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Talk overview

 Upper bounds for convex hull in 2D and 3D
 Other criteria for CH algorithm classification
 Recapitulation of CH algorithms
 Terminology refresh
 Convex hull in 3D

– Terminology
– Algorithms

• Gift wrapping
• D&C Merge
• Randomized Incremental 
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Upper bounds for Convex hull algorithms

 O(n) for sorted points and for simple polygon

 O(n log n) in E2, E3 with sorting
– insensitive about output

 O(n h), O(n logh), h is number of CH facets 
– output sensitive
– O(n2) or O(n logn) for n ~ h

 O(log n) for new point insertion in realtime algs.
=> O(n log n) for n-points

O(log n) search where to insert
Computational geometry
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Other criteria for CH algorithm classification

 Optimality – depends on data order (or distribution)
In the worst case  x In the expected case

 Output sensitivity – depends on the result ~ O(f(h))
 Extendable to higher dimensions?
 Off-line versus on-line

– Off-line – all points available, preprocessing for search speedup
– On-line – stream of points, new point pi on demand, just one new 

point at a time, CH valid for {p1, p2 ,…, pi }
– Real-time – points come as they “want”

(come not faster than optimal constant O(log n) inter-arrival delay)

 Parallelizable x serial
 Dynamic – points can be deleted
 Deterministic x approximate (lecture 13)  
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Graham scan

 O(n log n) time and O(n) space is
– optimal in the worst case
– not optimal in average case 

(not output sensitive)
– only 2D
– off-line
– serial (not parallel)
– not dynamic (no deleted points)

O(n) for polygon (discussed in seminar)
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Jarvis March – Gift wrapping

 O(hn) time and O(n) space is
– not optimal in worst case  O(n2)
– may be optimal if h << n (output sensitive)
– 3D or higher dimensions (see later)
– off-line
– serial (not parallel)
– not dynamic

p1 p2

ph
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Divide & Conquer

 O(n log n) time and O(n) space is
– optimal in worst case (in 2D or 3D)
– not optimal in average case (not output sensitive)
– 2D or 3D (circular ordering), in higher dims not optimal
– off-line
– Version with sorting (the presented one) – serial
– Parallel for overlapping merged hulls 

(see Chapter 3.3.5 in Preparata for details)
– not dynamic

a
b
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Quick hull

 O(n log n) expected time, O(n2) the worst case  
and O(n) space in 2D is

– not optimal in worst case  O(n2)
– optimal if uniform distribution  

then h << n (output sensitive)
– 2D, or higher dimensions [see http://www.qhull.org/]
– off-line
– parallelizable 
– not dynamic

[Mount]
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Chan

 O(n log h) time and O(n) space is
– optimal for h points on convex hull (output sensitive)
– 2D and 3D --- gift wrapping
– off-line
– Serial (not parallel)
– not dynamic

[Mount]
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On-line algorithms

 Preparata’s on-line algorithm
 Overmars and van Leeuven
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Preparata’s 2D on-line algorithm

 New point p is tested
– Inside –> ignored
– Outside –> added to hull

• Find left and right supporting lines (touch at supporting points)
• Remove points between supporting points
• Add p to CH between supporting lines 

[Preparata]
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Overmars and van Leeuven

 Allow dynamic 2D CH 
(on-line insert & delete) 

 Manage special tree with all intermediate CHs
 Will be discussed on seminar [7]

[Preparata]
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Convex hull in 3D

 Terminology
 Algorithms

1. Gift wrapping
2. D&C Merge
3. Randomized Incremental
4. Quick hull … minule
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Terminology

Computational geometry

 Polytope (d-polytope) 
= a geometric object with "flat" sides Ed

(may be or may not be convex)
 Flat sides mean that 

the sides of a (k)-polytope 
consist of (k-1)-polytopes that 
may have (k-2)-polytopes in common.

2-polytop
= polygon

3-polytop
= polyhedron

(16)



 Convex Polytope (convex d-polytope) 
= convex hull of finite set of points in Ed

 Simplex (k-simplex, d-simplex) 
= CH of k + 1 affine independent points 

= “Special” Convex Polytope with all the points on the CH

Terminology

1-simplex 2-simplex 3-simplex

convex
2-polytop

Computational geometry
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Terminology (2)
 Affine combination

= linear combination of the points {p1, p2, …, pn} 
whose coefficients {l1, l2, …, ln} sum to 1, and li œ R

 Affine independent points
= no one point can be expressed as affine combination of 
the others

 Convex combination
= linear combination of the points {p1, p2, …, pn} 

whose coefficients {l1, l2, …, ln} sum to 1, and li œ R+
0

(i.e., "i œ {1,…,n}, li ¥ 0)

p1
p2
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Terminology (3)
 Any (d-1)-dimensional hyperplane h divides the space into 

(open) halfspaces h+ and h–, 
so that En = h+ ( h ( h–

 Def: h+ = h+ ( h, h– = h– ( h   (closed halfspaces)

 Hyperplane supports a convex polytope P
(Supporting hyperplane – opěrná nadrovina) 

– if h ' P is not empty and
– if P is entirely contained within either h+ or h–

hP h+

h–

h+

h
h–

P P h
h+

h–
In 2D:

P’
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Faces and facets

 Face of the convex polytope
= Intersection of convex polytope P

with a supporting hyperplane h
– Faces are convex polytopes of dimension d ranging 

from 0 to d – 1 
– 0-face = vertex
– 1-face = edge
– (d – 1)-face = facet

In 3D we often say face, but more precisely a facet
(In 3D a 2-face = facet) 
(In 2D a 1-face = facet)

Proper faces in 3D:
Vertices: a,b,c,d
Edges: ab, ac, ad, bc, bd, cd
Facets: abc, abd, acd, bcd
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Proper faces

 Proper faces
= Faces of dimension d ranging from 0 to d – 1

 Improper faces
= proper faces + two additional faces:

– {} = Empty set = face of dimension -1
– Entire convex polytope = face of dimension d

Improper faces in 3D:
Empty set {}
Vertices: a,b,c,d
Edges: ab, ac, ad, bc, bd, cd
Facets: abc, abd, bcd
Entire polytope: abcd
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Incident graph

 Stores topology of the polytope
 Ex: 3-simplex:

 d-simplex is a very regular face structure:
– 1-face for each pair of vertices 
– 2-face for each triple of vertices 

Dimension

-1

0

1

2

3
[Boissonnat]
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Facts about polytopes

 Boundary o polytope is union of its proper faces
 Polytope has finite number of faces (next slide).  

Each face is a polytope
 Convex polytope is convex hull of its vertices 

(the def),  its bounded
 Convex polytope is the intersection of finite 

number of closed halfspaces h+

(conversely not: intersection of closed halfspaces
may be unbounded => called unbounded 
polytope)
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Number of faces on a d-simplex

 Number of j-dimensional faces on a d-simplex
= number of (j+1)-element subsets from domain of 
size (d+1)

 Ex.: Tetrahedron = 3-simplex:
– facets (2-dim. faces)

– edges (1-dim. faces)

– vertices (0-dim faces)
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Complexity of 3D convex hull is O(n)

 3-polytope - has polygonal faces
 convex 3-polytope (CH of a point set in 3D)
 simplical 3-polytope

– has triangular faces (=> more edges and faces)

 simplical convex 3-polytope with all n points on CH 
– the worst case complexity 
– => maximum # of edges and faces for given points
– has triangular facets, each generates 3 edges, 

shared by 2 triangles => 3F = 2E 2-manifold

F = 2V – 4 => F ≤ 2V – 4 F = O(n)
E = 3V – 6     => E ≤ 3V – 6  E = O(n)

–
Computational geometry
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Complexity of 3D convex hull is O(n)

 The worst case complexity if all n points on CH
=> use simplical convex 3-polytop for complexity derivation

1. has all points on its surface – on the Convex Hull
2. has triangular facets, each generates 3 edges, shared 

by 2 triangles => 3F = 2E
2-manifold

 V – E + F = 2     … Euler formula for V = n points
V – E + 2E/3 = 2 F = 2E / 3

V – 2 = E / 3 F = 2V – 4 
E = 3V – 6,    V = n F = O(n)
E = O(n)

–
Computational geometry
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1. Gift wrapping in higher dimensions

 First known algorithm for n-dimensions (1970)
 Direct extension of 2D alg.
 Complexity O(nF) 

– F is number of CH facets 
– Algorithm is output sensitive

– Details on seminar, 
assignment [10]

[Preparata]
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2. Divide & conquer 3D convex hull [Preparata, Hong77]

 Sort points in x-coord
 Recursively split, construct CH, merge
 Merge takes O(n) => O(n log n) total time

[Rourke]
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Divide & conquer 3D convex hull   [Preparata, Hong 77]

 Merge(C1 with C2) uses gift wrapping
– Gift wrap plane around edge e – find new point p on C1 or on C2

(neighbor of a or b)
– Search just the CW or CCW neighbors around a, b

C1

C2

[Rourke]
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Divide & conquer 3D convex hull   [Preparata, Hong 77]

 Performance O(n log n) rely on circular ordering
– In 2D: Ordering of points around CH
– In 3D: Ordering of vertices around 2-polytop C0

(vertices on intersection of new CH edges with 
separating plane H0)
[ordering around 
horizon of C1 and C2
does not exist, as 
both horizons may 
be non-convex and 
even not simple
polygons]

– In ¥ 4D: Such ordering does not exist
[Boissonnat]
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Divide & conquer 3D convex hull   [Preparata, Hong 77]

Merge(C1 with C2)
 Find the first CH edge L connecting C1 with C2

 e = L
 While not back at L do

– store e to C
– Gift wrap plane around edge e – find new point P on C1 or on C2

(neighbor of a or b)
– e = new edge to just found end-point P
– Store new triangle eP to C

 Discard hidden faces inside CH from C
 Report merged convex hull C

Computational geometry
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Divide & conquer 3D convex hull   [Preparata, Hong 77]

 Problem of the wrapping phase [Edelsbrunner 88]

– The edges on horizon do not form simple circle but a 
“barbell” 0,2,4,0,1,3,5,1

Do not stop here!

[Berg]

Left horizon
barbell (činka)
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3. Randomized incremental alg. principle
1. Create tetrahedron (smallest CH in 3D) CH(P4)

– Take 2 points p1 and p2

– Search the 3rd point not lying on line p1p2

– Search the 4th point not lying in plane p1p2 p3 …if not found, use 2D CH

2. Perform random permutation of remaining points {p5,…, pn}
3. For pr in {p5,…, pn} do add point pr to CH(Pr-1)

Notation: for r ¥ 1 let Pr = {p1,…, pr} is set of already processed pts
– If pr lies inside or on the boundary of CH(Pr-1) then do nothing
– If pr lies outside of CH(Pr-1) then 

• find and remove visible faces
• create new faces (triangles) connecting pr with lines of horizon

[Berg]



Conflict graph
 Stores unprocessed points with facets of CH they see

 Bipartite graph
points pt, t > r   … unprocessed points
facets of CH(Pr)… facets of convex hull
conflict  arcs     … conflict, as visible

facets cannot be 
in CH

 Maintains sets:
Pconflict(f) … points, that see f
Fconflict(pr)… facets visible from pr

(visible region – deleted after insertion of pr)
[Berg]

Computational geometry
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Conflict graph – init and final state 
 Initialization

– Points {p5,…, pn} (not in tetrahedron)
– Facets of the tetrahedron (four)
– Arcs – connect each tetrahedron 

facet with points visible from it 

 Final state
– Points – {} = empty set
– Facets of the convex hull
– Arcs - none

[Berg]
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Visibility between point and face
 Face f is visible from a point p if that point lies in the open 

half-space on the other side of hf than the polytope

f

p

q

f is visible from p    (p is above the plane)

f is not visible from q

f is not visible from r lying in the plane of f
(this case will be discussed next)

rhf

p ϵ Pconflict(f),   p is among the points that see the face f
f ϵ  Fconflict(p)   f  is among the faces visible from point p
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New triangles to horizon
 Horizon = edges e incident to visible and invisible facets 

 New triangle f connects edge e on horizon and point pr and
– creates new node for facet f

– add arcs to points visible from f (subset from Pcoflict(f1) ( Pcoflict(f2) )
 Coplanar triangles on the plane epr

– are merged with new triangle. 
– Conflicts in G are copied from the deleted triangle (same plane)

[Berg]

[Berg]

updates the conflict graph
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Overview of new point insertion

Processing of point outside
- Remove facets that sees from the CH 

(do not delete them from the graph )
- Find horizon edges (around the hole in CH)
- Create new facets from horizon edges to 

- add them to CH
- create face nodes in for them

- Compute what sees – search only from 
)

- Delete node and face from 
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Input:
Output:

Incremental Convex hull algorithm
IncrementalConvexHull( )

Set of points in general position in 3D space 
The convex hull = ( ) of 

1. Find four points that form an initial tetrahedron, = ({ 1, 2	, 3	, 4	})
2. Compute random permutation { 5, 6, … , }	of the remaining points
3. Initialize the conflict graph with all visible pairs ( , ), 

where is facet of and , 	 > 	4, are non-processed points
4. for 	= 5 to do …inserting , into 
5. if( ( ) is not empty) then … is outside, insert , into 
6. Delete all facets ( ) from … only from hull C, not from G
7. Walk around visible region boundary, create list of horizon edges
8. for all ∈ 	do
9. connect to by a new triangular facet 
10. if 	is coplanar with its neighbor facet ’ along 
11. then merge and ’ in , take conflict list from ’
12. else … determine conflicts for new facet 

… [continue on the next slide]



Input:
Output:

Incremental Convex hull algorithm (cont…)
12. else … not coplanar => determine conflicts for new facet f
13. Insert into hull 
14. Create node for in //… new face in conflict graph G
15. Let and be the facets incident to in the old ( )
16. ( ) 	= ( ) ∪ ( )
17. for all points 	 ∈ ( ) do
18. if is visible from , then add( , ) to … new edges in G
19. Delete the node corresponding to and the nodes corresponding

to facets in ( ) from , together with their incident arcs
20. return 

Complexity: Convex hull of a set of points in 3 can be computed 
incrementally in ( 	log	 )	randomized expected time
(process ( ) points, but number of facets and arcs depend on the order 
of inserting points – up to ( 2)) For proof see: [Berg, Section11.3]



Convex hull in higher dimensions

 Convex hull in d dimensions can have (nd/2) 
Proved by [Klee, 1980]

 Therefore, 4D hull can have quadratic size
 No O(n log n) algorithm possible for d>3
 These approaches can extend to d>3

– Gift wrapping
– D&C
– Randomized incremental
– QuickHull
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Conclusion

 Recapitulation of 2D algorithms
 >=3D algorithms

– Gift wrapping
– D&C
– Randomized incremental
– QuickHull
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