left cell right
cell

CW CCW

[Mount]CWCW

CCW

CCW

Felkel: Computational geometry

(24 / 43)

Divide and Conquer method complexity

 Initial sort
 recursion levels

– O(n) each merge (chain search, trim, add edges to VD)

 Altogether

Felkel: Computational geometry

(25 / 43)

Fortune’s sweep line algorithm – idea in 3D

Cones in sites
Scanning plane
Both slanted 45º

Projection of the
intersection to xy:
 Cone x plane =>

parabolic arcs
 Cone x cone =>

edges of VD

Felkel: Computational geometry

(26 / 43)

[O’Rourke]

Fortune’s sweep line algorithm

 Differs from “typical” sweep line algorithm
 Unprocessed sites ahead from sweep line may

generate Voronoi vertex behind the sweep line

[Mount]

DONE

TODO

Fortune’s applet

Felkel: Computational geometry

(27 / 43)

Fortune’s sweep line algorithm idea

 Subdivide the halfplane above the sweep line l
into 2 regions
1. Points closer to some site above than to sweep line l

(solved part)
2. Points closer to sweep line l than any point above

(unsolved part – can be changed by sites below l)

 Border between these 2 regions is a beach line

l

l

[Mount]

UNSOLVED

TODO

DONE

Felkel: Computational geometry

(28 / 43)

Sweep line and beach line

 Straight sweep line l
– Separates processed and unprocessed sites (points)

 Beach line (Looks like waves rolling up on a beach)
– Separates solved and unsolved regions above sweep line

(separates sites above l that can be changed from sites
that cannot be changed by sites below l)

– x-monotonic curve made of parabolic arcs
– Follows the sweep line
– Prevents us from missing unanticipated events until the

sweep line encounters the corresponding site

Felkel: Computational geometry

(29 / 43)

Beach line

 Every site pi above l defines a complete parabola
 Beach line is the function, that passes through the

lowest points of all the parabolas (lower envelope)

x[Berg]

Felkel: Computational geometry

(30 / 43)

Beach line

 Every site pi above l defines a complete parabola
 Beach line is the function, that passes through the

lowest points of all the parabolas (lower envelope)

x[Berg]

Q: How many arcs may the
beach line have at maximum?

Felkel: Computational geometry

(30 / 43)

Beach line

 Every site pi above l defines a complete parabola
 Beach line is the function, that passes through the

lowest points of all the parabolas (lower envelope)

x[Berg]

Felkel: Computational geometry

(30 / 43)

Break point (bod zlomu)

= Intersection of two arcs on the beach line
 Equidistant to 2 sites and sweep line l
 Lies on Voronoi edge of the final diagram

x[Berg]

Felkel: Computational geometry

(31 / 43)

Notes

Beach line is x-monotone
= every vertical line intersects it in exactly ONE point

Along the beach line
Parabolic arcs are ordered
Breakpoints are ordered

Breakpoints
trace the Voronoi edges
compute their position on the fly from neighboring arcs

Felkel: Computational geometry

(32 / 43)

Events

What event types exist?

Felkel: Computational geometry

(33 / 43)

Events

There are two types of events:
 Site events (SE)

– When the sweep line passes over a new site pi,
• new arc is added to the beach line
• new edge fragment added to the VD.

– All SEs known from the beginning (sites sorted by y)

 Voronoi vertex event ([Berg] calls a circle event)
– When the parabolic arc shrinks to zero and disappears,

new Voronoi vertex is created.
– Created dynamically by the algorithm

for triples or more neighbors on the beach line
(triples changed by both types of events)

Felkel: Computational geometry

(34 / 43)

Generated when the sweep line passes over a site pi
– New parabolic arc created,

it starts as a vertical ray from pi to the beach line
– As the sweep line sweeps on, the arc grows wider
– The entry ‚…, pj ,…Ú on the sweep line status is replaced

by the triple ‚…, pj , pi , pj ,…Ú

– Dangling future VD edge created on the bisector (pi, pj)

Site event

[Mount]

sweep line

beach line

Felkel: Computational geometry

(35 / 43)

Voronoi vertex event (circle event)

Generated when l passes the lowest point of a circle
– Sites pi , pj , pk appear consecutively on the beach line
– Circumcircle lies partially below the sweep line

(Voronoi vertex has not yet been generated)
– This circumcircle contains no point below the sweep line

(no future point will block the creation of the vertex)
– Vertex & bisector (pi, pk) created, (pi, pj) & (pj, pk) finished
– One parabolic arc removed from the beach line

[Mount]
sweep line

beach line

Felkel: Computational geometry

(36 / 43)

Data structures

1. (Partial) Voronoi diagram
2. Beach line data structure T
3. Event queue Q

Felkel: Computational geometry

(37 / 43)

Data structures

1. (Partial) Voronoi diagram
2. Beach line data structure T
3. Event queue Q

1. VD edges arise during: site event circle event?
2. VD vertices arise during: site event circle event?
3. Site events known from the beginning: yes no?
4. Circle events known from the beginning: yes no?

Felkel: Computational geometry

(37 / 43)

1. (Partial) Voronoi diagram data structure

Any PSLG data structure, e.g. DCEL (planar stright line graph)

 Stores the VD during the construction
 Contain unbounded edges

– dangling edges during the construction (managed by
the beach line DS) and

– edges of unbounded cells
at the end
=> create a bounding box

[Berg]

Felkel: Computational geometry

(38 / 43)

[Mount]

2. Beach line tree data structure T – status

 Used to locate the arc directly above a new site
 E.g. Binary tree T

– Leaves - ordered arcs along the beach line (x-monotone)
• T stores only the sites pi in leaves, T does not store the parabolas

– Inner tree nodes - breakpoints as ordered pairs <pj, pk>
• pj, pk are neighboring sites
• Breakpoint position computed on the fly

from pj, pk and y-coord of the sweep line

– Pointers to other two DS
• In leaves – pointer to event queue, point to node

when arc disappears via Voronoi vertex event – if it exists
• In inner nodes - pointer to (dangling) half-edge in DCEL of VD,

that is being traced out by the break point

Felkel: Computational geometry

(39 / 43)

pi – possibly multiple times

Max 2n -1 arcs on the beach line

Felkel: Computational geometry

(40 / 43)

+1
+2
+2

+1
+2
+2

New site splits just one arc

Leaves in T

2. Beach line tree T
x-coord computed on the fly for a
given position of the beach line

Felkel: Computational geometry

(41 / 43)

Arcs = Leaves in T

Break points
= inner nodes in T

[Berg]

3. Event queue Q

 Priority queue, ordered by y-coordinate
 For site event

– stores the site itself
– known from the beginning

 For Voronoi vertex event (circle event)
– stores the lowest point of the circle
– stores also pointer to the leaf in tree T

(represents the parabolic arc that will disappear)
– created by both events, when triples of points become

neighbors (possible max three triples for a site)
– pi, pj, pk, pl, pm insert of pk can create up to 3 triples

and delete up to 2 triples (pi, pj, pl) and (pj, pl, pm)
Felkel: Computational geometry

(42 / 43)

Input:
Output:

Fortune’s algorithm
FortuneVoronoi(P)

A set of point sites P = {p1, p2,…, pn} in the plane
Voronoi diagram Vor(P) inside a bounding box in a DCEL struct.

1. Init event queue Q with all site events
2. while(Q not empty) do
3. consider the event with largest y-coordinate in Q (next in the queue)
4. if(event is a site event at site pi)
5. then HandleSiteEvent(pi)
6. else HandleVoroVertexEvent(pi), where pi is the lowest point

of the circle causing the event
7. remove the event from Q
8. Create a bbox and attach half-infinite edges in T to it in DCEL.
9. Traverse the halfedges in DCEL and

add cell records and pointers to and from them

Input:
Output:

Handle site event
HandleSiteEvent(pi)

event site pi
updated DCEL

1. Search in T for arc a vertically above pi. Let pj be the corresponding site
2. Apply insert-and-split operation, inserting a new entry of pi to the beach

line T (new arc), thus replacing ‚…, pj ,…Ú with ‚…, pj , pi , pj ,…Ú

3. Create a new (dangling) edge in the Voronoi diagram, which lies on the
bisector between pi and pj

4. Neighbors on the beach line changed -> check the neighboring triples
of arcs and insert or delete Voronoi vertex events (insert only if the
circle intersects the sweep line and it is not present yet).
Note: Newly created triple pj , pi , pj cannot generate a circle event
because it only involves two distinct sites.

[Mount]

Input:
Output:

Handle Voronoi vertex (circle) event
HandleVoroVertexEvent(pj)

event site pj
updated DCEL

Let pi , pj , pk be the sites that generated this event (from left to right).
1. Delete the entry pj from the beach line (thus eliminating its arc a),

i.e.: Replace a triple ‚…, pi , pj , pk ,…Ú with ‚…, pi , pk,…Ú in T.
2. Create a new vertex in the Voronoi diagram (at circumcenter of

‚pi , pj , pkÚ) and join the two Voronoi edges for the bisectors ‚pi , pjÚ
and ‚pj , pkÚ to this vertex (dangling edges – created in step 3 above).

3. Create a new (dangling) edge for the bisector between ‚pj , pkÚ

4. Delete any Voronoi vertex events (max. three) from Q that arose from
triples involving the arc a of pj and generate (two) new events
corresponding to consecutive triples involving pi, and pk.

[Mount]

Beach line modification

Q: Beach line contains: abcdef
After deleting of d, which triples vanish and which
triples are added to the beach line?

Handling degeneracies

Algorithm handles degeneracies correctly
 2 or more events with the same y

– if x coords are different, process them in any order
– if x coords are the same (cocircular sites)

process them in any order,
it creates duplicated vertices with

zero-length edges,
remove them in post processing step

 degeneracies while handling an event
– Site below a beach line breakpoint
– Creates circle event on the same position,

remove zero-length edges in post processing step

[Berg]

[Berg]

Felkel: Computational geometry

(47 / 43)

References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 7, http://www.cs.uu.nl/geobook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lectures 12 and 29.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An
Introduction. Berlin, Springer-Verlag,1985. Chapter 5

[VoroGlide] VoroGlide applet:
http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/

[Fortune] Fortune’s algorithm applet:
http://www.personal.kent.edu/~rmuhamma/Compgeometry/
MyCG/Voronoi/Fortune/fortune.htm

[Muhama] http://www.personal.kent.edu/~rmuhamma/Compgeometry/
compgeom.html

http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi/Div
ConqVor/divConqVor.htm

Felkel: Computational geometry

(48 / 43)

