CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

CONVEX HULLS

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/adm39vqg/start

Based on [Berg] and [Mount]

Version from 30.10.2019

Talk overview

= Motivation and Definitions
= Graham’s scan — incremental algorithm

= Divide & Conquer

= Quick hull

= Jarvis's March — selection by gift wrapping
= Chan’s algorithm — optimal algorithm

- A ' WWW.Cguu.com
o A o =

. DC I Felkel: Computational geometry . | |
G @ 4 b 4 4 4 % % 4 4 + 4

Convex hull (CH) —why to deal with it?

el TT - O

= Shape approximation of a point set or complex shapes
(other common approximations include: minimal area enclosing
rectangle, circle, and ellipse,...) — e.g., for collision detection

= Initial stage of many algorithms to filter out irrelevant
points, e.qg.:
— diameter of a point set 4/" /

— minimum enclosing convex shapes (such as rectangle, circle,
and ellipse) depend only on points on CH

S o o~ - —
-+~ -~ —+
—~ DCGI Felkel: Computational geometry

©)

Convexity

Line test I
= A setSis convex @ @

— if for any points p,g € S the line segmentpq c S, or
— if any convex combination of pand gisin S

= Convex combination of points p, g is any point that
can be expressed as q

(1—a)p+aq,where0<a =<1 p./‘;“1

a=0
= Convex hull CH(S) of set S — is (similar definitions)
— the smallest set that contains S (convex)
— or: intersection of all convex sets that contain S

— Or in 2D for points: the smallest convex polygon
containing all given points

- o —f—
A S = == ——
> -~ -+
—~ DCGI Felkel: Computational geometry
() . b e e e A

Definitions from topology in metric spaces

= Metric space — each two of points have defined a distance ,

= r-neighborhood of a point p and radiusr >0 wg‘ﬁ
= set of points whose distance to p is strictly less than r
(open ball of diameter r centered about p)

= GivensetS, pointpis
— Interior point of S — if 3r,r > 0, (r-neighborhood about p) c S
— Exterior point — if it lies in interior of the complement of S
— Border point — is neither interior neither exterior

Interior point \\H./

Exterior point _..p

Border point |

= —:_ -

e S =~

> -~ -+
DCGI Felkel: Computational geometry _

(6)

Definitions from topology in metric spaces

AT /"7\' Goes to
u Set S IS Open (otev‘fena') '\\\-’,1‘ e \||>m‘|n|ty

— V¥p € S 3 (r-neighborhood about p of radius r) € S
— it contains only interior points, none of its border points

Closed (uzaviena) Q é iy

— Ifitis equal to its closure S (uzaver = smallest closed set containing S in topol. space)

Y(r-neighborhood about p of radius r) N S + Q)

Are border points p € §?
O

Clopen (oteviend i uzaviena) — Ex.: empty set ¢, or finite set of disjoint components

— if it is both closed and open space Q = rational numbers
(S= all positive rational numbers whose square is bigger than2) S =(v/2, ©)inQ, V2¢Q,S=S

4 X coss o
Bounded (ohranicena) A Unbounded v L

— if it can be enclosed in a ball of finite radius

B CompaCt (kompaktni) A Q

. ~— ifitis both closed and bounded
7 Felkel: Computational geometry % _

Goes to infinity?
|

(7)

Clopen (otevrena i uzavrena) example

If it is both closed and open => clopen

Space Q: rational numbers
Set S: all positive rational numbers whose square is bigger than 2

S = (W2,0)in Q
V2 ¢ Q = open (does not contain the border)} = clopen
S =S = closed (equal to its closure S)

V2 = 1.414213562

S
(ﬁ
| l |
[|
1414 213 1414 214
1000 000 1000 000

Note: in R: V2 ¢ Q = open

++++;Z“_I;_F -+ S #S = notclosed, S = <\/7,00) %
DCGI ©

Definitions from topology in metric spaces

= Convex set S may be bounded or unbounded

Bounded Bounded
I Closed
r: :J
Open

Open Closed Unbounded| Nonconvex

I
Convex [Mount]

= Convex hull CH(S) of a finite set S of points in the
plane
= Bounded, closed, (= compact) convex polygon

. *. . e point
e, f . «— segment
SR] . T polygon

= —:_ -
e S =~ == ——
> -~ -+
—~ DCGI Felkel: Computational geometry

©)

Convex hull representation

= CCW enumeration of vertices

= Contains only the extreme points g &% o,
(“endpoints” of collinear points) e

= Simplification for the whole semester:
Assume the input points are in general position,
— no two points have the same x-coordinates and
— no three points are collinear

-> We avoid problem with non-extreme points on X
. (solution may be simple — e.g. lexicographic orderin%)

S A o~ == =

—~ DCGI Felkel: Computational geometry
(10)

Online x offline algorithms

= Incremental algorithm
— Proceeds one element at a time (step-by-step)

s Online algorithm (must be incremental)
— is started on a partial (or empty) input and

— continues its processing as additional input data
becomes available (comes online, thus the name).

— EX.: Insertion sort

s Offline algorithm (may be incremental)

— requires the entire input data from the beginning
— than it can start
— EX.: selection sort (any algorithm using sort)

- o —f—
+++++
> -~ -+
— DCGI Felkel: Computational geometry
(11)

Graham’s scan

= Incremental O(n log n) algorithm
= Objects (points) are added one at a time

= Order of insertion is important

1. Random insertion
—> we need to test: is-point-inside-the-hull(p) €3

2. Ordered insertion
Find the point p with the smallest y coordinate first

a) Sort points p; according to increasing angles around the point
p (angle of pp; and x axis)

b) Andrew’s modification: sort points p; according to x and add
them left to right (construct upper & lower hull)

Sorting x-coordinates is simpler to implement than sorting of angles

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(13)

Graham’s scan — b) modification by Andrew

= O(n log n) for unsorted points, O(n) for sorted pts.
= Upper hull, then lower hull. Merge.

= Minimum and maximum on X belong to CH
upper hull

lower hull

- o —f—
+++++
> -~ -+ 4
-~ DCGI Felkel: Computational geometry _
(14) .

Graham’s scan — incremental algorithm

push pop
GrahamsScan(points p) q [\
Input: points p tos
Output: CCW points on the convex hull

sort points according to increasing x-coord -> {p,, p,, ..., P,y StackH
push(p,, H), push(p,, H) upper hull
fori=3tondo

= :while(size(H) = 2 and orient(sos, tos, p,) = 0) // skip left turns
== popH /I (back-tracking)
- push(p;, H) /[store right turn
store H to the output (in reverse order) // upper hull

Symmetrically the lower hull

ONOOR N =

Sos tos pi | SOS tdS pi sos tos | pi

Position of point in relation to segment

>0 risleft from pg, CCW orient
orient(p, g, r)< = if (p, g, r)are collinear
_<0 risright from pg, CW orient

Point r is: left from pq on segment pqg right from pq

e (
q r q p/
p/ p/ .r

Convex polygon with edges pg and qr or
Triangle pqgr: is CCW oriented degenerated Is CW oriented

r to line q 9

- + —+ 4
—~ Felkel: Computational geometry % _
DCGI (16) | | . :

Is Graham’s scan correct?

Stack H at any stage contains upper hull of the points
{ps, s D)) p;}, processed so far
— For induction basis H = {p;,p,} ... true
- p; = last added point to CH, p; = its predecessor on CH

— Each point p; that lies between p; and p; lies below p;p; and should
not be part of UH after addition of p; => is removed before push p;.
[orient(p;, px, pi) > 0, p, is right from p;p; = py is removed from UH]

— Stop, if 2 points in the stack or after construction of the upper hull
' p. p.

Points on stack H A i
= CH ({p1,p2) -, Pi-1}) * i ® o ;| @

Eg: : : %
- + —+

Complexity of Graham’s scan

= Sorting according x — O(nlog n)

= Each point pushed once - O(n)

= Some (d. < n) points deleted while processing p
— O(n)

= The same for lower hull — O(n)

= Total O(n log n) for unsorted points
O(n) for sorted points

- o —f—
e A A == =
> -~ -+ 4
—~ DCGI Felkel: Computational geometry
(20) :

Divide & Conquer

= O(nlog(n)) algorithm
= Extension of mergesort

= Principle
— Sort points according to x-coordinate,
— recursively partition the points and solve CH.

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(21)

Convex hull by D&C

ConvexHullD&C(points P)
Input: points p
Output: CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)

4 if |[P| < 3 then

5. compute CH by brute force,

6. return

I Partition P into two sets L and R (with lower & higher coords x)
8 Recursively compute H;, = hull(L), Hg = hull(R)

9. H = Merge hulls(H,, Hg) by computing

10. Upper_tangent(H,, Hg) // find nearest points, H. CCW, H;z CW
11. Lower_tangent(H,, Hg) // (H. CW, Hgx CCW)

12. discard points between these two tangents

13. _ return H

- o —f—
e A A == =
> -~ -+ 4
—~ DCGI Felkel: Computational geometry
(22) :

Convex hull by D&C

ConvexHullD&C(points P) Upper tangent

Input: points p
Output: CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)

4 if |[P| < 3 then

5. compute CH by brute force,

6. return

I Partition P into two sets L and R (with lower & higher coords x)
8 Recursively compute H;, = hull(L), Hg = hull(R)

9. H = Merge hulls(H,, Hg) by computing

10. Upper_tangent(H,, Hg) // find nearest points, H. CCW, H;z CW
11. Lower_tangent(H,, Hg) // (H. CW, Hgx CCW)

12. discard points between these two tangents

13. _ return H

- o —f—
e S =~ == ——
> -~ -+ 4
-~ DCGI Felkel: Computational geometry _
(22) .

Convex hull by D&C

ConvexHullD&C(points P) Upper tangent

Input: points p
Output: CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)

4 if |[P| < 3 then

5. compute CH by brute force, , Lower tangent
6. return

I Partition P into two sets L and R (with lower & higher coords x)
8 Recursively compute H;, = hull(L), Hg = hull(R)

9. H = Merge hulls(H,, Hg) by computing

10. Upper_tangent(H,, Hg) // find nearest points, H. CCW, H;z CW
11. Lower_tangent(H,, Hg) // (H. CW, Hgx CCW)

12. discard points between these two tangents

13. _ return H

- o —f—
e S =~ == ——
-+~ -+~ -4 _
-~ DCGI Felkel: Computational geometry _
(22))

Convex hull by D&C

ConvexHullD&C(points P) Upper tangent

Input: points p
Output: CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)

4 if |[P| < 3 then

5. compute CH by brute force, , Lower tangent
6. return

I Partition P into two sets L and R (with lower & higher coords x)
8 Recursively compute H;, = hull(L), Hg = hull(R)

9. H = Merge hulls(H,, Hg) by computing

10. Upper_tangent(H,, Hg) // find nearest points, H. CCW, H;z CW
11. Lower_tangent(H,, Hg) // (H. CW, Hgx CCW)

12. discard points between these two tangents

13. _ return H

- o —f—
e S =~ == ——
-+~ -+~ -4 _
-~ DCGI Felkel: Computational geometry _
(22))

Convex hull by D&C

ConvexHullD&C(points P) Upper tangent .

Input: points p
Output: CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)

4 if |[P| < 3 then

5. compute CH by brute force, , Lower tangent
6. return

I Partition P into two sets L and R (with lower & higher coords x)
8 Recursively compute H;, = hull(L), Hg = hull(R)

9. H = Merge hulls(H,, Hg) by computing

10. Upper_tangent(H,, Hg) // find nearest points, H. CCW, H;z CW
11. Lower_tangent(H,, Hg) // (H. CW, Hgx CCW)

12. discard points between these two tangents

13. _ return H

- o —f—
e A A == =
> -~ -+ 4
—~ DCGI Felkel: Computational geometry
(22) :

Search for upper tangent (lower is symmetrical)

Upper_tangent(H;, Hg)
Input: two non-overlapping CH’s H
Output: upper tangent ab)

1. a=rightmost H,
2. b =leftmost Hy

3. while(ab is not the upper tangent for H, Hg) do

4. while(ab is not the upper tangent for H) a =a.succ // move CCW
5 while(ab is not the upper tangent for Hz) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for H_) => orient(a, b, a.succ) =0
which means a.succ is left from line ab

m = |H |+ |[Hg|] =|L| + |R|] => Upper Tangent: O(m) = O(n

-~ o~ -t
o o =~ =
++

—

—+
DC GI Felkel: Computational geometry
(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(H;, Hg)
Input: two non-overlapping CH’s H
Output: upper tangent ab)

1. a=rightmost H,
2. b =leftmost Hy

3. while(ab is not the upper tangent for H, Hg) do

4. while(ab is not the upper tangent for H) a =a.succ // move CCW
5 while(ab is not the upper tangent for Hz) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for H_) => orient(a, b, a.succ) =0
which means a.succ is left from line ab

m = |H |+ |[Hg|] =|L| + |R|] => Upper Tangent: O(m) = O(n

-~ o~ -t
o o =~ =
++

—

—+
DC GI Felkel: Computational geometry
(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(H;, Hg)
Input: two non-overlapping CH’s
Output: upper tangent ab

1. a=rightmost H,
2. b =leftmost Hy

3. while(ab is not the upper tangent for H, Hg) do

4. while(ab is not the upper tangent for H) a =a.succ // move CCW
5 while(ab is not the upper tangent for Hz) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for H_) => orient(a, b, a.succ) =0
which means a.succ is left from line ab

m = |H |+ |[Hg|] =|L| + |R|] => Upper Tangent: O(m) = O(n

-~ o~ -t
o o =~ =
++

—

—+
DC GI Felkel: Computational geometry
(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(H;, Hg)
Input: two non-overlapping CH’s
Output: upper tangent ab

1. a=rightmost H,
2. b =leftmost Hy

3. while(ab is not the upper tangent for H, Hg) do

4. while(ab is not the upper tangent for H) a =a.succ // move CCW
5 while(ab is not the upper tangent for Hz) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for H_) => orient(a, b, a.succ) =0
which means a.succ is left from line ab

m = |H |+ |[Hg|] =|L| + |R|] => Upper Tangent: O(m) = O(n

-~ o~ -t
o o =~ =
++

—

—+
DC GI Felkel: Computational geometry
(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(H;, Hg)
Input: two non-overlapping CH’s
Output: upper tangent ab

1. a=rightmost H,
2. b =leftmost Hy

3. while(ab is not the upper tangent for H, Hg) do

4. while(ab is not the upper tangent for H) a =a.succ // move CCW
5 while(ab is not the upper tangent for Hz) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for H_) => orient(a, b, a.succ) =0
which means a.succ is left from line ab

m = |H |+ |[Hg|] =|L| + |R|] => Upper Tangent: O(m) = O(n

-~ o~ -t
o o =~ =
++

—

—+
DC GI Felkel: Computational geometry
(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(H,, Hg) Upper tangent
Input: two non-overlapping CH’s ’ v

Output: upper tangent ab)

1. a=rightmost H,
2. b =leftmost Hy

3. while(ab is not the upper tangent for H, Hg) do

4. while(ab is not the upper tangent for H) a =a.succ // move CCW
5 while(ab is not the upper tangent for Hz) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for H_) => orient(a, b, a.succ) =0
which means a.succ is left from line ab

m = |H |+ |[Hg|] =|L| + |R|] => Upper Tangent: O(m) = O(n

-~ o~ -t
>~ o~ =~ —4—
++

—

—+
DC GI Felkel: Computational geometry
(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(H,, Hg) Upper tangent
Input: two non-overlapping CH’s ’ v

Output: upper tangent ab)

1. a=rightmost H,
2. b =leftmost Hy

3. while(ab is not the upper tangent for H, Hg) do

4. while(ab is not the upper tangent for H) a =a.succ // move CCW
5 while(ab is not the upper tangent for Hz) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for H_) => orient(a, b, a.succ) =0
which means a.succ is left from line ab

m = |H |+ |[Hg|] =|L| + |R|] => Upper Tangent: O(m) = O(n

-~ o~ -t
>~ o~ =~ —4—
++

—

—+
DC GI Felkel: Computational geometry
(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(H,, Hg) Upper tangent
Input: two non-overlapping CH’s ’ v

Output: upper tangent ab) ,

7
P
q
’
while(ab is not the upper tangent for H,, Hy) do | |

3.
4, while(ab is not the upper tangent for H) a =a.succ // move CCW
5
6

1. a=rightmost H,
2. b =leftmost Hy

L)
while(ab is not the upper tangent for Hz) b = b.pred // move CW
Return ab

Where: (ab is not the upper tangent for H_) => orient(a, b, a.succ) =0
which means a.succ is left from line ab

m = |H |+ |[Hg|] =|L| + |R|] => Upper Tangent: O(m) = O(n

-~ o~ -t
>~ o~ =~ —4—
++

—

—+
DC GI Felkel: Computational geometry
(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(H,, Hg) Upper tangent
Input: two non-overlapping CH’s ’ v

Output: upper tangent ab) ,

n

: Lower tangent

1. a=rightmost H,
2. b =leftmost Hy

3. while(ab is not the upper tangent for H, Hg) do

4. while(ab is not the upper tangent for H) a =a.succ // move CCW
5 while(ab is not the upper tangent for Hz) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for H_) => orient(a, b, a.succ) =0
which means a.succ is left from line ab

m = |H |+ |[Hg|] =|L| + |R|] => Upper Tangent: O(m) = O(n

-~ o~ -t
>~ o~ =~ —4—
++

—

—+
DC GI Felkel: Computational geometry
(23)

Convex hull by D&C complexity

= Initial sort O(n log(n))
= Function hull()

— Upper and lower tangent O(n)
— Merge hulls O(1) > O(n)
— Discard points between tangents O(n)

~/

= Overall complexity
— Recursion

1 ..ifn<3
= <
T(n) | 2T(n/2) + O(n) ... otherwise

— Overall complexity of CH by D&C: => O(n log(n))

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(24)

Quick hull

= A variant of Quick Sort
= O(nlog n) expected time, max O(n?)
= Principle

— in praxis, most of the points lie in the interior of CH

— E.g., for uniformly distributed points in unit square, we
expect only O(log n) points on CH

= Find extreme points (parts of CH)
guadrilateral, discard inner points |

— Add 4 edges to temp hull T
— Process points outside 4 edges

.
o * *
. .
+++++ [Mount]
> -~ -+
—~ DCGI Felkel: Computational geometry
(25)

Process each of four groups of points outside

= For points outside ab (left from ab for clockwise CH)
— Find point ¢ on the hull — max. perpend. distance to ab
— Discard points inside triangle abc (right from the edges)

— Split points into two subsets
- outside ac (left from ac) and outside cb (left from cb)

— Replace edge ab in T by edges ac and cb
— Process points outside ac and cb recursively

discard inner points

[Mount]

= : -
+++++
> -~ -+
—/— DCGI Felkel: Computational geometry
(26)

Quick hull complexity

= N points remain outside the hull

= T(n) =running time for such n points outside
— O(n) - selection of splitting point c
— O(n) - point classification to inside & (n,+n,) outside

— The running time is given by recurrence ——2——
ifn="1 (g <an | [my] OK
T(n) E
((n) T T n2 Where n+N, <n [ni>a | [mz] WRONG

— If evenly distributed that max(n{,n,) < an,0 < d <1
then solves as Quicksort to O(cn log n) where c=f(a)
else O(n?) for unbalanced splits

- == Output sensitive algorithm
Felkel: Computational geomet
= o DCGI P(27) g ry / % %%%

Jarvis’s March — selection by gift wrapping

= Variant of O(n?) selection sort
= Output sensitive algorithm

= O(nh) ... h=number of points on convex hull

- o —f—
+++++
> -~ -+ 4
- DCGI Felkel: Computational geometry _
(28) .

Jarvis’s March A

JarvisCH(points P)
Input: points p
Output: CCW points on the convex hull h,

1. Take point p.,, with minimum y-coordinate, N1= Prin h,
Il pin Will be the first point in the hull — append it to the hull as h;

2. Take a horizontal line, i.e., create temporary point p, = (—o0, h;.y)

3. j=1

4. repeat

S. Rotate the line around h; until it bounces to the nearest point q = p,
/I compute the smallest angle by the “smallest orient(h; , , h;, q)”

6. jr+

append the bounced nearest point g to the hull as next h,
7. until (q # Pmin)

Complexity: O(n)+ O(n)*h =>0O(h*n)

Dol ol good for low number of points on convex:-hull %
-+ -+ -+ 4
S o Felkel: Computational geometry
DCGI e

(29)

Jarvis’s March A

JarvisCH(points P)
Input: points p
Output: CCW points on the convex hull h,

1. Take point p.,, with minimum y-coordinate, N1= Prin h,
Il pin Will be the first point in the hull — append it to the hull as h;

2. Take a horizontal line, i.e., create temporary point p, = (—o0, h;.y)

3. j=1

4. repeat

S. Rotate the line around h; until it bounces to the nearest point q = p,
/I compute the smallest angle by the “smallest orient(h; , , h;, q)”

6. jr+

append the bounced nearest point g to the hull as next h,
7. until (q # Pmin)

Output sensitive algorithm

Complexity: O(n)+ O(n)*h =>0O(h*n)

Dol ol good for low number of points on convex:-hull %
-+ -+ -+ 4
S o Felkel: Computational geometry
DCGI e

(29)

Output sensitive algorithm

= Worst case complexity analysis analyzes the worst
case data

— Presumes, that all (const. fraction of) points lie on the CH
— The points are ordered along CH
=> We need sorting => Q(n log n) of CH algorithm

= Such assumption is rare
— usually only much less of points are on CH

= Output sensitive algorithms
— Depend on: input size n and the size of the output h
— Are more efficient for small output sizes

= _ Reasonable time for CH is O(n log h)

+ h = Number of point the CH %
DCGI um e(r30()) points on the _

Chan’s algorithm

Cleverly combines Graham’s scan and Jarvis’'s march
algorithms

Goal is O(n log h) running time
— We cannot afford sorting of all points - (0(n log n)

=> |dea: work on parts, limit the part sizes to polynomial h¢
the complexity does not change => log h® = log h

— his unknown — we get the estimation later
— Use estimation m, better not too high=>h <m <h?

1. Partition points P into r-groups of size m, r = n/m
— Each group take O(m log m) time - sort + Graham
~— r-groups take O(r m log m) = O(n log m) - Jarvis

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(31)

Chan’s algorithm

1. Partition points P into r-groups of size m, r = n/m
— Each group take O(m log m) time - sort + Graham
— r-groups take O(rm log m) = O(n log m) — Jarvis

/

h <m < h?

l

goal O(n log h)

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(32)

Merging of m parts in Chan’s algorithm

2. Merge r-group CHs as “fat points”

— Tangents to convex m-gon can be found in O(log m)
by binary search

r = n/m disjoint subsets
of size at most m

: 1
. ST Jarvis ot Chan ™
+++ -+ Felkel: Computational geometry %
DCGI ¥ . W

Chan’s algorithm complexity

= h points on the final convex hull
=> at most h steps in the Jarvis march algorithm
— each step computes r-tangents, O(log m) each
— merging together O(hr log m)

r-groups of size m, r =n/m

= Complete algorithm O(n log h) \ /

— Graham'’s scan on partitions O(r m log m)=0(n log m)

— Jarvis Merging: O(hrlogm) = O(hn/mlogm), ...4a)
h<m <h? = O(n log m)

— Altogether O(n log m)
— How to guess m? Wait!

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(34)

Chan’s algorithm complexity

= h points on the final convex hull
=> at most h steps in the Jarvis march algorithm
— each step computes r-tangents, O(log m) each
— merging together O(hr log m)

r-groups of size m, r = n/m

= Complete algorithm O(n log h) \ /

— Graham'’s scan on partitions O(r m log m)=0(n log m)

— Jarvis Merging: O(hrlogm) = O(hn/mlogm), ...4a)
h<m <h? = O(n log m)

— Altogether O(n log m)
— How to guess m? Wait!

-~ =+ 1)use m as an estimation of h 2) if it fails, increase m %
-+~ -~ -
o o Felkel: Computational geometry

Chan’s algorithm for known m

PartialHull(P, m)
Input: points P
Output: group of size m

1. Partition P into r =|_n/m_|disjoint subsets {p4, ps, ---, p,} Of siq‘z'é at most m
2. fori=1ltordo

a) Convex hull by GrahamsScan(P,), store vertices in ordered array
3. let p, = the bottom most point of P and p, = (—c0, p;.Y)
4. fork=1tomdo // compute merged hull points O(log m)

a) fori=1tordo //angle to all r subsets => points g
2 Compute the point g; € P that maximizes the angle L p, 4, Py, G;
c b) let p,., be the point q € {q,, 95, -.., q,} that maximizes L p,_4, Px, 9
%U (Py+1 is the new point in CH)

C) if pyaq = P4 then return {p,, p,, ---, Py}
5. return “Fail, m was too small”

- o —f—
e S =~ == ——
> -~ -+
DC GI Felkel: Computational geometry
(35)

Chan’s algorithm — estimation of m

ChansHull
Input: points P
Output: convex hull p,...p,

1. fort=1,2,...,[lglgh] do{
a) let m = min(22™, n)
b) L = PartialHull(P, m)
c) if L # “Fail, m was too small” then return L

}

Sequence of choices of m are { 4, 16, 256,..., 22" ,..., n} ... squares

Example: for h = 23 points on convex hull of n = 57 points, the algorithm
will try this sequence of choices of m { 4, 16, 256, 57 }
1. 4 and 16 will fail
2. 256 will be replaced by n=57

= —:_ -
e S =~ == ——
> -~ -+
DC GI Felkel: Computational geometry
(36)

Complexity of Chan’s Convex Hull?

= The worst case: Compute ?AI t iterations

= thiteration takes O(n log 22™) = O(n 29

= Algorithm stops when 22"t > h =>t =|g Ig h]
= Allt=[lg Ig h| iterations take:

Using thefact that Zk:2i =2 -1

lglgh lglgh

> n2'=n> 2" <n2""" =2nlgh=0(nlogh)

e 2x more work in the worst case
-+~ -~ -
S o Felkel: Computational geometry
DCGI |

Complexity of Chan’s Convex Hull?

= The worst case: Compute ?AI t iterations
= thiteration takes O(n log 22™) = O(n 29
= Algorithm stops when 22"t > h =>t =|g Ig h]
= Allt=[lg Ig h| iterations take:

Using thefact that Zk:Zi =2 -1

On e;
Ifa r
atj,
n

lglgh lglgh

> n2'=n> 2" <n2""" =2nlgh=0(nlogh)
I

e 2x more work in the worst case
-+~ -~ -
S o Felkel: Computational geometry
DCGI - |

Complexity of Chan’s Convex Hull?

= The worst case: Compute ?AI t iterations
= thiteration takes O(n log 22™) = O(n 29
= Algorithm stops when 22"t > h =>t =|g Ig h]
= Allt=[lg Ig h| iterations take:
Using thefact that Zk: 2' =2""-1
1=0

t iterations

On e
Ifa r
atjo
n

/
lglgh lglgh

> n2'=n> 2" <n2""" =2nlgh=0(nlogh)
I

e 2x more work in the worst case %
-+~ -~ -
S o Felkel: Computational geometry
DCGI . g

Complexity of Chan’s Convex Hull?

= The worst case: Compute ?AI t iterations
= thiteration takes O(n log 22™) = O(n 29
= Algorithm stops when 22"t > h =>t =|g Ig h]
= Allt=[lg Ig h| iterations take:
Using thefact that Zk: 2' =2""-1
1=0

t iterations

On e
Ifa r
atjo
n

/
Ilglg h Ilglg h 1+k

> n2'=n> 2" <n2""" =2nlgh=0(nlogh)
I

e 2x more work in the worst case %
-+~ -~ -
S o Felkel: Computational geometry
DCGI . g

Conclusion in 2D

= Graham’s scan: O(nlog n), O(n) for sorted pts

= Divide & Conquer: O(nlog n)

= Quick hull: O(n log n), max O(n?) ~ distrib.

= Jarvis’s march: O(hn), max O(n?) ~ pts on CH

= Chan’s alg.: O(n log h) ~ pts on CH
asymptotically optimal

but
constants are too high to be useful

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(38) T

References

- —:_ - : i i
-+ =~ 4+
D C GI Felkel: Computational geometry
i - 4 4 { - { 4 { —— 1 - - - -— .:, _!.
(39) . - _

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-Verlag,
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5,
http://www.cs.uu.nl/geobook/

[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016,
University of Maryland, Lectures 3 and 4.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

[Chan] Timothy M. Chan. Optimal output-sensitive convex hull algorithms
in two and three dimensions., Discrete and Computational Geometry, 16,
1996, 361-368.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

+ + + +

