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Talk overview

 Motivation and Definitions
 Graham’s scan – incremental algorithm
 Divide & Conquer
 Quick hull
 Jarvis’s March – selection by gift wrapping
 Chan’s algorithm – optimal algorithm
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Convex hull (CH) – why to deal with it?

 Shape approximation of a point set or complex shapes
(other common approximations include: minimal area enclosing 
rectangle, circle, and ellipse,…) – e.g., for collision detection

 Initial stage of many algorithms to filter out irrelevant 
points, e.g.: 

– diameter of a point set
– minimum enclosing convex shapes (such as rectangle, circle, 

and ellipse) depend only on points on CH
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not convex

!!!

Convexity

 A set S is convex
– if for any points p,q  S  the line segment pq  S, or
– if any convex combination of p and q is in S

 Convex combination of points p, q is any point that 
can be expressed as 
(1 – ) p + q, where 0    1 

 Convex hull CH(S) of set S – is (similar definitions)
– the smallest set that contains S (convex)
– or: intersection of all convex sets that contain S
– Or in 2D for points: the smallest convex polygon 

containing all given points

p
q

=0
=1

convex

Line test
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 Metric space – each two of points have defined a distance
 r-neighborhood of a point p and radius r > 0

= set of points whose distance to p is strictly less than r 
(open ball of diameter r centered about p)

 Given set S, point p is
– Interior point of S – if ,ݎ∃ ݎ > 0, (r-neighborhood about p)  S
– Exterior point – if it lies in interior of the complement of S
– Border point – is neither interior neither exterior

Definitions from topology in metric spaces

p

p

r

p

Interior point

Exterior point

Border point

r

S
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Definitions from topology in metric spaces
 Set S is Open (otevřená)

– p  S  (r-neighborhood about p of radius r)  S
– it contains only interior points, none of its border points

 Closed (uzavřená)

– If it is equal to its closure S (uzávěr = smallest closed set containing S in topol. space)

(r-neighborhood about p of radius r)  S  )

 Clopen (otevřená i uzavřená) – Ex.: empty set , or finite set of disjoint components

– if it is both closed and open space Q = rational numbers
(S= all positive rational numbers whose square is bigger than 2)   S = (2, ) in Q, 2  Q, S = S

 Bounded (ohraničená) Unbounded                   

– if it can be enclosed in a ball of finite radius 
 Compact (kompaktní)

– if it is both closed and bounded 

Goes to
infinity

A
re

 b
or

de
rp

oi
nt

s 
 p∈ܵ?

G
oe

s 
to

 in
fin

ity
?

Goes to
infinity

Goes to
infinity



Clopen (otevřená i uzavřená) example
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If it is both closed and open => clopen
Space Q: rational numbers
Set S:    all positive rational numbers whose square is bigger than 2ܵ	 = 	 ( 2,) in ܳ2		ܳ 	⇒ open		(does	not	contain	the	border)ܵ	 = ܵ̅ ⇒ closed	(equal	to	its	closure	ܵ̅)2 = 1.414213562	

1	414	2131	000	000 1	414	2141	000	000
S

⇒ clopen

Note: in R: 2		ܳ ⇒ openܵ ≠ ܵ̅ ⇒ not	closed ܵ̅ = ർ 2 ,)
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Definitions from topology in metric spaces

 Convex set S may be bounded or unbounded

 Convex hull CH(S) of a finite set S of points in the 
plane

= Bounded, closed, (= compact) convex polygon

point
segment
polygon

[Mount]

Open

Bounded
Bounded
Closed
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Convex hull representation

 CCW enumeration of vertices
 Contains only the extreme points

(“endpoints” of collinear points)

 Simplification for the whole semester:
Assume the input points are in general position, 

– no two points have the same x-coordinates and 
– no three points are collinear

-> We avoid problem with non-extreme points on x
(solution may be simple – e.g. lexicographic ordering)
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Online x offline algorithms

 Incremental algorithm
– Proceeds one element at a time (step-by-step)

 Online algorithm (must be incremental)

– is started on a partial (or empty) input and
– continues its processing as additional input data  

becomes available (comes online, thus the name). 
– Ex.: insertion sort

 Offline algorithm (may be incremental)

– requires the entire input data from the beginning
– than it can start
– Ex.: selection sort (any algorithm using sort)
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Graham’s scan

 Incremental O(n log n) algorithm
 Objects (points) are added one at a time
 Order of insertion is important

1. Random insertion 
–>  we need to test: is-point-inside-the-hull(p)

2. Ordered insertion
Find the point  with the smallest y coordinate first
a) Sort points  according to increasing angles around the point 	(angle of 	and ݔ axis)
b) Andrew’s modification: sort points  according to x and add 

them left to right (construct upper & lower hull)
Sorting x-coordinates is simpler to implement than sorting of angles
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Graham’s scan – b) modification by Andrew

 O(n log n) for unsorted points, O(n) for sorted pts.
 Upper hull, then lower hull. Merge.
 Minimum and maximum on x belong to CH

p1

pn

lower hull

upper hull
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Graham’s scan – incremental algorithm
GrahamsScan(points p)

points p
CCW points on the convex hull

1. sort points according to increasing x-coord -> {p1, p2, …, pn}
2. push( p1, H), push( p2, H )
3. for i = 3 to n do
4. while( size(H)  2 and orient( sos, tos, pi )  0 )  // skip left turns
5. pop H // (back-tracking)
6. push( pi, H )     // store right turn 
7. store H to the output (in reverse order)   // upper hull
8. Symmetrically the lower hull

tos pisos pi pitossos tossos

pop

upper hull

pop H pop H

tos
sos

Stack H

push pop
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Position of point in relation to segment

> 0 r is left from pq, CCW orient
orient( p, q, r ) = 0 if ( p, q, r ) are collinear

< 0 r is right from pq, CW orient

q

p
q

r
p

q

r

left from pqPoint r is: on segment pq right from pq

is CCW orientedTriangle pqr: degenerated
to line

is CW oriented

p
q

r

p
qr p

r

Convex polygon with edges pq and qr or

p
qr
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Is Graham’s scan correct?
Stack H at any stage contains upper hull of the points  {1, … , ,݆ }, processed so far

– For induction basis ܪ = ,ଵ} –… true	ଶ}  = last added point to CH,  = its predecessor on CH
– Each point  that lies between  and  lies below  and should 

not be part of UH after addition of  => is removed before push . 
[orient(, , ( 	> ݇ ,0	 is right from  ⇒  is removed from UH]

– Stop, if 2 points in the stack or after construction of the upper hull

[Mount]

Points on stack H
= CH ({ଵ, ,ଶ …	, ({ିଵ

pk

CHi-1 CHi
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Complexity of Graham’s scan

 Sorting according x – O(n log n)
 Each point pushed once – O(n)
 Some (di  n) points deleted while processing pi

– O(n)
 The same for lower hull – O(n) 

 Total O(n log n) for unsorted points
O(n) for sorted points
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Divide & Conquer

 (n log(n)) algorithm
 Extension of mergesort
 Principle

– Sort points according to x-coordinate,
– recursively partition the points and solve CH.
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ConvexHullD&C( points P )
points p
CCW points on the convex hull

1. Sort points P according to x
2. return hull( P )

3. hull( points P )
4. if |P|  3 then 
5. compute CH by brute force, 
6. return
7. Partition P into two sets L and R (with lower & higher coords x)
8. Recursively compute HL = hull(L), HR = hull(R)
9. H = Merge hulls(HL, HR) by computing
10. Upper_tangent( HL, HR) // find nearest points, HL CCW, HR CW
11. Lower_tangent( HL, HR) // (HL CW, HR CCW)
12. discard points between these two tangents
13. return H 

Convex hull by D&C 
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Search for upper tangent (lower is symmetrical)

Upper_tangent( HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while( ab is not the upper tangent for HL, HR ) do 
4. while( ab is not the upper tangent for HL)  a = a.succ // move CCW
5. while( ab is not the upper tangent for HR)  b = b.pred // move  CW
6. Return ab

Where:   (ab is not the upper tangent for HL) => orient(a, b, a.succ)  0
which means a.succ is left from line ab

m = |HL|+ |HR|  |L| + |R|   => Upper Tangent:  O(m) = O(n)

a

b

HL

HR
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Convex hull by D&C complexity

 Initial sort O(n log(n))
 Function hull()

– Upper and lower tangent    O(n)
– Merge hulls O(1)         O(n)
– Discard points between tangents  O(n)

 Overall complexity 
– Recursion 

– Overall complexity of CH by D&C: => O(n log(n))

T(n) = 1                      … if n  3
2T(n/2) + O(n) … otherwise
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Quick hull

 A variant of Quick Sort
 O(n log n) expected time, max O(n2)
 Principle 

– in praxis, most of the points lie in the interior of CH
– E.g., for uniformly distributed points in unit square, we 

expect only O(log n) points on CH

 Find extreme points (parts of CH) 
quadrilateral, discard inner points

– Add 4 edges to temp hull T
– Process points outside 4 edges

[Mount]
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Process each of four groups of points outside

 For points outside ab (left from ab for clockwise CH)
– Find point c on the hull – max. perpend. distance to ab
– Discard points inside triangle abc (right from the edges) 
– Split points into two subsets 

- outside ac (left from ac)  and outside cb (left from cb)
– Replace edge ab in T by edges ac and cb
– Process points outside ac and cb recursively

[Mount]

discard inner points
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Quick hull complexity

 n points remain outside the hull
 T(n) = running time for such n points outside

– O(n) - selection of splitting point c
– O(n) - point classification to inside & (n1+n2) outside
– n1+n2  n
– The running time is given by recurrence

1                   if n = 1
T(n1) + T(n2)  where n1+n2  n

– If evenly distributed that max ݊ଵ, ݊ଶ  ,݊ߙ 0 ൏ ߙ ൏ 1
then solves as Quicksort to O(cn log n) where c=f()
else O(n2) for unbalanced splits

– Output sensitive algorithm

T(n) =

  ࢻ 		
ߙ

 > ࢻ 		 OK

WRONG

n1

n2
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Jarvis’s March – selection by gift wrapping

 Variant of O(n2) selection sort
 Output sensitive algorithm
 O(nh) … h = number of points on convex hull
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Jarvis’s March
JarvisCH(points P)

points p
CCW points on the convex hull

1. Take point pmin with minimum y-coordinate,
// pmin will be the first point in the hull – append it to the hull as h1

2. Take a horizontal line, i.e., create temporary point p0 = (–, h1.y)
3. j = 1
4. repeat
5. Rotate the line around hj until it bounces to the nearest point q = pq

// compute the smallest angle by the “smallest orient(hj-1 , hj, q)”
6. j++

append the bounced nearest point q to the hull as next hj
7. until (q  pmin)

Complexity:   O( n ) +  O( n ) * h => O( h*n ) 
good for low number of points on convex hull

h1= pmin h2

hh
p0
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hh
p0

Output sensitive algorithm
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Output sensitive algorithm

 Worst case complexity analysis analyzes the worst 
case data

– Presumes, that all (const. fraction of) points lie on the CH
– The points are ordered along CH

=> We need sorting => (n log n) of CH algorithm

 Such assumption is rare 
– usually only much less of points are on CH

 Output sensitive algorithms
– Depend on: input size n and the size of the output h
– Are more efficient for small output sizes

 Reasonable time for CH is O(n log h)
h = Number of points on the CH
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Chan’s algorithm

Cleverly combines Graham’s scan and Jarvis’s march 
algorithms
Goal is O(n log h) running time

– We cannot afford sorting of all points - (n log n) 
=> Idea: work on parts, limit the part sizes to polynomial hc

the complexity does not change => log hc = log h
– h is unknown – we get the estimation later
– Use estimation m, better not too high => h  m  h2

1. Partition points P into r-groups of size m, r = n/m
– Each group take O(m log m) time        - sort + Graham 
– r-groups take O(r m log m) = O(n log m) - Jarvis
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Chan’s algorithm

1. Partition points P into r-groups of size m, r = n/m
– Each group take O(m log m) time        - sort + Graham 
– r-groups take O(r m log m) = O(n log m) – Jarvis

h  m  h2

goal O(n log h)



Felkel: Computational geometry

(33)

Merging of m parts in Chan’s algorithm 

2. Merge r-group CHs as “fat points”
– Tangents to convex m-gon can be found in O(log m)

by binary search

[Mount][Mount]

r = n/m disjoint subsets
of size at most m

Jarvis Chan
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Chan’s algorithm complexity

 h points on the final convex hull
=> at most h steps in the Jarvis march algorithm
– each step computes r-tangents, O(log m) each
– merging together O(hr log m) 

 Complete algorithm O(n log h)
– Graham’s scan on partitions    O(r m log m)=O(n log m)
– Jarvis Merging:  O( r log m)  = O( n/m log m),    …4a) 

h  m  h2 = O(n log m)
– Altogether O(n log m)
– How to guess m?  Wait!

r-groups of size m, r = n/m
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Chan’s algorithm complexity

 h points on the final convex hull
=> at most h steps in the Jarvis march algorithm
– each step computes r-tangents, O(log m) each
– merging together O(hr log m) 

 Complete algorithm O(n log h)
– Graham’s scan on partitions    O(r m log m)=O(n log m)
– Jarvis Merging:  O( r log m)  = O( n/m log m),    …4a) 

h  m  h2 = O(n log m)
– Altogether O(n log m)
– How to guess m?  Wait!

1) use m as an estimation of h    2) if it fails, increase m

r-groups of size m, r = n/m
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Chan’s algorithm for known m
PartialHull( P, m)

points P
group of size m

1. Partition P into r = n/m disjoint subsets {p1, p2, …, pr} of size at most m
2. for i=1 to r do

a) Convex hull by GrahamsScan(Pi), store vertices in ordered array
3. let p1 = the bottom most point of P and p0 = (–, p1.y)
4. for k = 1 to m do     // compute merged hull points

a) for i = 1 to r do  // angle to all r subsets => points qi
Compute the point qi  P that maximizes the angle  pk-1, pk, qi

b) let pk+1 be the point q  {q1, q2, …, qr} that maximizes  pk-1, pk, q
(pk+1 is the new point in CH)

c) if pk+1 = p1 then return {p1, p2, …, pk} 
5. return “Fail, m was too small”

O(log m)

[Mount]

Ja
rv

is



Input:
Output:
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Chan’s algorithm – estimation of m
ChansHull

points P
convex hull p1…pk

1. for t = 1, 2, … , lg lg ℎ do {
a) let m = min(22^t, n)
b) L = PartialHull( P, m)
c) if L  “Fail, m was too small” then return L

}
Sequence of choices of m are {  4, 16, 256,…, 22^t ,…, n } … squares

Example: for h = 23 points on convex hull of n = 57 points, the algorithm 
will try this sequence of choices of m {  4, 16, 256, 57 } 

1. 4 and 16 will fail
2. 256 will be replaced by n=57



Felkel: Computational geometry

(37)

Complexity of Chan’s Convex Hull?

 The worst case: Compute all t iterations
 tth iteration takes O( n log 22^t) = O(n 2t)
 Algorithm stops when 22^t  h  => t = lg lg h
 All t = lg lg h iterations take:

)log(lg2222

122 fact that   theUsing

lglg1
lglg

1

lglg

1

1

0

hnOhnnnn h
h

t

t
h

t

t

k
k

i

i

















2x more work in the worst case
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Conclusion in 2D

 Graham’s scan: O(n log n), O(n) for sorted pts
 Divide & Conquer: O(n log n)
 Quick hull: O(n log n), max O(n2) ~ distrib.
 Jarvis’s march: O(hn), max O(n2) ~ pts on CH
 Chan’s alg.: O(n log h) ~ pts on CH

asymptotically optimal
but

constants are too high to be useful
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