

GEOMETRIC SEARCHING PART 2: RANGE SEARCH

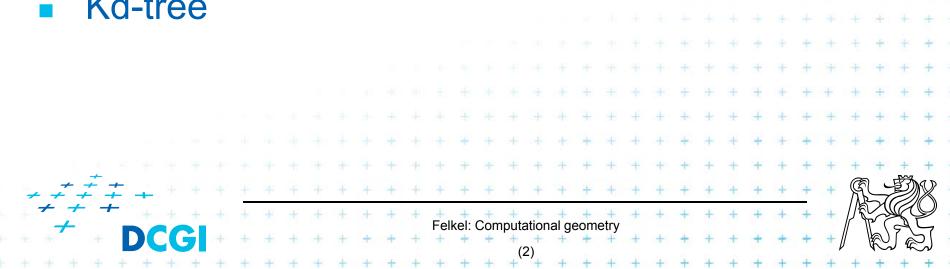
PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz <u>https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start</u>

Based on [Berg] and [Mount]

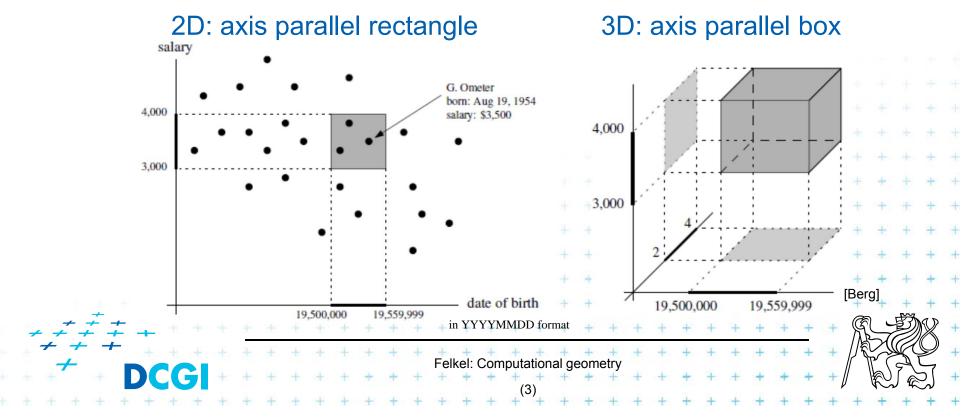
Version from 19.10.2017

- Orthogonal range searching
- **Canonical subsets**
- 1D range tree
- 2D-nD Range tree
 - With fractional cascading (Layered tree)
- **Kd-tree**



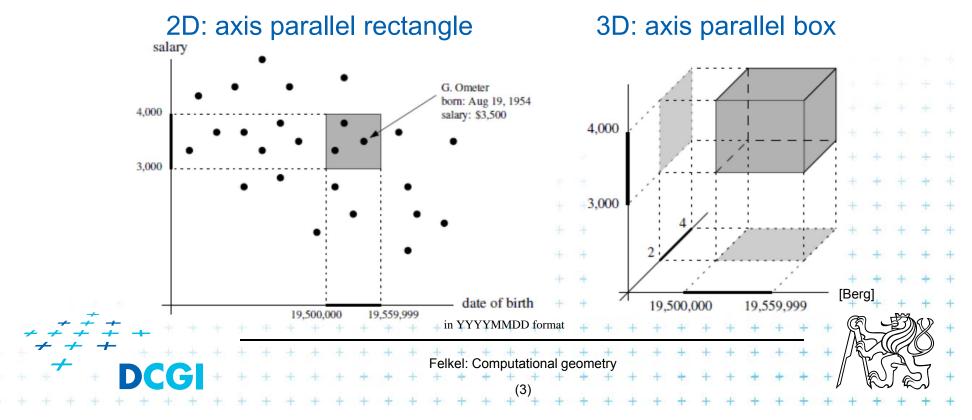
- Given a set of points P, find the points in the region Q

- Example: Databases (records->points)
 - Find the people with given range of salary, date of birth, kids, ...

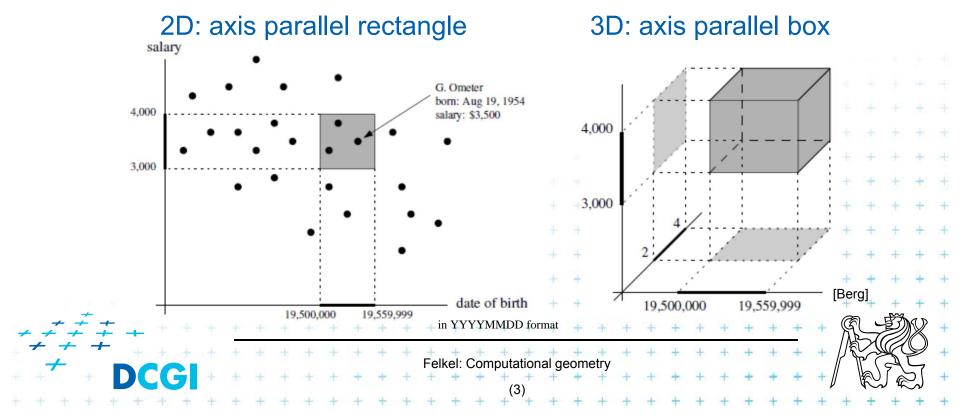


- Given a set of points P, find the points in the region Q

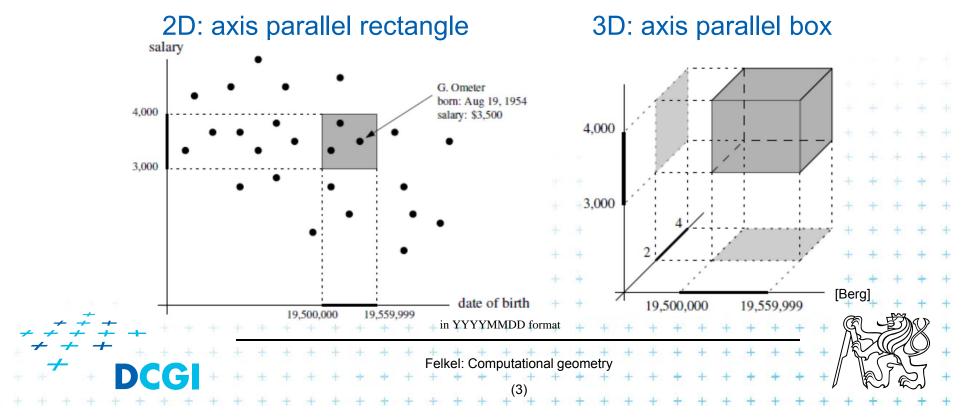
- Search space: a set of points P (somehow represented)
- Example: Databases (records->points)
 - Find the people with given range of salary, date of birth, kids, ...



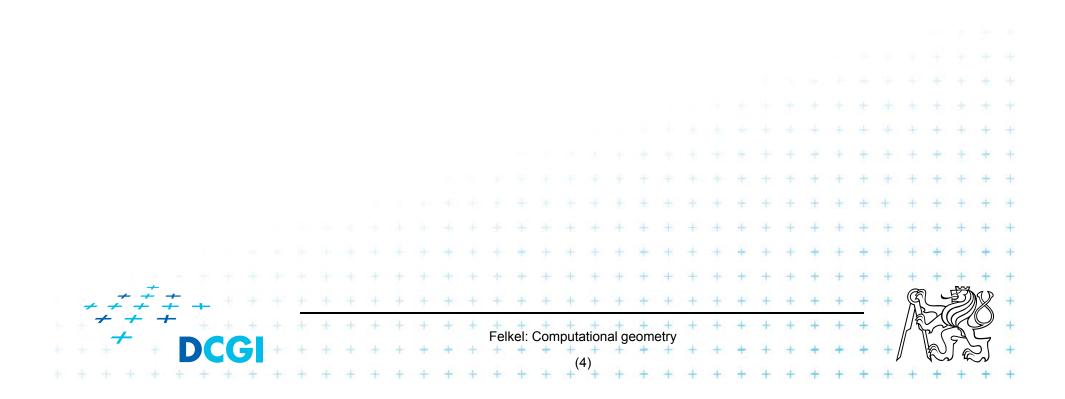
- Given a set of points P, find the points in the region Q
 - Search space: a set of points P (somehow represented)
 - Query: intervals Q (axis parallel rectangle)
- Example: Databases (records->points)
 - Find the people with given range of salary, date of birth, kids, ...



- Given a set of points P, find the points in the region Q
 - Search space: a set of points P (somehow represented)
 - Query: intervals Q (axis parallel rectangle)
 - Answer: points contained in Q
- Example: Databases (records->points)
 - Find the people with given range of salary, date of birth, kids, ...



- Query region = axis parallel rectangle
 - nDimensional search can be decomposed into set of 1D searches (separable)



Other range searching variants

Search space S: set of

- line segments,
- rectangles, ...
- Query region Q: any other searching region
 - disc,
 - polygon,

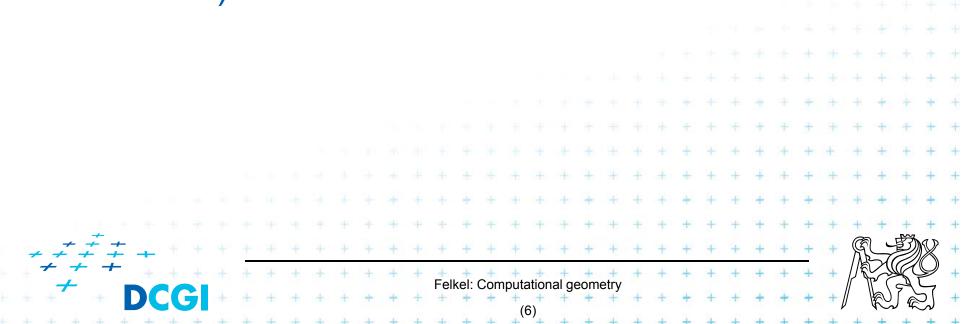
	—	ha	lfs	spa	ac	e,	••	•																											
	•					х.				~ /			۰.																						
	Ans	SW	'el	r:	Sl	JD	S	et	0	t 3	5	la	УI	nç)	In	C	2																	
																																		+	+
																												+	+		÷	+	÷	+	+
																						÷					÷	+	+	+	+	+	+	+	+
	We	C	or	۱C	e	nti	ra	te	e C	n	p	Ο	n	ts	ir		ort	th	00	10	na	al	ra	an	q	es	+	+	+	+	Ŧ	+	+	+	+
											÷.									÷			+	÷	3	+	÷	+	+	+	+	+	+	÷	4
																		-4-	4	4	+	+	+	4	+	+	4	+	+	+	+	4	+	+	+
																														1			10	10	
																			T	Ŧ	Ŧ	Ŧ	T	T	+	T	Ŧ	Ŧ	T	T	Ŧ	Ţ	Ŧ	1	1
	+								+	+		+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ + -	$\neq \pm$	÷							+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R		Ð)	X	+
+ +	- +			+	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1	24	Ķ	\bigcirc	+
+ +					+	+	+	+	+	+	+	+	+	⊢ell	kel:	Com	nputa		al ge	eom	etry	+	+	+	+	+	+	+	+	+ /	// \	b)	24	57	+
i	+ +		+	4	+	4	4	+	+	+	+	+	4	4	+	4	(5)	+	+	+	4	+	+	4	4	+	+	+	+	+	4~	/ 4~ 	~~~	+

How to represent the search space?

Basic idea:

- Not all possible combination can be in the output (not the whole power set)
- => Represent only the "selectable" things

 (a well selected subset -> one of the canonical subsets)

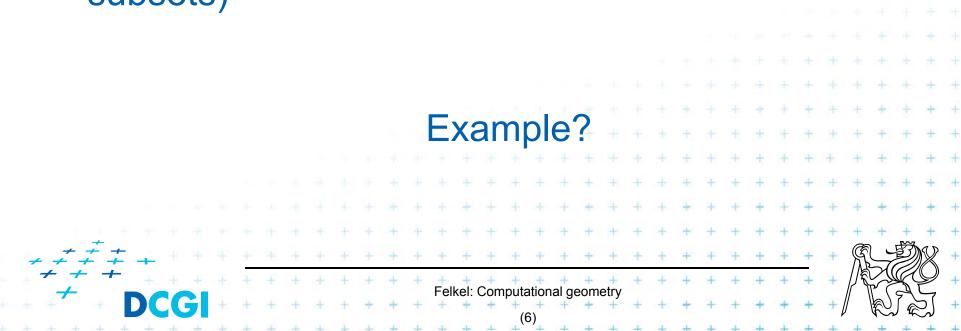


How to represent the search space?

Basic idea:

- Not all possible combination can be in the output (not the whole power set)
- => Represent only the "selectable" things

 (a well selected subset -> one of the canonical subsets)

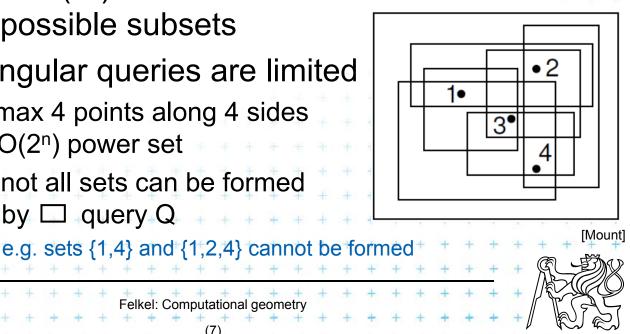


Subsets selectable by given range class

- The number of subsets that can be selected by simple ranges Q is limited
- It is usually much smaller than the power set of P
 - Power set of P where $P = \{1, 2, 3, 4\}$ (potenční množina) is $\{\{\}, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \dots, \{2,3,4\}, \}$ $\{1,2,3,4\}\}$... $O(2^n)$

Felkel: Computational geometry

- i.e. set of all possible subsets
- Simple rectangular queries are limited
 - Defined by max 4 points along 4 sides $=> O(n^4)$ of $O(2^n)$ power set
 - Moreover not all sets can be formed
 - by \Box query Q



Canonical subsets S_i

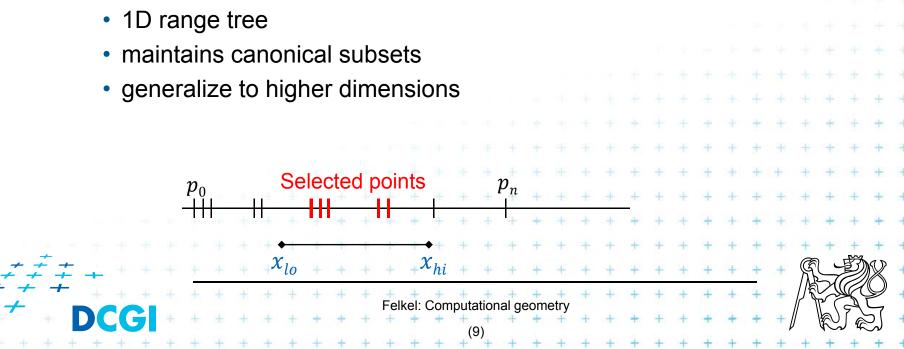
Search space S = (P, Q) represented as a collection of canonical subsets $\{S_1, S_2, \dots, S_k\}$, each S_i , S_i ,

- S_i may overlap each other (elements can be multiple times there)
- Any set can be represented as disjoint union disjunktní sjednocení of canonical subsets S_i each element knows from which subset it came
- Elements of disjoint union are ordered pairs (x, i)
 (every element x with index i of the subset S_i)
- S_i may be selected in many ways
 - from *n* singletons $\{pi\}$... O(n)
 - to power set of $P \dots O(2^n)$
 - Good DS balances between total number of canonical subsets and number of CS needed to answer the query

Felkel: Computational geometry

1D range queries (interval queries)

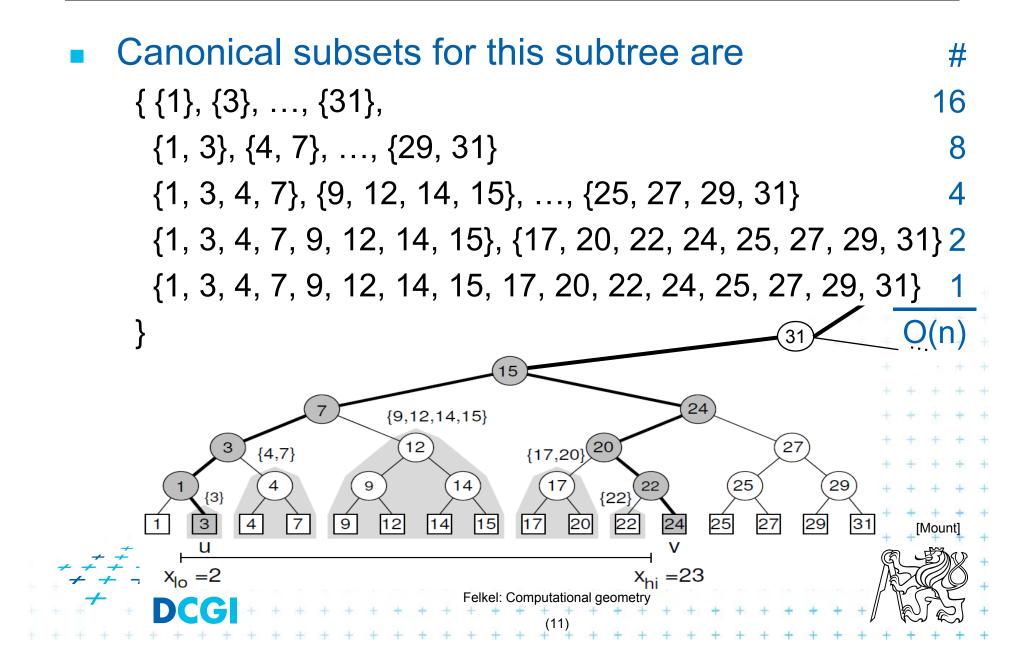
- Query: Search the interval $[x_{lo}, x_{hi}]$
- Search space: Points $P = \{p_1, p_2, \dots, p_n\}$ on the line
 - a) Binary search in an array
 - Simple, but
 - not generalize to any higher dimensions
 - b) Balanced binary search tree



1D range tree definition

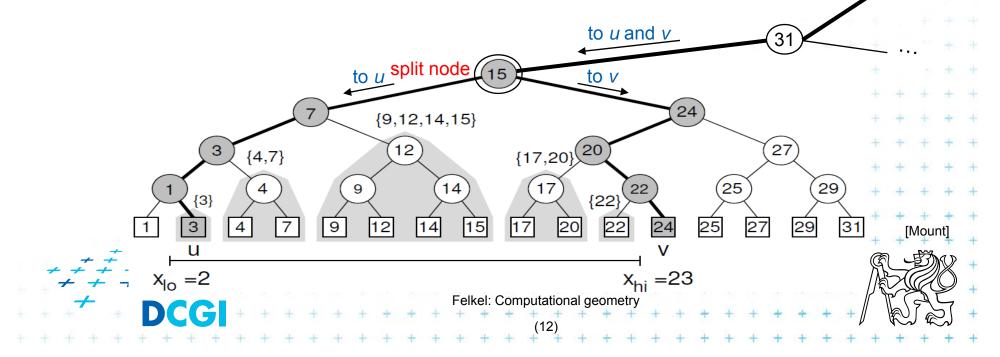
- Balanced binary search tree (with repeated keys)
 - leaves sorted points
 - inner node label the largest key in its left child
- Each node associate with subset of descendants $\Rightarrow O(n)$ canonical subsets ≤ 15 > 1524 27 14 25 22 9 22 25 29 4 14 20 24 $X_{hi} = 23$ $X_{lo} = 2$ Felkel: Computational geometry

Canonical subsets and <2,23> search



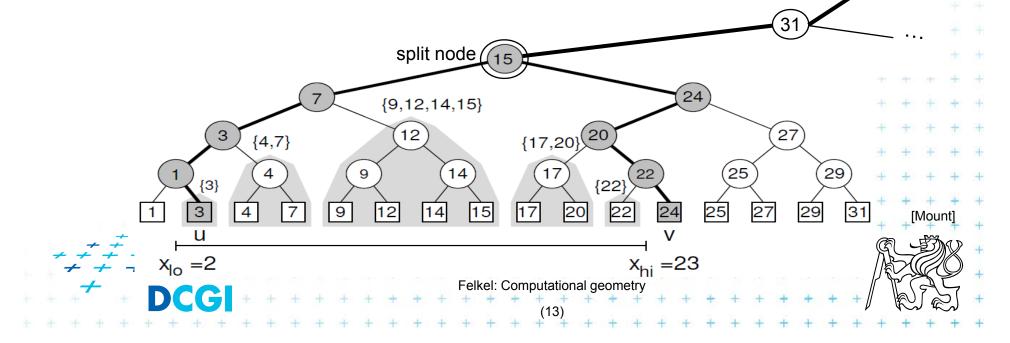
1D range tree search interval <2,23>

- Canonical subsets for any range found in O(log n)
 - Search x_{lo} : Find leftmost leaf *u* with key(*u*) $\ge x_{lo}$ 2 -> 3
 - Search x_{hi} : Find leftmost leaf v with key(v) $\ge x_{hi} 23 24$
 - Points between u and v lie within the range => report canon. subsets of maximal subtrees between u and v
 - Split node = node, where paths to u and v diverge



1D range tree search

- Reporting the subtrees (below the split node)
 - On the path to u whenever the path goes left, report the canonical subset (CS) associated to right child
 - On the path to v whenever the path goes right, report the canonical subset associated to left child
 - In the leaf *u*, if key(*u*) \in [x_{lo}:x_{hi}] then report CS of *u*
 - In the leaf v, if key(v) \in [x_{lo}:x_{hi}] then report CS of v

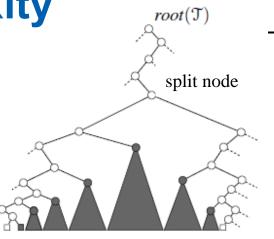


1D range tree search complexity

Path lengths O(log n)

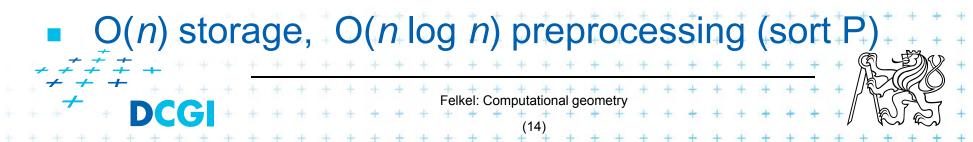
=> O(log n) canonical subsets (subtrees)

Range counting queries

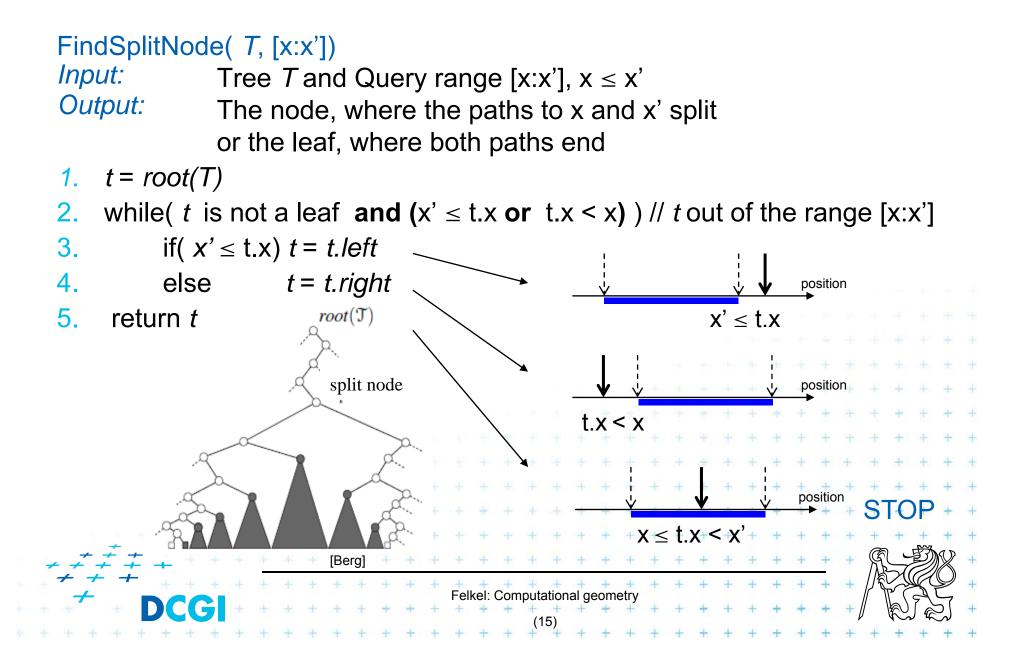


[Bera]

- Return just the number of points in given range
- Sum the total numbers of leaves stored in maximum subtree roots
 ... O(log *n*) time
- Range reporting queries
 - Return all k points in given range
 - Traverse the canonical subtrees ... O($\log n + k$) time



Find split node



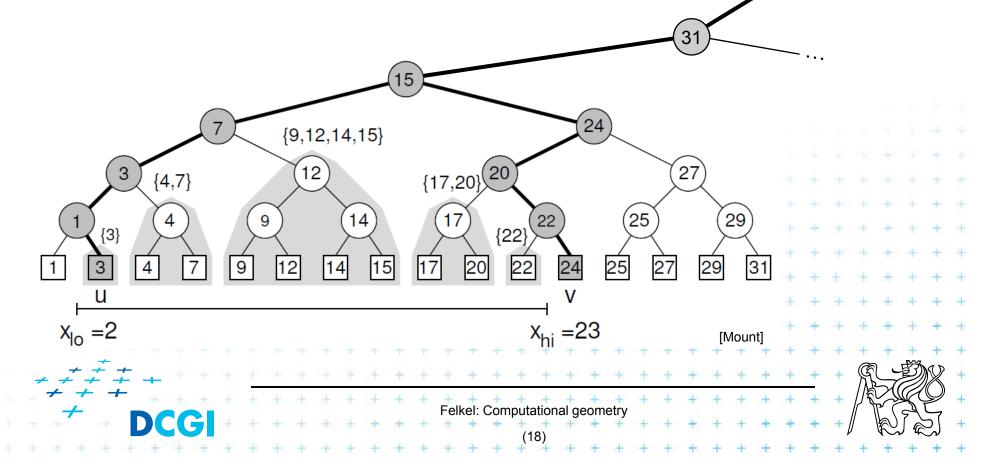
1dRangeQuery(t , [x:x'])Input:1d range tree t and Query range $[x:x']$ Output:All points in t lying in the range1. $t_{split} = FindSplitNode(t, x, x')$ // find interval point $t \in [x:x']$ 2. if(t_{split} is leaf) // e.g. Searching [16:17] or [16:16.5] both stops in the leaf 17 in the previous example3. check if the point in t_{split} must be reported // $t_x \in [x:x']$
4. else // follow the path to x, reporting points in subtrees right of the path
5. $t = t_{split}$. left
6. while(t is not a leaf)
7. $if(x \le t.x)$
8. ReportSubtree(<i>t.right</i>) // any kind of tree traversal
9. <i>t</i> = <i>t</i> . <i>left</i>
10. else <i>t</i> = <i>t.right</i>
11. check if the point in leaf t must be reported
12. // Symmetrically follow the path to x' reporting points left of the path
$ + \underbrace{ $
Felkel: Computational geometry

Multidimensional range searching

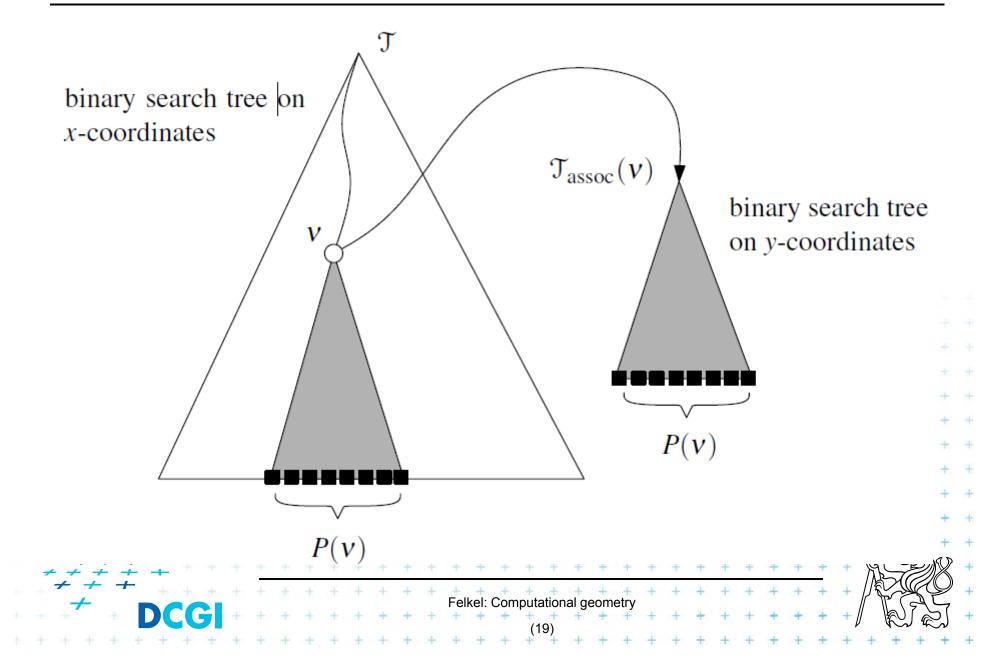
- Equal principle find the largest subtrees contained within the range
- Separate one *n*-dimensional search into *n* 1-dimensional searches
- Different tree organization
- Orthogonal (Multilevel) range search tree
 e.g. nd range tree
 Kd tree

From 1D to 2D range tree

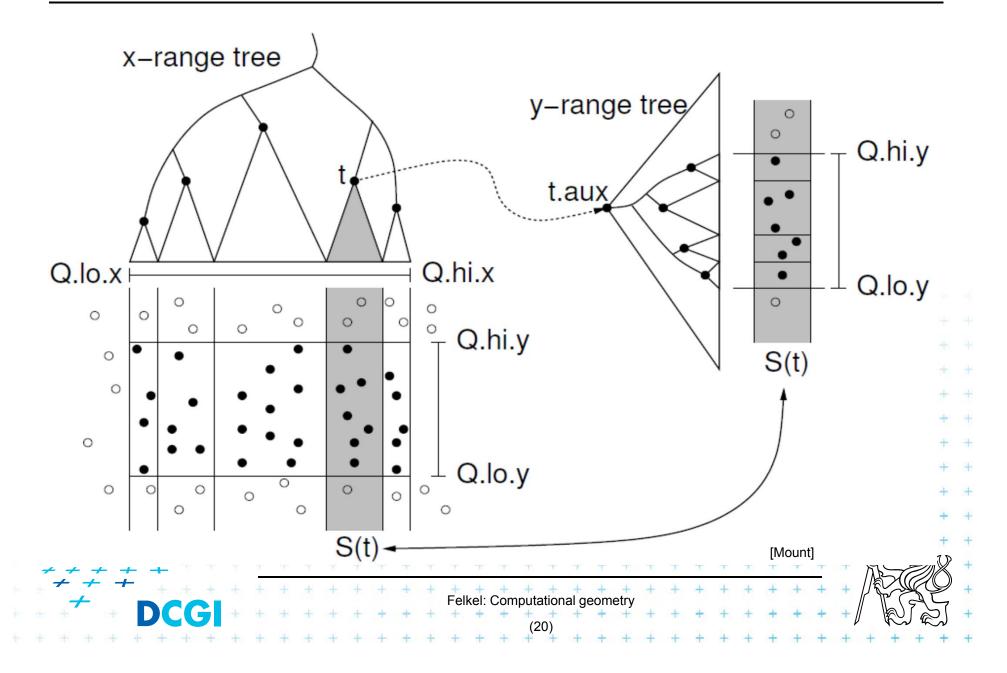
- Search points from [Q.x_{lo}, Q.x_{hi}] [Q.y_{lo}, Q.y_{hi}]
- Id range tree: log n canonical subsets based on x
- Construct an y auxiliary tree for each such subset



y-auxiliary tree for each canonical subset



2D range tree



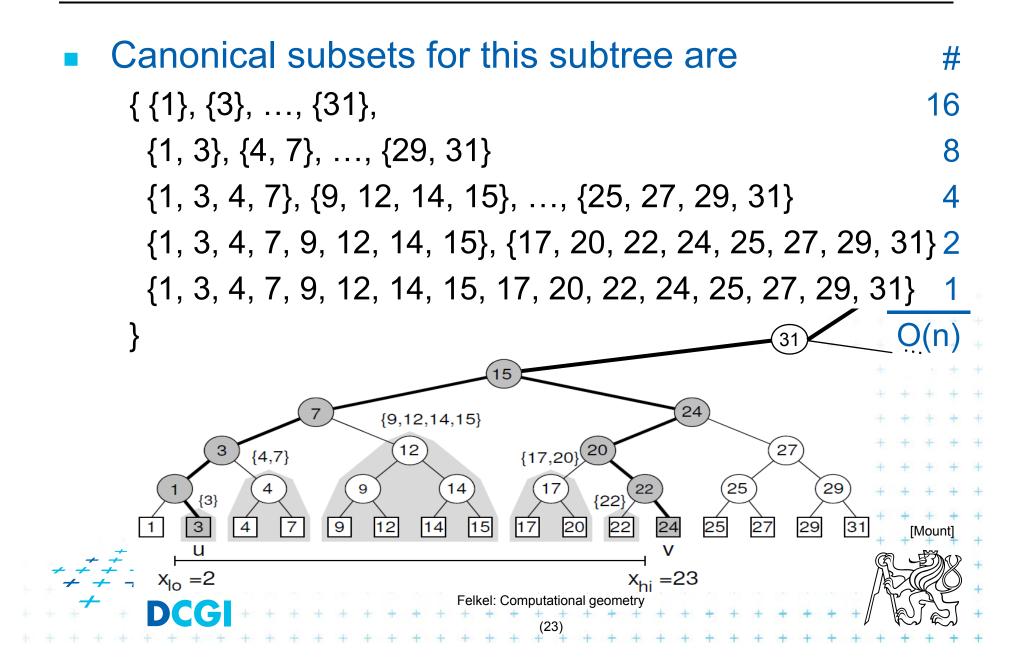
2dRangeQuery(t , [x:x'] × [y:y'])
Input: 2d range tree t and Query range
Output: All points in t laying in the range
1. $t_{split} = FindSplitNode(t, x, x')$
2. if(t _{split} is leaf)
3. check if the point in t_{split} must be reported $\dots t.x \in [x:x']$, $t.y \in [y:y']$
4. else // follow the path to x, calling 1dRangeQuery on y
5. t = t _{split} .left // path to the left
6. while (t is not a leaf)
7. if $(x \le t.x)$
8. 1dRangeQuerry(t _{assoc} (t.right), [y:y']) // check associated subtree *
9. <i>t</i> = <i>t</i> . <i>left</i>
10 . else <i>t</i> = <i>t.right</i>
11. check if the point in leaf t must be reported \dots t.x \leq x', t.y \in [y:y'] + + +
12. Similarly for the path to x' // path to the right
· · · · · · · · · · · · · · · · · · ·
Felkel: Computational geometry

2D range tree

- Search $O(\log^2 n + k) \dots \log n$ in x, $\log n$ in y
- Space $O(n \log n)$
 - O(n) the tree for x-coords
 - $O(n \log n)$ trees for y-coords
 - Point p is stored in all canonical subsets along the path from root to leaf with p,
 - once for *x*-tree level (only in one *x*-range)
 - each canonical subsets is stored in one auxiliary tree
 - log n levels of x-tree => O(n log n) space for y-trees
- Construction $O(n \log n)$

- Sort points (by x and by y). Bottom up construction

Felkel: Computational geometry



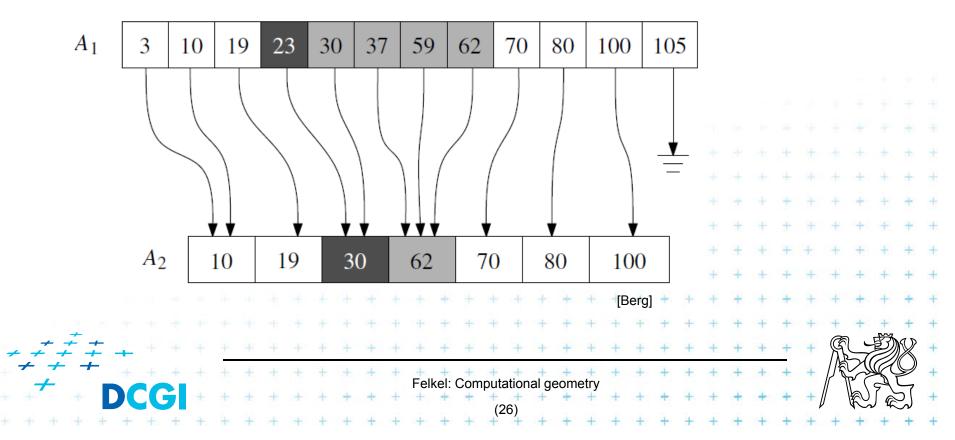
nD range tree (multilevel search tree) Tree for each dimension canonical subsets of 2. dimension Split node root(T)canonical subsets split node of 1. dimension (nodes \in [x:x']) [Bera] Felkel: Computational geometry

Fractional cascading - principle

- Two sets S₁, S₂ stored in sorted arrays A₁, A₂
- Report objects in both arrays whose keys in [y:y']
- Naïve approach search twice independently
 - O(log $n_1 + k_1$) search in A₁ + report k_1 elements
 - O(log $n_2 + k_2$) search in A₂ + report k_2 elements
- Fractional cascading adds pointers from A₁ to A₂
 - O(log n_1 + k_1) search in A₁ + report k_1 elements
 - $O(1 + k_2)$ jump to A₂ + report k₂ elements
- Saves the O(log n_2) search 4444 + Felkel: Computational geometry

Fractional cascading – principle for arrays

- Add pointers from A_1 to A_2
 - From element in A_1 with a key y_i point to the element in A_2 with the smallest key *larger or equal* to y_i
- Example query with the range [20 : 65]

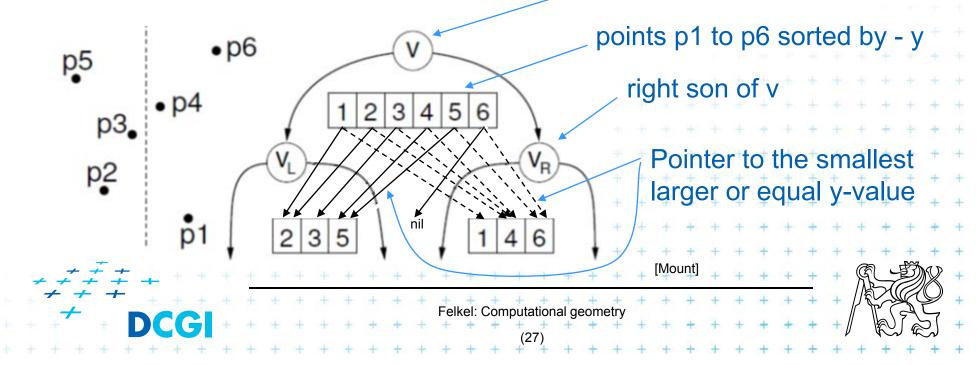


Fractional cascading in the 2D range tree

• How to save one log n during last dim. search?

- Store canonical subsets in arrays sorted by y
- Pointers to subsets for both child nodes v_L and v_R
- O(1) search in lower levels => in two dimensional search O(log² n) time -> O(log n)

internal node in x-tree



Orthogonal range tree - summary

- Orthogonal range queries in plane
 - Counting queries $O(\log^2 n)$ time, or with fractional cascading $O(\log n)$ time
 - Reporting queries plus O(k) time, for k reported points
 - Space $O(n \log n)$
 - Construction $O(n \log n)$
- Orthogonal range queries in d-dimensions, $d \ge 2$
 - Counting queries $O(\log^d n)$ time, or with fractional cascading $O(\log^{d-1} n)$ time
 - Reporting queries plus O(k) time, for k reported points

Felkel: Computational geometry

- Space $O(n \log^{d-1} n)$
- $\neq \neq \neq = Construction O(n \log^{d-1} n)$ time

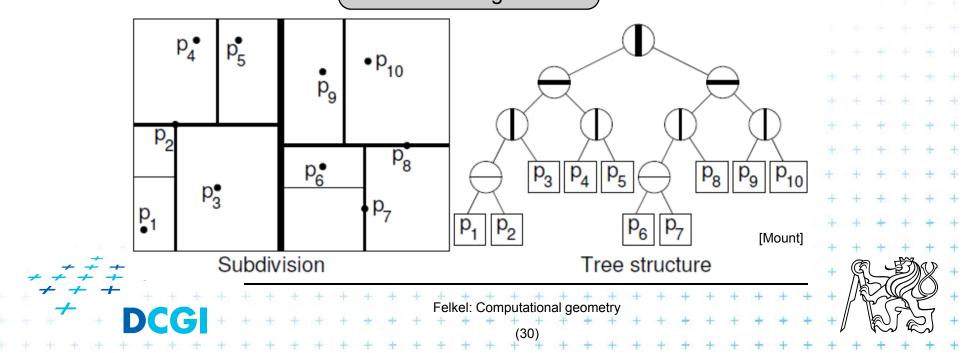
Kd-tree

- Easy to implement
- Good for different searching problems (counting queries, nearest neighbor,...)
- Designed by Jon Bentley as k-dimensional tree (2-dimensional kd-tree was a 2-d tree, ...)
- Not the asymptotically best for orthogonal range search (=> range tree is better)
- Types of queries

 Reporting points in range
 Counting number of points in range

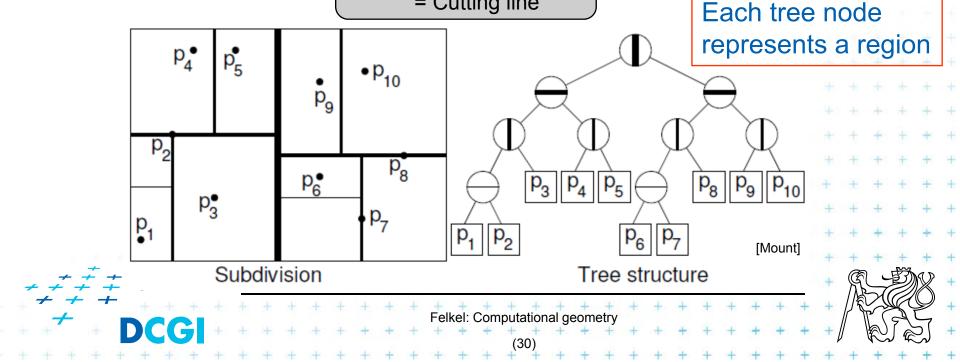
Kd-tree principle

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space
- In node t store: cutDim, cutVal, (size (for counting queries))



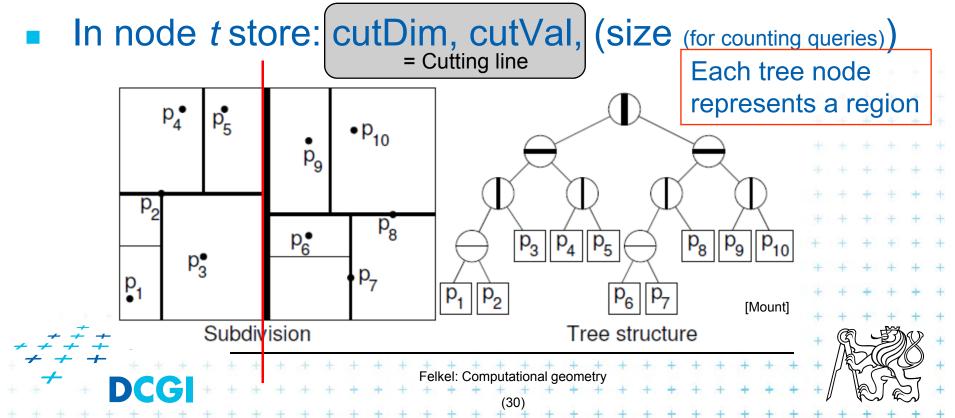
Kd-tree principle

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space

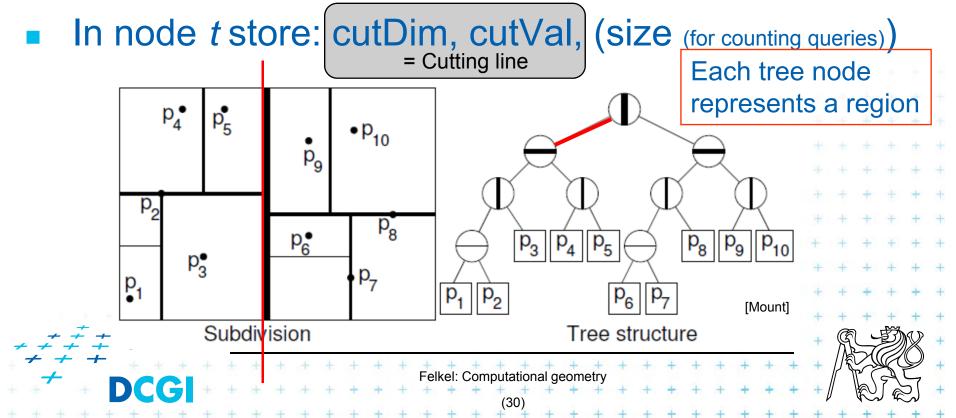


Kd-tree principle

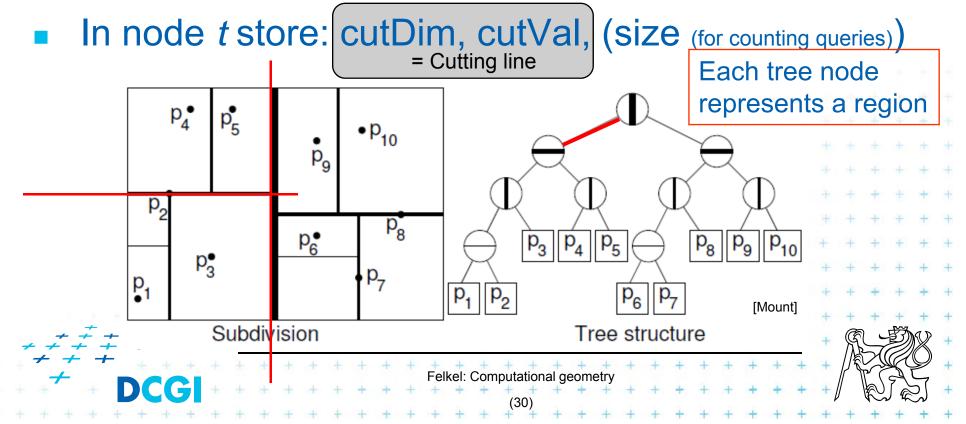
- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space



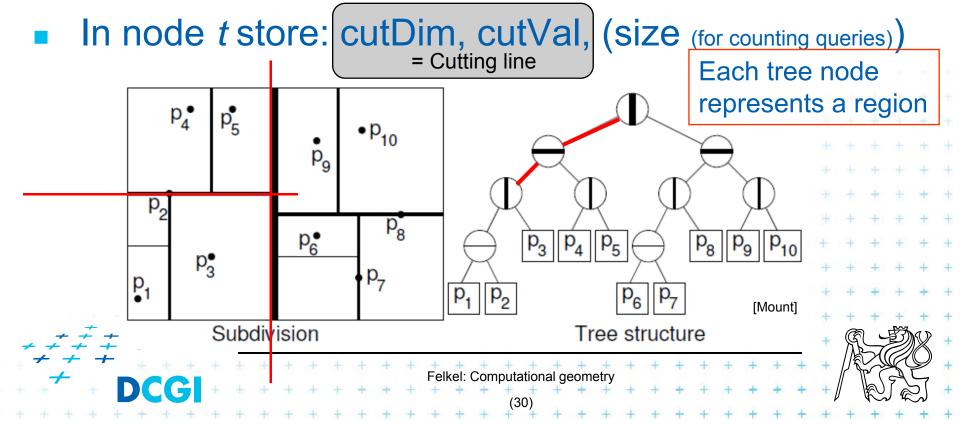
- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space



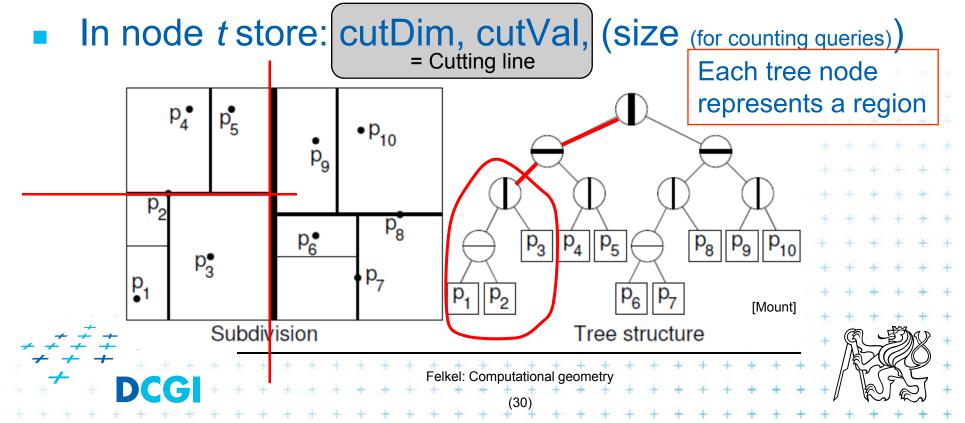
- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space



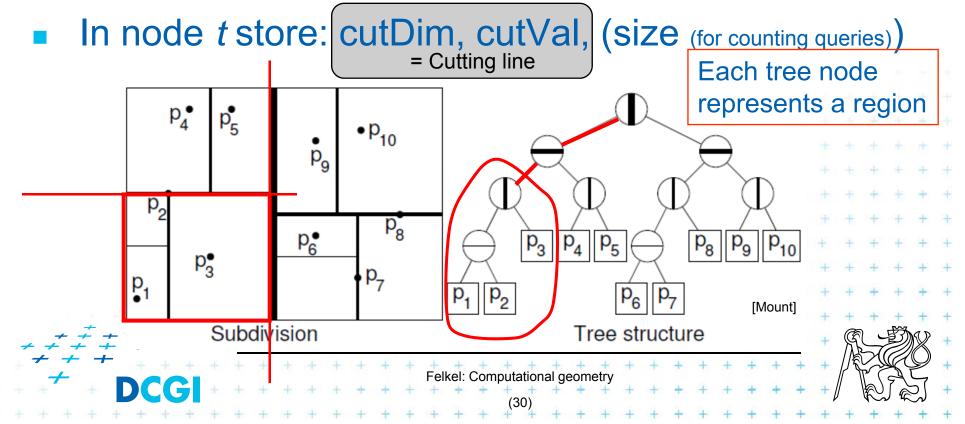
- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space



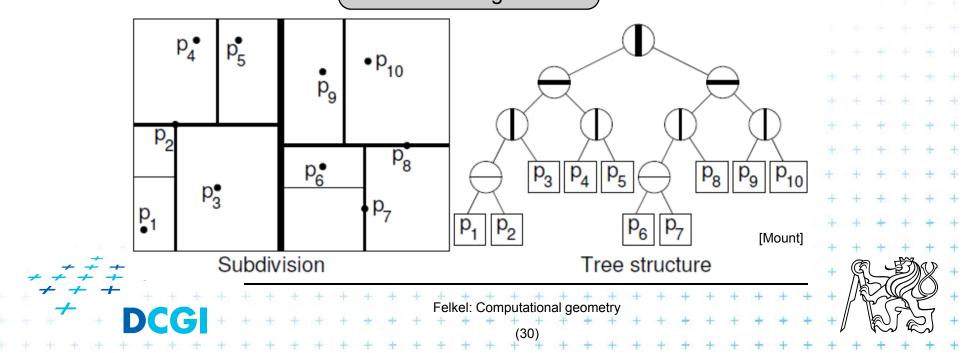
- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space



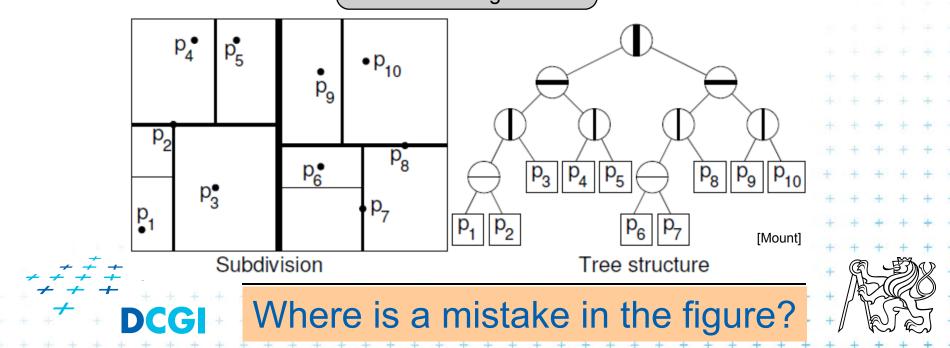
- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space



- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space
- In node t store: cutDim, cutVal, (size (for counting queries))



- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space
- In node t store: cutDim, cutVal, (size (for counting queries))

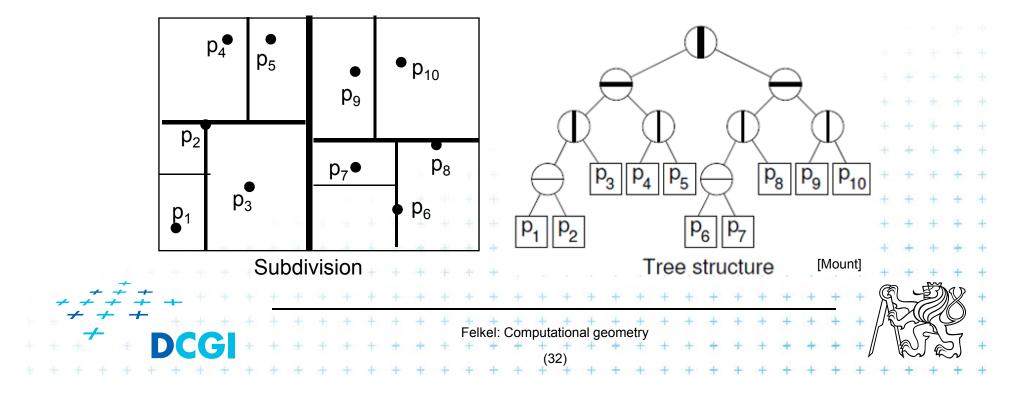


Which dimension to cut? (cutDim)

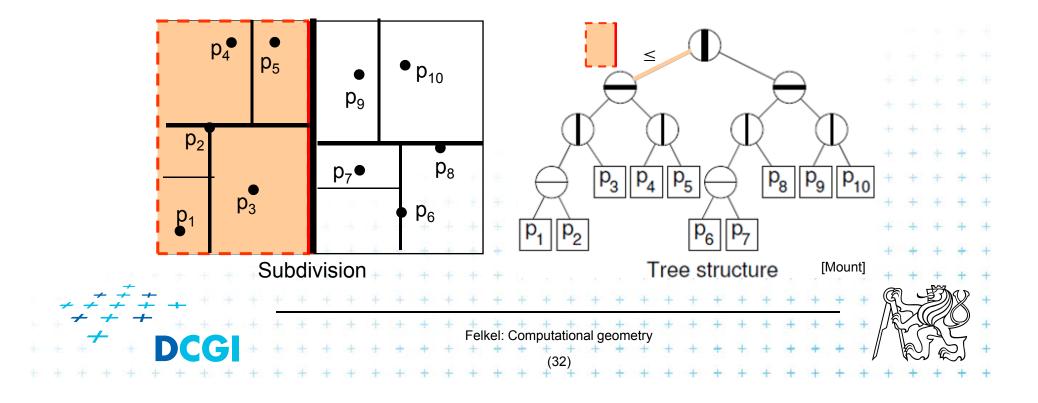
- Cycle through dimensions (round robin)
 - Save storage cutDim is implicit ~ depth in the tree
 - May produce elongated cells (if uneven data distribution)
- Greatest spread (the largest difference of coordinates)
 - Adaptive
 - Called "Optimal kd-tree"
- Where to cut? (cutVal)
 - Median, or midpoint between upper and lower median
 -> O(n)
 - Presort coords of points in each dimension (x, y, ...) for O(1) median resp. O(d) for all d dimensions



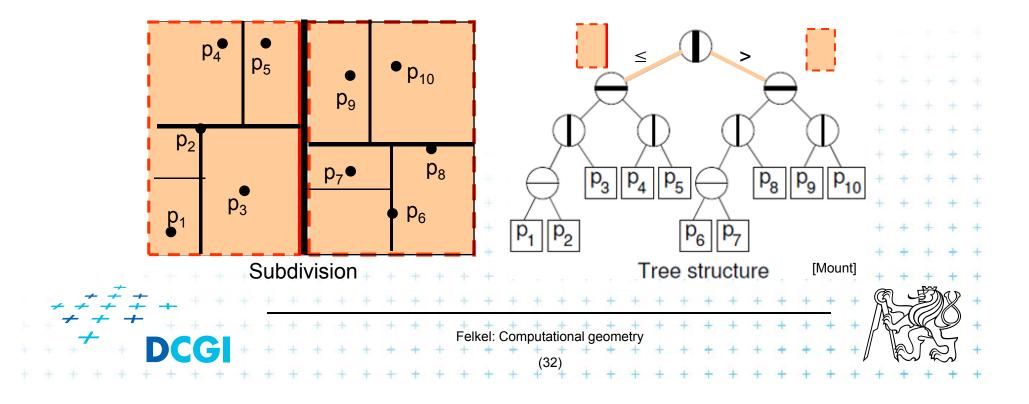
- What about points on the cell boundary?
 - Boundary belongs to the left child
 - Left: $p_{cutDim} \leq cutVal$
 - Right: $p_{cutDim} > cutVal$



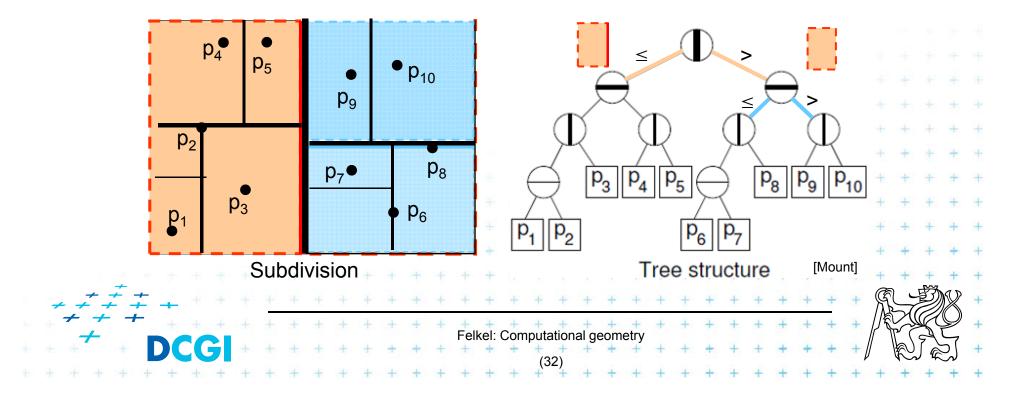
- What about points on the cell boundary?
 - Boundary belongs to the left child
 - $\ \text{Left:} \qquad p_{\text{cutDim}} \leq \text{cutVal}$
 - Right: $p_{cutDim} > cutVal$



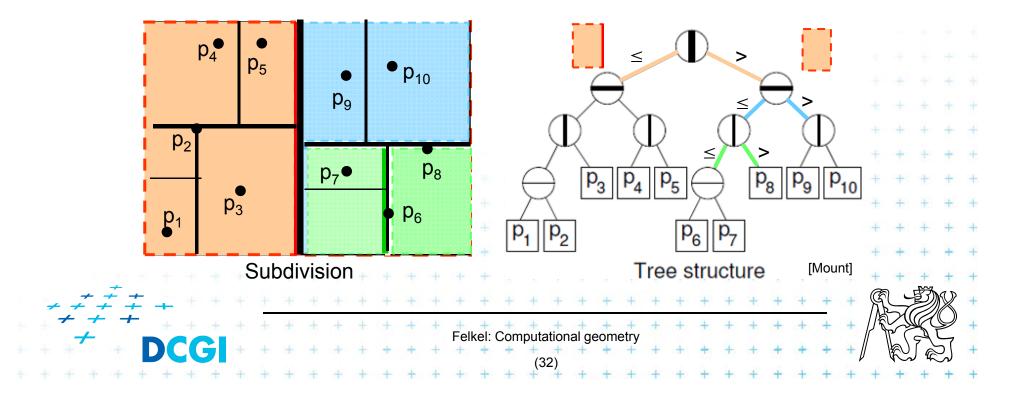
- What about points on the cell boundary?
 - Boundary belongs to the left child
 - Left: $p_{cutDim} \leq cutVal$
 - Right: $p_{cutDim} > cutVal$



- What about points on the cell boundary?
 - Boundary belongs to the left child
 - $\ \text{Left:} \qquad p_{\text{cutDim}} \leq \text{cutVal}$
 - Right: $p_{cutDim} > cutVal$



- What about points on the cell boundary?
 - Boundary belongs to the left child
 - $\ \text{Left:} \qquad p_{\text{cutDim}} \leq \text{cutVal}$
 - Right: $p_{cutDim} > cutVal$



Kd-tree construction in 2-dimensions

BuildKdTre	ee(<i>P, depth</i>)
Input:	A set of points <i>P</i> and current <i>depth</i> .
Output:	The root of a kD tree storing P.

- 1. If (*P* contains only one point) [or small set of (10 to 20) points]
- 2. **then return** a leaf storing this point
- 3. else if (depth is even)
- 4. **then** split *P* with a vertical line *I* through median *x* into two subsets P_1 and P_2 (left and right from median)
- 5. **else** split *P* with a horiz. line *I* through median y into two subsets P_1 and P_2 (below and above the median)
- 6. $t_{\text{left}} = \text{BuildKdTree}(P_1, depth+1)$
 - $t_{right} = BuildKdTree(P_2, depth+1)$
- 8. create node *t* storing *l*, t_{left} and t_{right} children // I = cutDim, cutVal
- 9. return t

7.

If median found in O(1) and array split in O(n) T(n) = 2 T(n/2) + n => O(n log n) construction \mathfrak{R}

Kd-tree construction in 2-dimensions

BuildKdTr	ee(<i>P, depth</i>)
Input:	A set of points <i>P</i> and current <i>depth</i> .
Output:	The root of a kD tree storing P.

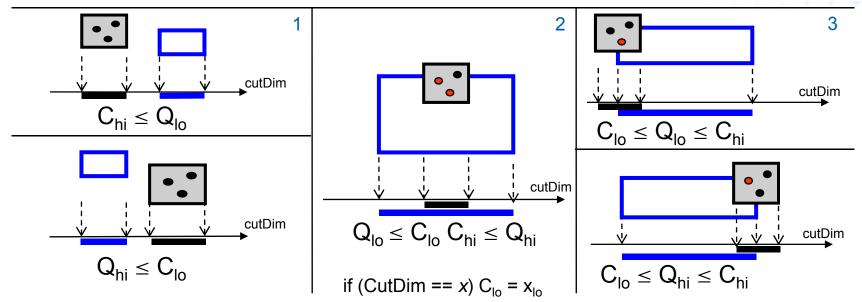
- 1. If (P contains only one point) [or small set of (10 to 20) points]
- 2. then return a leaf storing this point
- Split according to (*depth%max_dim*) dimension 3. else if (*depth* is even) **then** split *P* with a vertical line *I* through median *x* into two subsets 4. P_1 and P_2 (left and right from median) else split *P* with a horiz. line *I* through median y into two subsets 5. P_1 and P_2 (below and above the median) t_{left} = BuildKdTree(P_1 , depth+1) 6. t_{right} = BuildKdTree(P_2 , depth+1) 7. create node *t* storing *I*, t_{left} and t_{right} children // I = cutDim, cut 8. 9. return t If median found in O(1) and array split in O(n) $T(n) = 2 T(n/2) + n => O(n \log n)$ construction Felkel: Computational geometry

a) Compare rectang. array Q with rectangular cells C

- Rectangle C: $[x_{lo}, x_{hi}, y_{lo}, y_{hi}]$ computed on the fly
- Test of kD node cell C against query Q (in one cutDim)
 - 1. if cell is disjoint with Q $\dots C \cap Q = \emptyset \dots$ stop
 - 2. If cell C completely inside Q ... $C \subseteq Q$... stop and report cell points
 - 3. else cell C overlaps Q

... recurse on both children

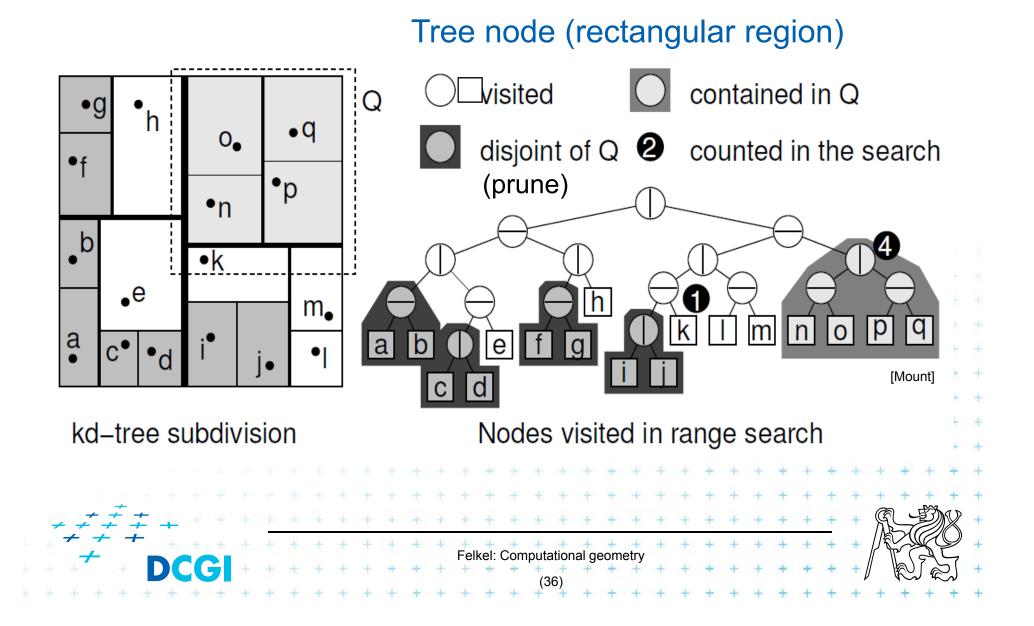
Recursion stops on the largest subtree (in/out)



Kd-tree rangeCount (with rectangular cells)

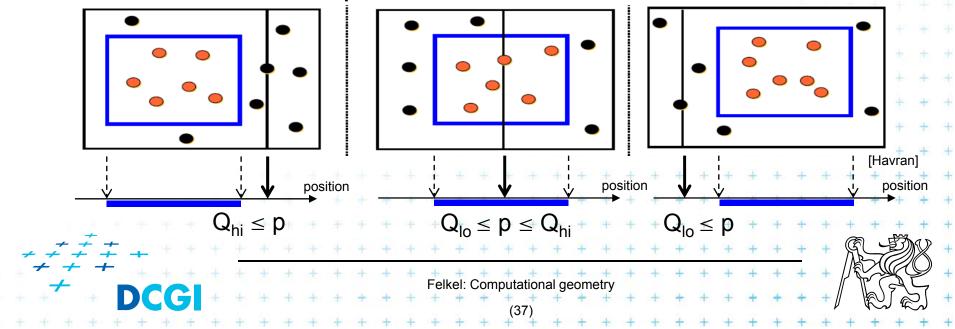
int range <mark>Cou</mark> Input: Output:	unt(<i>t</i> , <i>Q, C</i>) The root <i>t</i> of kD tree, query range <i>Q and t</i> 's cell C. Number of points at leaves below <i>t</i> that lie in the range.
	leaf) <i>oint</i> lies in <i>Q) return 1</i> ()// or loop this test for all points in leaf return 0
 else // (if (C / else i 	$f(C \subseteq Q) return \ t.size$
cre	it C along <i>t</i> 's cutting value and dimension, eating two rectangles C_1 and C_2 . urn rangeCount(<i>t.left</i> , Q, C ₁) + rangeCount(<i>t.right</i> , Q, C ₂)
<i>+ ≠ ≠ ≠ ≠ + →</i> DCC	// (pictograms refer to the next slide) Felkel: Computational geometry (35)

Kd-tree rangeCount example



b) Compare Q with cutting lines

- Line = Splitting value p in one of the dimensions
- Test of single position given by dimension against Q
 - 1. Line *p* is right from Q ... recurse on left child only (prune right child)
 - 2. Line *p* intersects Q
- ... recurse on both children
- 3. Line *p* is left from Q
- ... recurse on right child only (prune left ch.)
- Recursion stops in leaves traverses the whole tree



Kd-tree rangeSearch (with cutting lines)

int range <mark>Sea</mark>	rch(t, Q)
Input:	The root <i>t</i> of (a subtree of a) kD tree and query range Q.
Output:	Points at leaves below <i>t</i> that lie in the range.

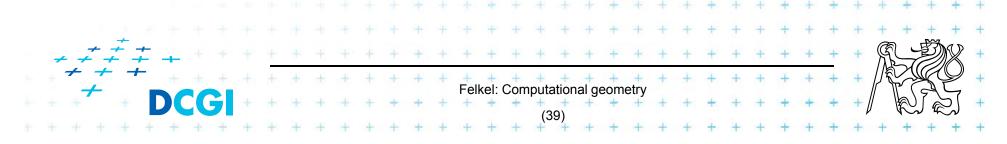
- **1. if (***t* is a leaf)
- 2. **if** (*t.point* lies in *Q*) report *t.point* // or loop test for all points in leaf
- 3. else return
- 4. else (*t* is not a leaf) 5. if ($Q_{hi} \le t.cutVal$) rangeSearch(*t.left*, Q) // go left only 6. if ($Q_{lo} > t.cutVal$) rangeSearch(*t.right*, Q) // go right only 7. else 8. rangeSearch(*t.left*, Q) // go to both 9. rangeSearch(*t.right*, Q) 4. Felket: Computational geometry (38)

Kd-tree - summary

- Orthogonal range queries in the plane (in balanced 2d-tree)
 - Counting queries O(\sqrt{n}) time
 - Reporting queries O($\sqrt{n + k}$) time, where k = No. of reported points
 - Space O(n)
 - Preprocessing: Construction O(n log n) time (Proof: if presorted points to arrays in dimensions. Median in O(1) and split in O(n) per level, log n levels of the tree)

■ For d≥2:

Construction O(d n log n), space O(dn), Search O(d n^(1-1/d) + k)



Proof sqrt(n)

Každé sudé patro se testuje osa x.

- V patře 0 je jeden uzel a jde se do obou synů (v patře 1 se jde taky do obou)
- v patře 2 jsou 4 uzly, z nich jsou ale 2 bud úplně mimo, nebo úplně in => stab jen 2
- v 4. patře stab 4 z 8, ...
 v i-tém patře stab 2^i uzlů
 Výška stromu je log n
 Proto tedy sčítám sudé členy z 0..log n z 2^i. Je to exponenciála, proto dominuje poslední člen
 2^(log n /2) = 2^log (sqrt(n)) = sqrt(n)

Orthogonal range tree (RT)

- DS highly tuned for orthogonal range queries
- Query times in plane

2d tree	versus	2d range tree
O($\sqrt{n + k}$) time of Kd	V	O(log <i>n</i>) time query
O(n) space of Kd	<	O(<i>n</i> log <i>n</i>) space
<i>n</i> = number of points		
k = number of reported	points	* * * * * * * * * *
		* * * * * * * * * * * * * * * * *
		+ + + + + + + + + + + + + + +
		+ + + + + + + + + + + + + + + +
	* * * * *	+ + + + + + + + + + + + + + + + + + + +
(1) + + + + + + + + + + + +	+ + + + +	+ * + + + * + * * * * * * * *
	where where where where where the	
· · · · · · · · · · · · · · · · · · ·		A HENT
<u> </u>	+ + + + +	+ + + + + + + + + + + +

References

- [Berg] <u>Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark</u> <u>Overmars</u>: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5, <u>http://www.cs.uu.nl/geobook/</u>
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland , Lectures 17 and 18. <u>http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml</u>
- [Havran] Vlastimil Havran, Materiály k předmětu Datové struktury pro počítačovou grafiku, přednáška č. 6, Proximity search and its Applications 1, CTU FEL, 2007

