

CONVEX HULL IN 3 DIMENSIONS

PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Preparata], [Rourke] and [Boissonnat]

Version from 30.10.2019

Talk overview

- Upper bounds for convex hull in 2D and 3D
- Other criteria for CH algorithm classification
- Recapitulation of CH algorithms
- Terminology refresh
- Convex hull in 3D
 - Terminology
 - Algorithms
 - Gift wrapping
 - D&C Merge
 - Randomized Incremental

Upper bounds for Convex hull algorithms

O(n) for sorted points and for simple polygon

Other criteria for CH algorithm classification

- Optimality depends on data order (or distribution)
 In the worst case x In the expected case
- Output sensitivity depends on the result ~ O(f(h))
- Extendable to higher dimensions?
- Off-line versus on-line
 - Off-line all points available, preprocessing for search speedup
 - On-line stream of points, new point p_i on demand, just one new point at a time, CH valid for {p₁, p₂,..., p_i }
 - Real-time points come as they "want"
 (come not faster than optimal constant O(log *n*) inter-arrival delay)
- Parallelizable x serial
 Dynamic points can be deleted
 Deterministic x approximate (lecture 13)
 Computational geometry
 (4)

Graham scan

- O(n log n) time and O(n) space is
 - optimal in the worst case
 - not optimal in average case (not output sensitive)
 - only 2D
 - off-line
 - serial (not parallel)
 - not dynamic (no deleted points)

O(n) for polygon (discussed in seminar)

Computational geometry

Jarvis March – Gift wrapping

- O(hn) time and O(n) space is
 - not optimal in worst case $O(n^2)$
 - may be optimal if h << n (output sensitive)</p>
 - 3D or higher dimensions (see later)
 - off-line
 - serial (not parallel)
 - not dynamic

- O(n log n) time and O(n) space is
 - optimal in worst case (in 2D or 3D)
 - not optimal in average case (not output sensitive)
 - 2D or 3D (circular ordering), in higher dims not optimal

Computational geometry

- off-line
- Version with sorting (the presented one) serial
- Parallel for overlapping merged hulls (see Chapter 3.3.5 in Preparata for details)
- not dynamic

Quick hull

- O(n log n) expected time, O(n²) the worst case and O(n) space in 2D is
 - not optimal in worst case $O(n^2)$
 - optimal if uniform distribution then h << n (output sensitive)
 - 2D, or higher dimensions [see http://www.qhull.org/]
 - off-line
 - parallelizable
 - not dynamic

Chan

$O(n \log h)$ time and O(n) space is

- optimal for *h* points on convex hull (output sensitive)
- 2D and 3D --- gift wrapping

On-line algorithms

- Preparata's on-line algorithm
- Overmars and van Leeuven

Preparata's 2D on-line algorithm

New point p is tested

- Inside –> ignored
- Outside –> added to hull
 - Find left and right supporting lines (touch at supporting points)
 - Remove points between supporting points
 - Add p to CH between supporting lines

Overmars and van Leeuven

- Allow dynamic 2D CH (on-line insert & delete)
- Manage special tree with all intermediate CHs
- Will be discussed on seminar [7]

Convex hull in 3D

Terminology

Algorithms

- 1. Gift wrapping
- 2. D&C Merge
- 3. Randomized Incremental
- 4. Quick hull ... minule

Terminology

- Polytope (d-polytope)
 = a geometric object with "flat" sides E^d (may be or may not be convex)
- Flat sides mean that the sides of a (k)-polytope consist of (k-1)-polytopes that may have (k-2)-polytopes in common.

Terminology

Convex Polytope (convex d-polytope)
 = convex hull of finite set of points in E^d

Terminology (2)

Affine combination

 $\sum \lambda_{i}$

= linear combination of the points $\{p_1, p_2, ..., p_n\}$ whose coefficients { λ_1 , λ_2 , ..., λ_n } sum to 1, and $\lambda_i \in R$

$$p_i$$

- Affine independent points
 - = no one point can be expressed as affine combination of the others p₂ p P¹
- Convex combination

= linear combination of the points $\{p_1, p_2, ..., p_n\}$ whose coefficients { λ_1 , λ_2 , ..., λ_n } sum to 1, and $\lambda_i \in \mathbb{R}^+_0$

Terminology (3)

- Any (d-1)-dimensional hyperplane *h* divides the space into (open) halfspaces *h*⁺ and *h*⁻, so that Eⁿ = h⁺ ∪ h ∪ h⁻
- Def: $\overline{h^+} = h^+ \cup h$, $\overline{h^-} = h^- \cup h$ (closed halfspaces)
- Hyperplane supports a convex polytope P (Supporting hyperplane – opěrná nadrovina)

- if *P* is entirely contained within either $\overline{h^+}$ or $\overline{h^-}$

Faces and facets

- Face of the convex polytope
 - = Intersection of convex polytope *P* with a supporting hyperplane *h*
 - Faces are convex polytopes of dimension d ranging from 0 to d - 1
 - 0-face = vertex
 - 1-face = edge

In 3D we often say *face*, but more precisely a *facet* (In 3D a 2-face = facet) (In 2D a 1-face = facet)

Proper faces

- Proper faces
 - = Faces of dimension *d* ranging from 0 to d 1
- Improper faces
 - = proper faces + two additional faces:
 - {} = Empty set = face of dimension -1
 - Entire convex polytope = face of dimension d

Incident graph

Facts about polytopes

- Boundary o polytope is *union of its proper faces*
- Polytope has *finite number of faces (next slide)*.
 Each face is a polytope
- Convex polytope is convex hull of its vertices (the def), its bounded
- Convex polytope is the intersection of finite number of closed halfspaces h⁺ (conversely not: intersection of closed halfspaces may be unbounded => called unbounded polytope)

Number of faces on a d-simplex

Number of *j*-dimensional faces on a *d*-simplex

$$\binom{d+1}{j+1} = \frac{(d+1)!}{(j+1)!(d-j)!}$$

• Ex.: Tetrahedron = 3-simplex:

Complexity of 3D convex hull is O(n)

- 3-polytope has polygonal faces
- convex 3-polytope (CH of a point set in 3D)
- simplical 3-polytope
 - has triangular faces (=> more edges and faces)
- simplical convex 3-polytope with all n points on CH
 - the worst case complexity
 - => maximum # of edges and faces for given points
 - has triangular facets, each generates 3 edges, shared by 2 triangles => 3F = 2E 2-manifold

$$F = 2V - 4 \implies F \le 2V - 4 \qquad F = O(n)$$

Computational geometry

Complexity of 3D convex hull is O(n)

- The worst case complexity \rightarrow if all *n* points on CH
- => use simplical convex 3-polytop for complexity derivation
 - 1. has all points on its surface on the Convex Hull
 - has triangular facets, each generates 3 edges, shared by 2 triangles => 3F = 2E

1. Gift wrapping in higher dimensions

- First known algorithm for n-dimensions (1970)
- Direct extension of 2D alg.
- Complexity O(nF)
 - F is number of CH facets
 - Algorithm is output sensitive
 - Details on seminar, assignment [10]

2. Divide & conquer 3D convex hull [Preparata, Hong77]

- Sort points in x-coord
- Recursively split, construct CH, merge
- Merge takes O(n) => O(n log n) total time

Divide & conquer 3D convex hull [Preparata, Hong 77]

- Merge(C₁ with C₂) uses gift wrapping
 - Gift wrap plane around edge *e* find new point *p* on C₁ or on C₂ (neighbor of *a* or *b*)
 - Search just the CW or CCW neighbors around *a*, *b*

Divide & conquer 3D convex hull [Preparata, Hong 77]

Performance O(n log n) rely on circular ordering

- In 2D: Ordering of points around CH
- In 3D: Ordering of vertices around 2-polytop C_0 (vertices on intersection of new CH edges with

Computational geometry

separating plane H_0) [ordering around horizon of C_1 and C_2 does not exist, as both horizons may be non-convex and even not simple polygons]

Divide & conquer 3D convex hull [Preparata, Hong 77]

 $Merge(C_1 with C_2)$

- Find the first CH edge L connecting C₁ with C₂
- e = L
- While not back at *L* do **CHYBA**
 - store e to C
 - Gift wrap plane around edge e find new point P on C₁ or on C₂ (neighbor of a or b)

Computational geometry

- e = new edge to just found end-point P
- Store new triangle eP to C
- Discard hidden faces inside CH from C
- Report merged convex hull C

Divide & conquer 3D convex hull [Preparata, Hong 77]

Problem of the wrapping phase [Edelsbrunner 88]

3. Randomized incremental alg. principle

- 1. Create tetrahedron (smallest CH in 3D) $CH(P_4)$
 - Take 2 points p_1 and p_2
 - Search the 3rd point not lying on line p_1p_2
 - Search the 4th point not lying in plane $p_1p_2p_3$...if not found, use 2D CH
- 2. Perform random permutation of remaining points $\{p_5, ..., p_n\}$
- 3. For p_r in $\{p_5, ..., p_n\}$ do add point p_r to $CH(P_{r-1})$ Notation: for $r \ge 1$ let $P_r = \{p_1, ..., p_r\}$ is set of already processed pts
 - If p_r lies inside or on the boundary of CH(P_{r-1}) then do nothing
 - If p_r lies outside of CH(P_{r-1}) then
 - find and remove visible faces
 - create new faces (triangles) connecting p_r with lines of horizon

Conflict graph

Stores unprocessed points with facets of CH they see

Conflict graph – init and final state

Computational geometry

Initialization

- Points $\{p_5, \dots, p_n\}$ (not in tetrahedron)
- Facets of the tetrahedron (four)
- Arcs connect each tetrahedron facet with points visible from it

Final state

- Points {} = empty set
- Facets of the convex hull
- Arcs none

conflicts points facets $F_{\text{conflict}}(p_t$ $P_{\text{conflict}}(f)$ [Bera]

Visibility between point and face

 Face f is visible from a point p if that point lies in the open half-space on the other side of h_f than the polytope

f is visible from p (p is above the plane)

f is **not visible** from *r* lying *in the plane* of *f* (this case will be discussed next)

f is not visible from q

New triangles to horizon

Horizon = edges e incident to visible and invisible facets

- New triangle f connects edge e on horizon and point p_r and
 - creates new node for facet f updates the conflict graph
 - add arcs to points visible from f (subset from $P_{\text{coflict}}(f_1) \cup P_{\text{coflict}}(f_2)$)
- Coplanar triangles on the plane epr
 - are merged with new triangle.
 - Conflicts in G are copied from the deleted triangle (same plane)

Computational geometry

Overview of new point insertion

Processing of point p_r outside

- Remove facets that p_r sees from the CH (do not delete them from the graph *G*)
- Find horizon edges (around the hole in CH)
- Create new facets from horizon edges to p_r
 - add them to CH
 - create face nodes f in G for them
- Compute what p_r sees search only from $P(e) = P_{conflict}(f_1) \cup P_{conflict}(f_2)$)

Delete node p_r and face $F_{conflict}(p_r)$ from G

Computational geometry

Incremental Convex hull algorithm

IncrementalConvexHull(P)

<i>Input:</i> Set of <i>n</i> points in general position in 3D space						
<i>Output:</i> The convex hull $C = CH(P)$ of P						
1. Find four points that form an initial tetrahedron, $C = CH(\{p_1, p_2, p_3, p_4\})$						
2. Compute random permutation $\{p_5, p_6, \dots, p_n\}$ of the remaining points						
3. Initialize the conflict graph G with all visible pairs (p_t, f) ,						
where f is facet of C and $p_t, t > 4$, are non-processed points						
4. for $r = 5$ to n doinserting p_r , into C						
5. if $(F_{conflict}(p_r))$ is not empty) then $\dots p_r$ is outside, insert p_r , into C						
6. Delete all facets $F_{conflict}(p_r)$ from C only from hull C, not from	G					
7. Walk around visible region boundary, create list <i>L</i> of horizon edges	5+ +					
8. for all $e \in L$ do	+ +					
9. connect <i>e</i> to p_r by a new triangular facet <i>f</i>	+ +					
10. if f is coplanar with its neighbor facet f' along $e + + + + + + + + + + + + + + + + + + $	÷ +					
11. then merge f and f' in C , take conflict list from $f' + f' + f' + f'$	+ +					
12. else determine conflicts for new facet <i>f</i>	+ +					
$\neq \neq \neq \neq \neq \pm + + + + + + \dots$ [continue on the next slide] + + + + + + + + + + + + + + + + + + +	12					
+ + + + + + + + + + + + + + + + + + +						
	لک ا					

Incremental Convex hull algorithm (cont...)

12. **else** ... not coplanar => determine conflicts for new facet *f* 13. Insert *f* into hull *C* Create node for f in G //... new face in conflict graph G14. Let f_1 and f_2 be the facets incident to e in the old $CH(P_{r-1})$ 15. $P(e) = P_{conflict}(f_1) \cup P_{conflict}(f_2)$ for all points $p \in P(e)$ do 16. 17 if f is visible from p, then add(p, f) to G... new edges in G 18. 19. Delete the node corresponding to p_r and the nodes corresponding to facets in $F_{conflict}(p_r)$ from G, together with their incident arcs 20. return C

Complexity: Convex hull of a set of points in E^3 can be computed incrementally in $O(n \log n)$ randomized expected time (process O(n) points, but number of facets and arcs depend on the order of inserting points – up to $O(n^2)$) For proof see: [Berg, Section11.3]

Convex hull in higher dimensions

- Convex hull in *d* dimensions can have Ω(n^[d/2]) Proved by [Klee, 1980]
- Therefore, 4D hull can have quadratic size
- No O(n log n) algorithm possible for d>3
- These approaches can extend to d>3

– G	ift w	vra	ap	p	in	g																										
- D	&C		•	•		•																									+ +	
– R	and	or	m	i7(ec	i k	n	cr	er	ne	ən	nta	al												+-	+		÷	+	+	+	1
_ 0		。 7日	••• ••	·					0.				+								Ť.	Ŧ	+	+	+	τ +	+	+	+	+	+	+
	uicr		ľu											Ŧ	+	+	+	эн. Н	+	(+) (+)	÷	Ŧ	+++++++++++++++++++++++++++++++++++++++	÷ Ŧ	+	++	+	+ +	++	++	+	T
										÷		÷	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+
+ + + + + • + + +						+	+	++	+ +	++	++	++++	++	++	++	++	++	+	++	++	+	+++	++++	++	++	++	++	+	+	+ Ø	+	+ +
+ + + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+	+	+	+	+	Cor	nput	atior	nal g	eom	etry	+	+	+	+	+	+	+	+	+	+			Å.		+
+ + + +	G	+	+	+	+	+	+	+	++	+	+ +	+ +	+	(4	3)	+	+	+ +	+	+	+	+	+	+ +	+	+	+	4	κ +	1	رد +	+ +

Conclusion

- Recapitulation of 2D algorithms
- >=3D algorithms
 - Gift wrapping
 - D&C
 - Randomized incremental
 - QuickHull

References

[Berg]	Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer- Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540- 77973-5, Chapter 11, <u>http://www.cs.uu.nl/geobook/</u>
[Boissonn	at] JD. Boissonnat and M. Yvinec, <i>Algorithmic Geometry</i> , Cambridge University Press, UK, 1998. Chapter 9 – Convex hulls
[Preparata	 Preperata, F.P., Shamos, M.I.: Computational Geometry. An Introduction. Berlin, Springer-Verlag,1985.
[Mount]	[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lectures 3, 4 and 24. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
[Chan]	Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions., <i>Discrete and</i> <i>Computational Geometry</i> , 16, 1996, 361-368. <u>http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389</u> +++
<i>≠ ≠ ≠ ≠ +</i> <i>≠ ≠ ≠ ≠ +</i> <i>+</i> D	CGI (45)