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Range search

 Orthogonal range searching
 Canonical subsets
 1D range tree
 2D-nD Range tree

– With fractional cascading (Layered tree)

 Kd-tree
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Orthogonal range searching
– Given a set of points P, find the points in the region Q

– Example: Databases (records->points)
• Find the people with given range of salary, date of birth, kids, …

in YYYYMMDD format

2D: axis parallel rectangle 3D: axis parallel box

[Berg]
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Orthogonal range searching
– Given a set of points P, find the points in the region Q

• Search space:  a set of points P (somehow represented)
• Query: intervals Q (axis parallel rectangle)           
• Answer: points contained in Q

– Example: Databases (records->points)
• Find the people with given range of salary, date of birth, kids, …

in YYYYMMDD format

2D: axis parallel rectangle 3D: axis parallel box

[Berg]
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Orthogonal range searching

 Query region = axis parallel rectangle
– nDimensional search can be decomposed into 

set of 1D searches (separable)
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Other range searching variants
 Search space S: set of 

– line segments, 
– rectangles, …

 Query region Q: any other searching region 
– disc, 
– polygon, 
– halfspace, …

 Answer: subset of S laying in Q

 We concentrate on points in orthogonal ranges



How to represent the search space?

Basic idea:
 Not all possible combination can be in the output

(not the whole power set)
 => Represent only the “selectable” things

(a well selected subset –> one of the canonical 
subsets)
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Subsets selectable by given range class

 The number of subsets that can be selected by 
simple ranges Q is limited 

 It is usually much smaller than the power set of P
– Power set of P where P = {1,2,3,4} (potenční množina)

is {{ }, {1},{2},{3},{4}, {1,2},{1,3},{1,4}, {2,3},…,{2,3,4}, 
{1,2,3,4} }    … O(2n)
i.e. set of all possible subsets

– Simple rectangular queries are limited
• Defined by max 4 points along 4 sides   

=> O(n4) of O(2n) power set
• Moreover – not all sets can be formed 

by       query Q
e.g. sets {1,4} and {1,2,4} cannot be formed

[Mount]
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Canonical subsets Si

Search space represented as a collection 
of canonical subsets 1 2 ݇ , each ݅	 	 ,  

– Si may overlap each other (elements can be multiple times there)

– Any set can be represented as disjoint union disjunktní sjednocení

of canonical subsets ܵ݅ each element knows from which subset it came

– Elements of disjoint union are ordered pairs (ݔ, ݅)
(every element ݔ with index ݅ of the subset ܵ݅)

Si may be selected in many ways 
• from n singletons {݅݌} … ܱ(݊)
• to power set of ܲ … ܱ(2݊)

– Good DS balances between total number of canonical 
subsets and number of CS needed to answer the query
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1D range queries (interval queries)

 Query: Search the interval ݈݋ ݄݅
 Search space: Points 1 2 ݊ on the line

a) Binary search in an array
• Simple, but
• not generalize to any higher dimensions 

b) Balanced binary search tree
• 1D range tree
• maintains canonical subsets
• generalize to higher dimensions

0݌ ݊݌
݋݈ݔ ݄݅ݔ
Selected points
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1D range tree definition

 Balanced binary search tree (with repeated keys)
– leaves – sorted points
– inner node label – the largest key in its left child
– Each node associate with subset of descendants 

=> ܱ(݊) canonical subsets
31

[Mount]

≤ 15 > 15
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Canonical subsets and <2,23> search

31

 Canonical subsets for this subtree are
{ {1}, {3}, …, {31},
{1, 3}, {4, 7}, …, {29, 31}
{1, 3, 4, 7}, {9, 12, 14, 15}, …, {25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31}

}

#
16
8
4
2
1

O(n)

[Mount]
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1D range tree search interval <2,23>

 Canonical subsets for any range found in O(log n)
– Search xlo: Find leftmost leaf u with key(u) ¥ xlo 2 -> 
– Search xhi: Find leftmost leaf v with key(v) ¥ xhi 23 -> 
– Points between u and v lie within the range => report 

canon. subsets of maximal subtrees between u and v
– Split node = node, where paths to u and v diverge

31
split node

[Mount]

to u to v

to u and v

3

24
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1D range tree search

 Reporting the subtrees (below the split node)
– On the path to u whenever the path goes left, report 

the canonical subset (CS) associated to right child
– On the path to v whenever the path goes right, report 

the canonical subset associated to left child
– In the leaf u, if key(u) œ [xlo:xhi] then report CS of u
– In the leaf v, if key(v) œ [xlo:xhi] then report CS of v

31
split node

[Mount]
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 Path lengths O( log n ) 
=> O( log n ) canonical subsets 

(subtrees)

 Range counting queries
– Return just the number of points in given range
– Sum the total numbers of leaves stored in maximum

subtree roots … O( log n) time

 Range reporting queries
– Return all k points in given range
– Traverse the canonical subtrees    … O( log n + k) time 

 O(n) storage,  O(n log n) preprocessing (sort P)

split node

1D range tree search complexity

[Berg]
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split node

Find split node
FindSplitNode( T, [x:x’])

Tree T and Query range [x:x’], x § x’
The node, where the paths to x and x’ split 
or the leaf, where both paths end

1. t = root(T)
2. while( t is not a leaf and (x’ § t.x or t.x < x) ) // t out of the range [x:x’]
3. if( x’ § t.x) t = t.left
4. else t = t.right
5. return t

position

x’ § t.x

position

x§ t.x < x’

position

t.x < x

[Berg]

STOP
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1D range search (2D on slide 30)

1dRangeQuery( t, [x:x’]) 
1d range tree t and Query range :ݔ] [′ݔ
All points in t lying in the range

1. tsplit = FindSplitNode( t, x, x’ )           // find interval point t œ [x:x’]
2. if( tsplit is leaf )    // e.g. Searching [16:17] or [16:16.5] both stops in the leaf 17 in the previous example 

3. check if the point in tsplit must be reported // ௫ݐ ∈ :ݔ] [′ݔ
4. else // follow the path to x, reporting points in subtrees right of the path
5. t = tsplit.left
6. while( t is not a leaf )
7. if( x § t.x) 
8. ReportSubtree( t.right ) // any kind of tree traversal
9. t = t.left
10. else t = t.right
11. check if the point in leaf t must be reported
12. // Symmetrically follow the path to x’ reporting points left of the path   

t = tsplit.right …
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Multidimensional range searching

 Equal principle – find the largest subtrees 
contained within the range

 Separate one n-dimensional search 
into n 1-dimensional searches

 Different tree organization
– Orthogonal (Multilevel) range search tree 

e.g. nd range tree
– Kd tree
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From 1D to 2D range tree

 Search points from [Q.xlo, Q.xhi] [Q.ylo, Q.yhi]
 1d range tree: log n canonical subsets based on x 
 Construct an y auxiliary tree for each such subset

31

[Mount]



y-auxiliary tree for each canonical subset 
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2D range tree

[Mount]
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2D range search
2dRangeQuery( t, [x:x’] μ [y:y’] ) 

2d range tree t and Query range
All points in t laying in the range

1. tsplit = FindSplitNode( t, x, x’ )
2. if( tsplit is leaf )
3. check if the point in tsplit must be reported      … t.x œ [x:x’], t.y œ [y:y’] 
4. else // follow the path to x, calling 1dRangeQuery on y 
5. t = tsplit.left // path to the left
6. while( t is not a leaf )
7. if( x § t.x) 
8. 1dRangeQuerry( tassoc( t.right ), [y:y’] ) // check associated subtree
9. t = t.left
10. else t = t.right
11. check if the point in leaf t must be reported      … t.x § x’, t.y œ [y:y’] 
12. Similarly for the path to x’ … // path to the right
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2D range tree

 Search 2 … in , in 
 Space – ܱ(݊) the tree for x-coords– ܱ(݊	log	݊ )	trees for y-coords

• Point p is stored in all canonical subsets 
along the path from root to leaf with p, 

• once for ݔ-tree level (only in one (range-ݔ
• each canonical subsets is stored in one auxiliary tree • log	݊ 	levels of ݔ-tree => ܱ(݊	log	݊ )	space for ݕ-trees

 Construction -
– Sort points (by ݔ and by ݕ). Bottom up construction

[Berg]
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Canonical subsets

31

 Canonical subsets for this subtree are
{ {1}, {3}, …, {31},
{1, 3}, {4, 7}, …, {29, 31}
{1, 3, 4, 7}, {9, 12, 14, 15}, …, {25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31}

}

#
16
8
4
2
1

O(n)

[Mount]
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nD range tree (multilevel search tree)

Split node

split node
canonical subsets

of 1. dimension
(nodes œ [x:x’])

Tree for each dimension

canonical subsets
of 2. dimension

[Berg]



Fractional cascading - principle

 Two sets S1, S2 stored in sorted arrays A1, A2

 Report objects in both arrays whose keys in [y:y’]
 Naïve approach – search twice independently

– O(logn1+k1) – search in A1 + report k1 elements
– O(logn2+k2) – search in A2 + report k2 elements

 Fractional cascading – adds pointers from A1 to A2
– O(logn1+k1) – search in A1 + report k1 elements
– O(1 + k2) – jump to A2 + report k2 elements
– Saves the O(logn2) – search 

Felkel: Computational geometry
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Fractional cascading – principle for arrays

 Add pointers from 1 to 2
– From element in 1ܣ with a key ݅ݕ point to the element in 2ܣ with the smallest key larger or equal to ݅ݕ

 Example query with the range [20 : 65]

Felkel: Computational geometry
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[Berg]
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Fractional cascading in the 2D range tree

 How to save one log n during last dim. search?
– Store canonical subsets in arrays sorted by y
– Pointers to subsets for both child nodes ܮݒ and ܴݒ– (1) search in lower levels => in two dimensional 

search (	log2	݊	)	time -> (	log	݊ 	)	
internal node in x-tree

points p1 to p6 sorted by - y

right son of v

Pointer to the smallest 
larger or equal y-value

[Mount]

nil
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Orthogonal range tree - summary

 Orthogonal range queries in plane
– Counting queries (	log2	݊	)	time, 

or with fractional cascading (	log	݊ 	)	time
– Reporting queries plus (	݇	)	time, for ݇ reported points
– Space (	݊	log	݊ 	)
– Construction (	݊	log	݊ 	)

 Orthogonal range queries in d-dimensions, ¥
– Counting queries  ,time	(	݊	݀݃݋݈	)

or with fractional cascading (logௗିଵ ݊	)	time
– Reporting queries plus (	݇	)	time, for ݇ reported points
– Space (݊	logௗିଵ ݊	)	
– Construction (݊ logௗିଵ ݊ ) time
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Kd-tree

 Easy to implement
 Good for different searching problems 

(counting queries, nearest neighbor,…)
 Designed by Jon Bentley as k-dimensional tree

(2-dimensional kd-tree was a 2-d tree, …)
 Not the asymptotically best for orthogonal range 

search (=> range tree is better)
 Types of queries 

– Reporting – points in range
– Counting  – number of points in range
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Kd-tree principle

 Subdivide space according to different dimension
( -coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space 

 In node t store: cutDim, cutVal, (size (for counting queries))

[Mount]

= Cutting line
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Kd-tree principle

 Subdivide space according to different dimension
( -coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space 

 In node t store: cutDim, cutVal, (size (for counting queries))

Where is a mistake in the figure?

[Mount]

= Cutting line
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Kd-tree principle

 Which dimension to cut?     (cutDim)
– Cycle through dimensions (round robin)

• Save storage – cutDim is implicit ~ depth in the tree
• May produce elongated cells (if uneven data distribution)

– Greatest spread (the largest difference of coordinates)
• Adaptive
• Called “Optimal kd-tree”

 Where to cut?      (cutVal)
– Median, or midpoint between upper and lower median

-> (݊)
– Presort coords of points in each dimension (ݔ, ,ݕ … )	for (1)	median – resp. (݀) for all ݀ dimensions
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Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7     

p9

p10

p8

p6

Subdivision [Mount]
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Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal
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Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7     

p9

p10

p8

p6

Subdivision [Mount]
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Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7     

p9

p10

p8

p6

Subdivision [Mount]

§

§

§

>

>

>
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Kd-tree construction in 2-dimensions
BuildKdTree(P, depth)

A set of points P and current depth.
The root of a kD tree storing P.

1. If (P contains only one point) [or small set of (10 to 20) points]
2. then return a leaf storing this point
3. else if (depth is even)
4. then split P with a vertical line l through median x into two subsets 

P1 and P2 (left and right from median) 
5. else split P with a horiz. line l through median y into two subsets

P1 and P2 (below and above the median)
6. t left =  BuildKdTree(P1, depth+1)
7. t right =  BuildKdTree(P2, depth+1)
8. create node t storing l, tleft and tright children      // l = cutDim, cutVal
9. return t

If median found in O(1) and array split in O(n)
T(n) = 2 T(n/2) + n  => O(n log n) construction
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Kd-tree construction in 2-dimensions
BuildKdTree(P, depth)

A set of points P and current depth.
The root of a kD tree storing P.

1. If (P contains only one point) [or small set of (10 to 20) points]
2. then return a leaf storing this point
3. else if (depth is even)
4. then split P with a vertical line l through median x into two subsets 

P1 and P2 (left and right from median) 
5. else split P with a horiz. line l through median y into two subsets

P1 and P2 (below and above the median)
6. t left =  BuildKdTree(P1, depth+1)
7. t right =  BuildKdTree(P2, depth+1)
8. create node t storing l, tleft and tright children      // l = cutDim, cutVal
9. return t

If median found in O(1) and array split in O(n)
T(n) = 2 T(n/2) + n  => O(n log n) construction

Split according to (depth%max_dim) dimension
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Kd-tree test variants

a) Compare rectang. array Q with rectangular cells C
– Rectangle C:[xlo, xhi, ylo, yhi] – computed on the fly
– Test of kD node cell C against query Q (in one cutDim)

1. if cell is disjoint with Q  … C … Q = « … stop
2. If cell C completely inside Q … C Œ Q … stop and report cell points  
3. else cell C overlaps Q … recurse on both children

– Recursion stops on the largest subtree (in/out)

cutDim

Chi § Qlo

cutDim

Qhi § Clo

cutDim

Clo § Qhi § Chi

cutDim

Clo § Qlo § Chi

cutDim

Qlo § Clo Chi § Qhi

Test interval-interval

1 2 3

if (CutDim == x) Clo = xlo



Input:
Output:
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Kd-tree rangeCount (with rectangular cells)
int rangeCount(t, Q, C)

The root t of kD tree, query range Q and t’s cell C.
Number of points at leaves below t that lie in the range.

1. if (t is a leaf)
2. if (t.point lies in Q) return 1 // or loop this test for all points in leaf
3. else return 0 // visited, not counted
4. else // (t is not a leaf)
5. if (C … Q = « )  return 0 … disjoint
6. else if (C Œ Q)  return t.size … C is fully contained in Q
7. else 
8. split C along t’s cutting value and dimension, 

creating two rectangles C1 and C2.
9. return rangeCount(t.left, Q, C1) + rangeCount(t.right, Q, C2)

// (pictograms refer to the next slide)

C1

C
C2

4

k
1
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Kd-tree rangeCount example

[Mount]

Tree node (rectangular region)

(prune)
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Kd-tree test variants

b) Compare Q with cutting lines 
– Line = Splitting value p in one of the dimensions
– Test of single position given by dimension against Q

1. Line p is right from Q … recurse on left child only (prune right child)
2. Line p intersects Q … recurse on both children
3. Line p is left from Q … recurse on right child only (prune left ch.)

– Recursion stops in leaves - traverses the whole tree

[Havran]

position

Qhi § p

position

Qlo § p § Qhi

position

Qlo § p

Test point-interval
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Kd-tree rangeSearch (with cutting lines)
int rangeSearch(t, Q)

The root t of (a subtree of a) kD tree and query range Q.
Points at leaves below t that lie in the range.

1. if (t is a leaf)
2. if (t.point lies in Q) report t.point // or loop test for all points in leaf
3. else return
4. else  (t is not a leaf)
5. if (Qhi § t.cutVal) rangeSearch(t.left, Q)  // go left only
6. if (Qlo > t.cutVal) rangeSearch(t.right, Q) // go right only
7. else 
8. rangeSearch(t.left, Q) // go to both
9. rangeSearch(t.right, Q)
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Kd-tree - summary

 Orthogonal range queries in the plane
(in balanced 2d-tree) 

– Counting queries  O( ◊n ) time
– Reporting queries O( ◊n + k ) time, 

where k = No. of reported points
– Space O( n )
– Preprocessing: Construction O( n log n ) time 

(Proof: if presorted points to arrays in dimensions. Median in O(1) 
and split in O(n) per level, log n levels of the tree) 

 For d¥2: 
– Construction O(d n log n), space O(dn), Search O(d n^(1-1/d) + k)



Proof sqrt(n)
Každé sudé patro se testuje osa x. 
• V patře 0 je jeden uzel a jde se do obou synů (v patře 1 se jde taky do 

obou)
• v patře 2 jsou 4 uzly, z nich jsou ale 2 bud úplně mimo, nebo úplně in 

=> stab jen 2
• v 4. patře stab 4 z 8, …
• v i-tém patře stab 2^i uzlů
Výška stromu je log n
Proto tedy sčítám sudé členy z 0..log n z 2^i. Je to exponenciála, proto 
dominuje poslední člen
2^(log n /2)  = 2^log (sqrt(n)) = sqrt(n)
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Orthogonal range tree (RT)

 DS highly tuned for orthogonal range queries
 Query times in plane

n = number of points
k = number of reported points

2d tree                     versus 2d range tree
O( ◊n + k ) time of Kd > O( log n ) time query
O( n ) space of Kd < O( n log n ) space
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