
CONVEX HULL IN 3 DIMENSIONS

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Preparata], [Rourke] and [Boissonnat]

Version from 30.10.2019

Talk overview

 Upper bounds for convex hull in 2D and 3D
 Other criteria for CH algorithm classification
 Recapitulation of CH algorithms
 Terminology refresh
 Convex hull in 3D

– Terminology
– Algorithms

• Gift wrapping
• D&C Merge
• Randomized Incremental

www.cguu.com

www.cguu.com

Computational geometry

(2)

Upper bounds for Convex hull algorithms

 O(n) for sorted points and for simple polygon

 O(n log n) in E2, E3 with sorting
– insensitive about output

 O(n h), O(n logh), h is number of CH facets
– output sensitive
– O(n2) or O(n logn) for n ~ h

 O(log n) for new point insertion in realtime algs.
=> O(n log n) for n-points

O(log n) search where to insert
Computational geometry

(3)

Other criteria for CH algorithm classification

 Optimality – depends on data order (or distribution)
In the worst case x In the expected case

 Output sensitivity – depends on the result ~ O(f(h))
 Extendable to higher dimensions?
 Off-line versus on-line

– Off-line – all points available, preprocessing for search speedup
– On-line – stream of points, new point pi on demand, just one new

point at a time, CH valid for {p1, p2 ,…, pi }
– Real-time – points come as they “want”

(come not faster than optimal constant O(log n) inter-arrival delay)

 Parallelizable x serial
 Dynamic – points can be deleted
 Deterministic x approximate (lecture 13)

Computational geometry

(4)

Graham scan

 O(n log n) time and O(n) space is
– optimal in the worst case
– not optimal in average case

(not output sensitive)
– only 2D
– off-line
– serial (not parallel)
– not dynamic (no deleted points)

O(n) for polygon (discussed in seminar)

tos

p

sos

pop

Computational geometry

(5)

Jarvis March – Gift wrapping

 O(hn) time and O(n) space is
– not optimal in worst case O(n2)
– may be optimal if h << n (output sensitive)
– 3D or higher dimensions (see later)
– off-line
– serial (not parallel)
– not dynamic

p1 p2

ph

Computational geometry

(6)

Divide & Conquer

 O(n log n) time and O(n) space is
– optimal in worst case (in 2D or 3D)
– not optimal in average case (not output sensitive)
– 2D or 3D (circular ordering), in higher dims not optimal
– off-line
– Version with sorting (the presented one) – serial
– Parallel for overlapping merged hulls

(see Chapter 3.3.5 in Preparata for details)
– not dynamic

a
b

Computational geometry

(7)

Quick hull

 O(n log n) expected time, O(n2) the worst case
and O(n) space in 2D is

– not optimal in worst case O(n2)
– optimal if uniform distribution

then h << n (output sensitive)
– 2D, or higher dimensions [see http://www.qhull.org/]
– off-line
– parallelizable
– not dynamic

[Mount]

Computational geometry

(8)

Chan

 O(n log h) time and O(n) space is
– optimal for h points on convex hull (output sensitive)
– 2D and 3D --- gift wrapping
– off-line
– Serial (not parallel)
– not dynamic

[Mount]

Computational geometry

(9)

On-line algorithms

 Preparata’s on-line algorithm
 Overmars and van Leeuven

Computational geometry

(10)

Preparata’s 2D on-line algorithm

 New point p is tested
– Inside –> ignored
– Outside –> added to hull

• Find left and right supporting lines (touch at supporting points)
• Remove points between supporting points
• Add p to CH between supporting lines

[Preparata]

Computational geometry

(11)

Overmars and van Leeuven

 Allow dynamic 2D CH
(on-line insert & delete)

 Manage special tree with all intermediate CHs
 Will be discussed on seminar [7]

[Preparata]

Computational geometry

(13)

Convex hull in 3D

 Terminology
 Algorithms

1. Gift wrapping
2. D&C Merge
3. Randomized Incremental
4. Quick hull … minule

Computational geometry

(15)

Terminology

Computational geometry

 Polytope (d-polytope)
= a geometric object with "flat" sides Ed

(may be or may not be convex)
 Flat sides mean that

the sides of a (k)-polytope
consist of (k-1)-polytopes that
may have (k-2)-polytopes in common.

2-polytop
= polygon

3-polytop
= polyhedron

(16)

 Convex Polytope (convex d-polytope)
= convex hull of finite set of points in Ed

 Simplex (k-simplex, d-simplex)
= CH of k + 1 affine independent points

= “Special” Convex Polytope with all the points on the CH

Terminology

1-simplex 2-simplex 3-simplex

convex
2-polytop

Computational geometry

(vectors (−) are
linearly independent)

convex
3-polytop

(17)

Terminology (2)
 Affine combination

= linear combination of the points {p1, p2, …, pn}
whose coefficients {l1, l2, …, ln} sum to 1, and li œ R

 Affine independent points
= no one point can be expressed as affine combination of
the others

 Convex combination
= linear combination of the points {p1, p2, …, pn}

whose coefficients {l1, l2, …, ln} sum to 1, and li œ R+
0

(i.e., "i œ {1,…,n}, li ¥ 0)

p1
p2

p

p1

p2

p

n

i
ii p

1

Computational geometry

⇒ 	l ∈ 0, 1
(18)

Terminology (3)
 Any (d-1)-dimensional hyperplane h divides the space into

(open) halfspaces h+ and h–,
so that En = h+ (h (h–

 Def: h+ = h+ (h, h– = h– (h (closed halfspaces)

 Hyperplane supports a convex polytope P
(Supporting hyperplane – opěrná nadrovina)

– if h ' P is not empty and
– if P is entirely contained within either h+ or h–

hP h+

h–

h+

h
h–

P P h
h+

h–
In 2D:

P’

Computational geometry

(19)

Faces and facets

 Face of the convex polytope
= Intersection of convex polytope P

with a supporting hyperplane h
– Faces are convex polytopes of dimension d ranging

from 0 to d – 1
– 0-face = vertex
– 1-face = edge
– (d – 1)-face = facet

In 3D we often say face, but more precisely a facet
(In 3D a 2-face = facet)
(In 2D a 1-face = facet)

Proper faces in 3D:
Vertices: a,b,c,d
Edges: ab, ac, ad, bc, bd, cd
Facets: abc, abd, acd, bcd

Computational geometry

(20)

Proper faces

 Proper faces
= Faces of dimension d ranging from 0 to d – 1

 Improper faces
= proper faces + two additional faces:

– {} = Empty set = face of dimension -1
– Entire convex polytope = face of dimension d

Improper faces in 3D:
Empty set {}
Vertices: a,b,c,d
Edges: ab, ac, ad, bc, bd, cd
Facets: abc, abd, bcd
Entire polytope: abcd

Computational geometry

(21)

Incident graph

 Stores topology of the polytope
 Ex: 3-simplex:

 d-simplex is a very regular face structure:
– 1-face for each pair of vertices
– 2-face for each triple of vertices

Dimension

-1

0

1

2

3
[Boissonnat]

Computational geometry

(22)

Facts about polytopes

 Boundary o polytope is union of its proper faces
 Polytope has finite number of faces (next slide).

Each face is a polytope
 Convex polytope is convex hull of its vertices

(the def), its bounded
 Convex polytope is the intersection of finite

number of closed halfspaces h+

(conversely not: intersection of closed halfspaces
may be unbounded => called unbounded
polytope)

Computational geometry

(23)

Number of faces on a d-simplex

 Number of j-dimensional faces on a d-simplex
= number of (j+1)-element subsets from domain of
size (d+1)

 Ex.: Tetrahedron = 3-simplex:
– facets (2-dim. faces)

– edges (1-dim. faces)

– vertices (0-dim faces)

4
!1!3
!4

12
13

6
!2!2

!4
11
13

4
!3!1
!4

10
13

Computational geometry

(24)

Complexity of 3D convex hull is O(n)

 3-polytope - has polygonal faces
 convex 3-polytope (CH of a point set in 3D)
 simplical 3-polytope

– has triangular faces (=> more edges and faces)

 simplical convex 3-polytope with all n points on CH
– the worst case complexity
– => maximum # of edges and faces for given points
– has triangular facets, each generates 3 edges,

shared by 2 triangles => 3F = 2E 2-manifold

F = 2V – 4 => F ≤ 2V – 4 F = O(n)
E = 3V – 6 => E ≤ 3V – 6 E = O(n)

–
Computational geometry

(25)

Complexity of 3D convex hull is O(n)

 The worst case complexity if all n points on CH
=> use simplical convex 3-polytop for complexity derivation

1. has all points on its surface – on the Convex Hull
2. has triangular facets, each generates 3 edges, shared

by 2 triangles => 3F = 2E
2-manifold

 V – E + F = 2 … Euler formula for V = n points
V – E + 2E/3 = 2 F = 2E / 3

V – 2 = E / 3 F = 2V – 4
E = 3V – 6, V = n F = O(n)
E = O(n)

–
Computational geometry

F = 2E / 3

(26)

1. Gift wrapping in higher dimensions

 First known algorithm for n-dimensions (1970)
 Direct extension of 2D alg.
 Complexity O(nF)

– F is number of CH facets
– Algorithm is output sensitive

– Details on seminar,
assignment [10]

[Preparata]

Computational geometry

(27)

2. Divide & conquer 3D convex hull [Preparata, Hong77]

 Sort points in x-coord
 Recursively split, construct CH, merge
 Merge takes O(n) => O(n log n) total time

[Rourke]

Computational geometry

(30)

Divide & conquer 3D convex hull [Preparata, Hong 77]

 Merge(C1 with C2) uses gift wrapping
– Gift wrap plane around edge e – find new point p on C1 or on C2

(neighbor of a or b)
– Search just the CW or CCW neighbors around a, b

C1

C2

[Rourke]

Computational geometry

(31)

Divide & conquer 3D convex hull [Preparata, Hong 77]

 Performance O(n log n) rely on circular ordering
– In 2D: Ordering of points around CH
– In 3D: Ordering of vertices around 2-polytop C0

(vertices on intersection of new CH edges with
separating plane H0)
[ordering around
horizon of C1 and C2
does not exist, as
both horizons may
be non-convex and
even not simple
polygons]

– In ¥ 4D: Such ordering does not exist
[Boissonnat]

Computational geometry

(32)

Divide & conquer 3D convex hull [Preparata, Hong 77]

Merge(C1 with C2)
 Find the first CH edge L connecting C1 with C2

 e = L
 While not back at L do

– store e to C
– Gift wrap plane around edge e – find new point P on C1 or on C2

(neighbor of a or b)
– e = new edge to just found end-point P
– Store new triangle eP to C

 Discard hidden faces inside CH from C
 Report merged convex hull C

Computational geometry

CHYBA

(33)

C1

C2

Divide & conquer 3D convex hull [Preparata, Hong 77]

 Problem of the wrapping phase [Edelsbrunner 88]

– The edges on horizon do not form simple circle but a
“barbell” 0,2,4,0,1,3,5,1

Do not stop here!

[Berg]

Left horizon
barbell (činka)

Computational geometry

(34)

3. Randomized incremental alg. principle
1. Create tetrahedron (smallest CH in 3D) CH(P4)

– Take 2 points p1 and p2

– Search the 3rd point not lying on line p1p2

– Search the 4th point not lying in plane p1p2 p3 …if not found, use 2D CH

2. Perform random permutation of remaining points {p5,…, pn}
3. For pr in {p5,…, pn} do add point pr to CH(Pr-1)

Notation: for r ¥ 1 let Pr = {p1,…, pr} is set of already processed pts
– If pr lies inside or on the boundary of CH(Pr-1) then do nothing
– If pr lies outside of CH(Pr-1) then

• find and remove visible faces
• create new faces (triangles) connecting pr with lines of horizon

[Berg]

Conflict graph
 Stores unprocessed points with facets of CH they see

 Bipartite graph
points pt, t > r … unprocessed points
facets of CH(Pr)… facets of convex hull
conflict arcs … conflict, as visible

facets cannot be
in CH

 Maintains sets:
Pconflict(f) … points, that see f
Fconflict(pr)… facets visible from pr

(visible region – deleted after insertion of pr)
[Berg]

Computational geometry

facets of CHunprocessed points

conflicts

(36)

Conflict graph – init and final state
 Initialization

– Points {p5,…, pn} (not in tetrahedron)
– Facets of the tetrahedron (four)
– Arcs – connect each tetrahedron

facet with points visible from it

 Final state
– Points – {} = empty set
– Facets of the convex hull
– Arcs - none

[Berg]

Computational geometry

(37)

Visibility between point and face
 Face f is visible from a point p if that point lies in the open

half-space on the other side of hf than the polytope

f

p

q

f is visible from p (p is above the plane)

f is not visible from q

f is not visible from r lying in the plane of f
(this case will be discussed next)

rhf

p ϵ Pconflict(f), p is among the points that see the face f
f ϵ Fconflict(p) f is among the faces visible from point p

Computational geometry

(38)

New triangles to horizon
 Horizon = edges e incident to visible and invisible facets

 New triangle f connects edge e on horizon and point pr and
– creates new node for facet f

– add arcs to points visible from f (subset from Pcoflict(f1) (Pcoflict(f2))
 Coplanar triangles on the plane epr

– are merged with new triangle.
– Conflicts in G are copied from the deleted triangle (same plane)

[Berg]

[Berg]

updates the conflict graph

Computational geometry

(39)

Overview of new point insertion

Processing of point outside
- Remove facets that sees from the CH

(do not delete them from the graph)
- Find horizon edges (around the hole in CH)
- Create new facets from horizon edges to

- add them to CH
- create face nodes in for them

- Compute what sees – search only from
)

- Delete node and face from

Computational geometry

(40)

Input:
Output:

Incremental Convex hull algorithm
IncrementalConvexHull()

Set of points in general position in 3D space
The convex hull = () of

1. Find four points that form an initial tetrahedron, = ({ 1, 2	, 3	, 4	})
2. Compute random permutation { 5, 6, … , }	of the remaining points
3. Initialize the conflict graph with all visible pairs (,),

where is facet of and , 	 > 	4, are non-processed points
4. for 	= 5 to do …inserting , into
5. if(() is not empty) then … is outside, insert , into
6. Delete all facets () from … only from hull C, not from G
7. Walk around visible region boundary, create list of horizon edges
8. for all ∈ 	do
9. connect to by a new triangular facet
10. if 	is coplanar with its neighbor facet ’ along
11. then merge and ’ in , take conflict list from ’
12. else … determine conflicts for new facet

… [continue on the next slide]

Input:
Output:

Incremental Convex hull algorithm (cont…)
12. else … not coplanar => determine conflicts for new facet f
13. Insert into hull
14. Create node for in //… new face in conflict graph G
15. Let and be the facets incident to in the old ()
16. () 	= () ∪ ()
17. for all points 	 ∈ () do
18. if is visible from , then add(,) to … new edges in G
19. Delete the node corresponding to and the nodes corresponding

to facets in () from , together with their incident arcs
20. return

Complexity: Convex hull of a set of points in 3 can be computed
incrementally in (log)	randomized expected time
(process () points, but number of facets and arcs depend on the order
of inserting points – up to (2)) For proof see: [Berg, Section11.3]

Convex hull in higher dimensions

 Convex hull in d dimensions can have (nd/2)
Proved by [Klee, 1980]

 Therefore, 4D hull can have quadratic size
 No O(n log n) algorithm possible for d>3
 These approaches can extend to d>3

– Gift wrapping
– D&C
– Randomized incremental
– QuickHull

Computational geometry

(43)

Conclusion

 Recapitulation of 2D algorithms
 >=3D algorithms

– Gift wrapping
– D&C
– Randomized incremental
– QuickHull

Computational geometry

(44)

References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 11, http://www.cs.uu.nl/geobook/

[Boissonnat] J.-D. Boissonnat and M. Yvinec, Algorithmic Geometry,
Cambridge University Press, UK, 1998. Chapter 9 – Convex hulls

[Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An
Introduction. Berlin, Springer-Verlag,1985.

[Mount] [Mount] Mount, D.: Computational Geometry Lecture Notes for
Fall 2016, University of Maryland, Lectures 3, 4 and 24.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

[Chan] Timothy M. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions., Discrete and
Computational Geometry, 16, 1996, 361-368.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

Computational geometry

(45)

