
CONVEX HULLS

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 30.10.2019

Felkel: Computational geometry

(2)

Talk overview

 Motivation and Definitions
 Graham’s scan – incremental algorithm
 Divide & Conquer
 Quick hull
 Jarvis’s March – selection by gift wrapping
 Chan’s algorithm – optimal algorithm

www.cguu.com

Felkel: Computational geometry

(3)

Convex hull (CH) – why to deal with it?

 Shape approximation of a point set or complex shapes
(other common approximations include: minimal area enclosing
rectangle, circle, and ellipse,…) – e.g., for collision detection

 Initial stage of many algorithms to filter out irrelevant
points, e.g.:

– diameter of a point set
– minimum enclosing convex shapes (such as rectangle, circle,

and ellipse) depend only on points on CH

Felkel: Computational geometry

(5)

not convex

!!!

Convexity

 A set S is convex
– if for any points p,q S the line segment pq S, or
– if any convex combination of p and q is in S

 Convex combination of points p, q is any point that
can be expressed as
(1 –) p + q, where 0 1

 Convex hull CH(S) of set S – is (similar definitions)
– the smallest set that contains S (convex)
– or: intersection of all convex sets that contain S
– Or in 2D for points: the smallest convex polygon

containing all given points

p
q

=0
=1

convex

Line test

Felkel: Computational geometry

(6)

 Metric space – each two of points have defined a distance
 r-neighborhood of a point p and radius r > 0

= set of points whose distance to p is strictly less than r
(open ball of diameter r centered about p)

 Given set S, point p is
– Interior point of S – if ,ݎ∃ ݎ > 0, (r-neighborhood about p) S
– Exterior point – if it lies in interior of the complement of S
– Border point – is neither interior neither exterior

Definitions from topology in metric spaces

p

p

r

p

Interior point

Exterior point

Border point

r

S

Felkel: Computational geometry

(7)

Definitions from topology in metric spaces
 Set S is Open (otevřená)

– p S (r-neighborhood about p of radius r) S
– it contains only interior points, none of its border points

 Closed (uzavřená)

– If it is equal to its closure S (uzávěr = smallest closed set containing S in topol. space)

(r-neighborhood about p of radius r) S)

 Clopen (otevřená i uzavřená) – Ex.: empty set , or finite set of disjoint components

– if it is both closed and open space Q = rational numbers
(S= all positive rational numbers whose square is bigger than 2) S = (2,) in Q, 2 Q, S = S

 Bounded (ohraničená) Unbounded

– if it can be enclosed in a ball of finite radius
 Compact (kompaktní)

– if it is both closed and bounded

Goes to
infinity

A
re

 b
or

de
rp

oi
nt

s
 p∈ܵ?

G
oe

s
to

 in
fin

ity
?

Goes to
infinity

Goes to
infinity

Clopen (otevřená i uzavřená) example

Felkel: Computational geometry

(8)

If it is both closed and open => clopen
Space Q: rational numbers
Set S: all positive rational numbers whose square is bigger than 2ܵ	 = 	 (2,) in ܳ2		ܳ 	⇒ open		(does	not	contain	the	border)ܵ	 = ܵ̅ ⇒ closed	(equal	to	its	closure	ܵ̅)2 = 1.414213562	

1	414	2131	000	000 1	414	2141	000	000
S

⇒ clopen

Note: in R: 2		ܳ ⇒ openܵ ≠ ܵ̅ ⇒ not	closed ܵ̅ = ർ 2 ,)

Felkel: Computational geometry

(9)

Definitions from topology in metric spaces

 Convex set S may be bounded or unbounded

 Convex hull CH(S) of a finite set S of points in the
plane

= Bounded, closed, (= compact) convex polygon

point
segment
polygon

[Mount]

Open

Bounded
Bounded
Closed

Felkel: Computational geometry

(10)

Convex hull representation

 CCW enumeration of vertices
 Contains only the extreme points

(“endpoints” of collinear points)

 Simplification for the whole semester:
Assume the input points are in general position,

– no two points have the same x-coordinates and
– no three points are collinear

-> We avoid problem with non-extreme points on x
(solution may be simple – e.g. lexicographic ordering)

Felkel: Computational geometry

(11)

Online x offline algorithms

 Incremental algorithm
– Proceeds one element at a time (step-by-step)

 Online algorithm (must be incremental)

– is started on a partial (or empty) input and
– continues its processing as additional input data

becomes available (comes online, thus the name).
– Ex.: insertion sort

 Offline algorithm (may be incremental)

– requires the entire input data from the beginning
– than it can start
– Ex.: selection sort (any algorithm using sort)

Felkel: Computational geometry

(13)

Graham’s scan

 Incremental O(n log n) algorithm
 Objects (points) are added one at a time
 Order of insertion is important

1. Random insertion
–> we need to test: is-point-inside-the-hull(p)

2. Ordered insertion
Find the point with the smallest y coordinate first
a) Sort points according to increasing angles around the point 	(angle of 	and ݔ axis)
b) Andrew’s modification: sort points according to x and add

them left to right (construct upper & lower hull)
Sorting x-coordinates is simpler to implement than sorting of angles

Felkel: Computational geometry

(14)

Graham’s scan – b) modification by Andrew

 O(n log n) for unsorted points, O(n) for sorted pts.
 Upper hull, then lower hull. Merge.
 Minimum and maximum on x belong to CH

p1

pn

lower hull

upper hull

Input:
Output:

Felkel: Computational geometry

(15)

Graham’s scan – incremental algorithm
GrahamsScan(points p)

points p
CCW points on the convex hull

1. sort points according to increasing x-coord -> {p1, p2, …, pn}
2. push(p1, H), push(p2, H)
3. for i = 3 to n do
4. while(size(H) 2 and orient(sos, tos, pi) 0) // skip left turns
5. pop H // (back-tracking)
6. push(pi, H) // store right turn
7. store H to the output (in reverse order) // upper hull
8. Symmetrically the lower hull

tos pisos pi pitossos tossos

pop

upper hull

pop H pop H

tos
sos

Stack H

push pop

Felkel: Computational geometry

(16)

Position of point in relation to segment

> 0 r is left from pq, CCW orient
orient(p, q, r) = 0 if (p, q, r) are collinear

< 0 r is right from pq, CW orient

q

p
q

r
p

q

r

left from pqPoint r is: on segment pq right from pq

is CCW orientedTriangle pqr: degenerated
to line

is CW oriented

p
q

r

p
qr p

r

Convex polygon with edges pq and qr or

p
qr

Felkel: Computational geometry

(19)

Is Graham’s scan correct?
Stack H at any stage contains upper hull of the points {1, … , ,݆ }, processed so far

– For induction basis ܪ = ,ଵ} –… true	ଶ} = last added point to CH, = its predecessor on CH
– Each point that lies between and lies below and should

not be part of UH after addition of => is removed before push .
[orient(, , (> ݇ ,0	 is right from ⇒ is removed from UH]

– Stop, if 2 points in the stack or after construction of the upper hull

[Mount]

Points on stack H
= CH ({ଵ, ,ଶ …	, ({ିଵ

pk

CHi-1 CHi

Felkel: Computational geometry

(20)

Complexity of Graham’s scan

 Sorting according x – O(n log n)
 Each point pushed once – O(n)
 Some (di n) points deleted while processing pi

– O(n)
 The same for lower hull – O(n)

 Total O(n log n) for unsorted points
O(n) for sorted points

Felkel: Computational geometry

(21)

Divide & Conquer

 (n log(n)) algorithm
 Extension of mergesort
 Principle

– Sort points according to x-coordinate,
– recursively partition the points and solve CH.

Input:
Output:

Felkel: Computational geometry

(22)

ConvexHullD&C(points P)
points p
CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)
4. if |P| 3 then
5. compute CH by brute force,
6. return
7. Partition P into two sets L and R (with lower & higher coords x)
8. Recursively compute HL = hull(L), HR = hull(R)
9. H = Merge hulls(HL, HR) by computing
10. Upper_tangent(HL, HR) // find nearest points, HL CCW, HR CW
11. Lower_tangent(HL, HR) // (HL CW, HR CCW)
12. discard points between these two tangents
13. return H

Convex hull by D&C

Input:
Output:

Felkel: Computational geometry

(22)

ConvexHullD&C(points P)
points p
CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)
4. if |P| 3 then
5. compute CH by brute force,
6. return
7. Partition P into two sets L and R (with lower & higher coords x)
8. Recursively compute HL = hull(L), HR = hull(R)
9. H = Merge hulls(HL, HR) by computing
10. Upper_tangent(HL, HR) // find nearest points, HL CCW, HR CW
11. Lower_tangent(HL, HR) // (HL CW, HR CCW)
12. discard points between these two tangents
13. return H

Convex hull by D&C
Upper tangent

Input:
Output:

Felkel: Computational geometry

(22)

ConvexHullD&C(points P)
points p
CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)
4. if |P| 3 then
5. compute CH by brute force,
6. return
7. Partition P into two sets L and R (with lower & higher coords x)
8. Recursively compute HL = hull(L), HR = hull(R)
9. H = Merge hulls(HL, HR) by computing
10. Upper_tangent(HL, HR) // find nearest points, HL CCW, HR CW
11. Lower_tangent(HL, HR) // (HL CW, HR CCW)
12. discard points between these two tangents
13. return H

Convex hull by D&C
Upper tangent

Lower tangent

Input:
Output:

Felkel: Computational geometry

(22)

ConvexHullD&C(points P)
points p
CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)
4. if |P| 3 then
5. compute CH by brute force,
6. return
7. Partition P into two sets L and R (with lower & higher coords x)
8. Recursively compute HL = hull(L), HR = hull(R)
9. H = Merge hulls(HL, HR) by computing
10. Upper_tangent(HL, HR) // find nearest points, HL CCW, HR CW
11. Lower_tangent(HL, HR) // (HL CW, HR CCW)
12. discard points between these two tangents
13. return H

Convex hull by D&C
Upper tangent

Lower tangent

Input:
Output:

Felkel: Computational geometry

(22)

ConvexHullD&C(points P)
points p
CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)

3. hull(points P)
4. if |P| 3 then
5. compute CH by brute force,
6. return
7. Partition P into two sets L and R (with lower & higher coords x)
8. Recursively compute HL = hull(L), HR = hull(R)
9. H = Merge hulls(HL, HR) by computing
10. Upper_tangent(HL, HR) // find nearest points, HL CCW, HR CW
11. Lower_tangent(HL, HR) // (HL CW, HR CCW)
12. discard points between these two tangents
13. return H

Convex hull by D&C
Upper tangent

Lower tangent

Input:
Output:

Felkel: Computational geometry

(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) 0
which means a.succ is left from line ab

m = |HL|+ |HR| |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

HL

HR

Input:
Output:

Felkel: Computational geometry

(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) 0
which means a.succ is left from line ab

m = |HL|+ |HR| |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

HL

HR

Input:
Output:

Felkel: Computational geometry

(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) 0
which means a.succ is left from line ab

m = |HL|+ |HR| |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

HL

HR

Input:
Output:

Felkel: Computational geometry

(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) 0
which means a.succ is left from line ab

m = |HL|+ |HR| |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

HL

HR

Input:
Output:

Felkel: Computational geometry

(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) 0
which means a.succ is left from line ab

m = |HL|+ |HR| |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

HL

HR

Input:
Output:

Felkel: Computational geometry

(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) 0
which means a.succ is left from line ab

Upper tangent

m = |HL|+ |HR| |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

HL

HR

Input:
Output:

Felkel: Computational geometry

(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) 0
which means a.succ is left from line ab

Upper tangent

m = |HL|+ |HR| |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

HL

HR

Input:
Output:

Felkel: Computational geometry

(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) 0
which means a.succ is left from line ab

Upper tangent

m = |HL|+ |HR| |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

HL

HR

Input:
Output:

Felkel: Computational geometry

(23)

Search for upper tangent (lower is symmetrical)

Upper_tangent(HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while(ab is not the upper tangent for HL, HR) do
4. while(ab is not the upper tangent for HL) a = a.succ // move CCW
5. while(ab is not the upper tangent for HR) b = b.pred // move CW
6. Return ab

Where: (ab is not the upper tangent for HL) => orient(a, b, a.succ) 0
which means a.succ is left from line ab

Upper tangent

Lower tangent

m = |HL|+ |HR| |L| + |R| => Upper Tangent: O(m) = O(n)

a

b

HL

HR

Felkel: Computational geometry

(24)

Convex hull by D&C complexity

 Initial sort O(n log(n))
 Function hull()

– Upper and lower tangent O(n)
– Merge hulls O(1) O(n)
– Discard points between tangents O(n)

 Overall complexity
– Recursion

– Overall complexity of CH by D&C: => O(n log(n))

T(n) = 1 … if n 3
2T(n/2) + O(n) … otherwise

Felkel: Computational geometry

(25)

Quick hull

 A variant of Quick Sort
 O(n log n) expected time, max O(n2)
 Principle

– in praxis, most of the points lie in the interior of CH
– E.g., for uniformly distributed points in unit square, we

expect only O(log n) points on CH

 Find extreme points (parts of CH)
quadrilateral, discard inner points

– Add 4 edges to temp hull T
– Process points outside 4 edges

[Mount]

Felkel: Computational geometry

(26)

Process each of four groups of points outside

 For points outside ab (left from ab for clockwise CH)
– Find point c on the hull – max. perpend. distance to ab
– Discard points inside triangle abc (right from the edges)
– Split points into two subsets

- outside ac (left from ac) and outside cb (left from cb)
– Replace edge ab in T by edges ac and cb
– Process points outside ac and cb recursively

[Mount]

discard inner points

Felkel: Computational geometry

(27)

Quick hull complexity

 n points remain outside the hull
 T(n) = running time for such n points outside

– O(n) - selection of splitting point c
– O(n) - point classification to inside & (n1+n2) outside
– n1+n2 n
– The running time is given by recurrence

1 if n = 1
T(n1) + T(n2) where n1+n2 n

– If evenly distributed that max ݊ଵ, ݊ଶ ,݊ߙ 0 ൏ ߙ ൏ 1
then solves as Quicksort to O(cn log n) where c=f()
else O(n2) for unbalanced splits

– Output sensitive algorithm

T(n) =

 ࢻ 		
ߙ

 > ࢻ 		 OK

WRONG

n1

n2

Felkel: Computational geometry

(28)

Jarvis’s March – selection by gift wrapping

 Variant of O(n2) selection sort
 Output sensitive algorithm
 O(nh) … h = number of points on convex hull

Input:
Output:

Felkel: Computational geometry

(29)

Jarvis’s March
JarvisCH(points P)

points p
CCW points on the convex hull

1. Take point pmin with minimum y-coordinate,
// pmin will be the first point in the hull – append it to the hull as h1

2. Take a horizontal line, i.e., create temporary point p0 = (–, h1.y)
3. j = 1
4. repeat
5. Rotate the line around hj until it bounces to the nearest point q = pq

// compute the smallest angle by the “smallest orient(hj-1 , hj, q)”
6. j++

append the bounced nearest point q to the hull as next hj
7. until (q pmin)

Complexity: O(n) + O(n) * h => O(h*n)
good for low number of points on convex hull

h1= pmin h2

hh
p0

Input:
Output:

Felkel: Computational geometry

(29)

Jarvis’s March
JarvisCH(points P)

points p
CCW points on the convex hull

1. Take point pmin with minimum y-coordinate,
// pmin will be the first point in the hull – append it to the hull as h1

2. Take a horizontal line, i.e., create temporary point p0 = (–, h1.y)
3. j = 1
4. repeat
5. Rotate the line around hj until it bounces to the nearest point q = pq

// compute the smallest angle by the “smallest orient(hj-1 , hj, q)”
6. j++

append the bounced nearest point q to the hull as next hj
7. until (q pmin)

Complexity: O(n) + O(n) * h => O(h*n)
good for low number of points on convex hull

h1= pmin h2

hh
p0

Output sensitive algorithm

Felkel: Computational geometry

(30)

Output sensitive algorithm

 Worst case complexity analysis analyzes the worst
case data

– Presumes, that all (const. fraction of) points lie on the CH
– The points are ordered along CH

=> We need sorting => (n log n) of CH algorithm

 Such assumption is rare
– usually only much less of points are on CH

 Output sensitive algorithms
– Depend on: input size n and the size of the output h
– Are more efficient for small output sizes

 Reasonable time for CH is O(n log h)
h = Number of points on the CH

Felkel: Computational geometry

(31)

Chan’s algorithm

Cleverly combines Graham’s scan and Jarvis’s march
algorithms
Goal is O(n log h) running time

– We cannot afford sorting of all points - (n log n)
=> Idea: work on parts, limit the part sizes to polynomial hc

the complexity does not change => log hc = log h
– h is unknown – we get the estimation later
– Use estimation m, better not too high => h m h2

1. Partition points P into r-groups of size m, r = n/m
– Each group take O(m log m) time - sort + Graham
– r-groups take O(r m log m) = O(n log m) - Jarvis

Felkel: Computational geometry

(32)

Chan’s algorithm

1. Partition points P into r-groups of size m, r = n/m
– Each group take O(m log m) time - sort + Graham
– r-groups take O(r m log m) = O(n log m) – Jarvis

h m h2

goal O(n log h)

Felkel: Computational geometry

(33)

Merging of m parts in Chan’s algorithm

2. Merge r-group CHs as “fat points”
– Tangents to convex m-gon can be found in O(log m)

by binary search

[Mount][Mount]

r = n/m disjoint subsets
of size at most m

Jarvis Chan

Felkel: Computational geometry

(34)

Chan’s algorithm complexity

 h points on the final convex hull
=> at most h steps in the Jarvis march algorithm
– each step computes r-tangents, O(log m) each
– merging together O(hr log m)

 Complete algorithm O(n log h)
– Graham’s scan on partitions O(r m log m)=O(n log m)
– Jarvis Merging: O(r log m) = O(n/m log m), …4a)

h m h2 = O(n log m)
– Altogether O(n log m)
– How to guess m? Wait!

r-groups of size m, r = n/m

Felkel: Computational geometry

(34)

Chan’s algorithm complexity

 h points on the final convex hull
=> at most h steps in the Jarvis march algorithm
– each step computes r-tangents, O(log m) each
– merging together O(hr log m)

 Complete algorithm O(n log h)
– Graham’s scan on partitions O(r m log m)=O(n log m)
– Jarvis Merging: O(r log m) = O(n/m log m), …4a)

h m h2 = O(n log m)
– Altogether O(n log m)
– How to guess m? Wait!

1) use m as an estimation of h 2) if it fails, increase m

r-groups of size m, r = n/m

Input:
Output:

Felkel: Computational geometry

(35)

Chan’s algorithm for known m
PartialHull(P, m)

points P
group of size m

1. Partition P into r = n/m disjoint subsets {p1, p2, …, pr} of size at most m
2. for i=1 to r do

a) Convex hull by GrahamsScan(Pi), store vertices in ordered array
3. let p1 = the bottom most point of P and p0 = (–, p1.y)
4. for k = 1 to m do // compute merged hull points

a) for i = 1 to r do // angle to all r subsets => points qi
Compute the point qi P that maximizes the angle pk-1, pk, qi

b) let pk+1 be the point q {q1, q2, …, qr} that maximizes pk-1, pk, q
(pk+1 is the new point in CH)

c) if pk+1 = p1 then return {p1, p2, …, pk}
5. return “Fail, m was too small”

O(log m)

[Mount]

Ja
rv

is

Input:
Output:

Felkel: Computational geometry

(36)

Chan’s algorithm – estimation of m
ChansHull

points P
convex hull p1…pk

1. for t = 1, 2, … , lg lg ℎ do {
a) let m = min(22^t, n)
b) L = PartialHull(P, m)
c) if L “Fail, m was too small” then return L

}
Sequence of choices of m are { 4, 16, 256,…, 22^t ,…, n } … squares

Example: for h = 23 points on convex hull of n = 57 points, the algorithm
will try this sequence of choices of m { 4, 16, 256, 57 }

1. 4 and 16 will fail
2. 256 will be replaced by n=57

Felkel: Computational geometry

(37)

Complexity of Chan’s Convex Hull?

 The worst case: Compute all t iterations
 tth iteration takes O(n log 22^t) = O(n 2t)
 Algorithm stops when 22^t h => t = lg lg h
 All t = lg lg h iterations take:

)log(lg2222

122 fact that theUsing

lglg1
lglg

1

lglg

1

1

0

hnOhnnnn h
h

t

t
h

t

t

k
k

i

i

2x more work in the worst case

݉

Felkel: Computational geometry

(37)

Complexity of Chan’s Convex Hull?

 The worst case: Compute all t iterations
 tth iteration takes O(n log 22^t) = O(n 2t)
 Algorithm stops when 22^t h => t = lg lg h
 All t = lg lg h iterations take:

)log(lg2222

122 fact that theUsing

lglg1
lglg

1

lglg

1

1

0

hnOhnnnn h
h

t

t
h

t

t

k
k

i

i

2x more work in the worst case

݉

Felkel: Computational geometry

(37)

Complexity of Chan’s Convex Hull?

 The worst case: Compute all t iterations
 tth iteration takes O(n log 22^t) = O(n 2t)
 Algorithm stops when 22^t h => t = lg lg h
 All t = lg lg h iterations take:

)log(lg2222

122 fact that theUsing

lglg1
lglg

1

lglg

1

1

0

hnOhnnnn h
h

t

t
h

t

t

k
k

i

i

2x more work in the worst case

t iterations

݉

Felkel: Computational geometry

(37)

Complexity of Chan’s Convex Hull?

 The worst case: Compute all t iterations
 tth iteration takes O(n log 22^t) = O(n 2t)
 Algorithm stops when 22^t h => t = lg lg h
 All t = lg lg h iterations take:

)log(lg2222

122 fact that theUsing

lglg1
lglg

1

lglg

1

1

0

hnOhnnnn h
h

t

t
h

t

t

k
k

i

i

2x more work in the worst case

t iterations

݉

1+ ݇

Felkel: Computational geometry

(38)

Conclusion in 2D

 Graham’s scan: O(n log n), O(n) for sorted pts
 Divide & Conquer: O(n log n)
 Quick hull: O(n log n), max O(n2) ~ distrib.
 Jarvis’s march: O(hn), max O(n2) ~ pts on CH
 Chan’s alg.: O(n log h) ~ pts on CH

asymptotically optimal
but

constants are too high to be useful

Felkel: Computational geometry

(39)

References
 [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:

Computational Geometry: Algorithms and Applications, Springer-Verlag,
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5,
http://www.cs.uu.nl/geobook/

 [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016,
University of Maryland, Lectures 3 and 4.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

 [Chan] Timothy M. Chan. Optimal output-sensitive convex hull algorithms
in two and three dimensions., Discrete and Computational Geometry, 16,
1996, 361-368.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

