
GEOMETRIC SEARCHING
PART 2: RANGE SEARCH

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 19.10.2017

Felkel: Computational geometry

(2)

Range search

 Orthogonal range searching
 Canonical subsets
 1D range tree
 2D-nD Range tree

– With fractional cascading (Layered tree)

 Kd-tree

Felkel: Computational geometry

(3)

Orthogonal range searching
– Given a set of points P, find the points in the region Q

– Example: Databases (records->points)
• Find the people with given range of salary, date of birth, kids, …

in YYYYMMDD format

2D: axis parallel rectangle 3D: axis parallel box

[Berg]

Felkel: Computational geometry

(3)

Orthogonal range searching
– Given a set of points P, find the points in the region Q

• Search space: a set of points P (somehow represented)

– Example: Databases (records->points)
• Find the people with given range of salary, date of birth, kids, …

in YYYYMMDD format

2D: axis parallel rectangle 3D: axis parallel box

[Berg]

Felkel: Computational geometry

(3)

Orthogonal range searching
– Given a set of points P, find the points in the region Q

• Search space: a set of points P (somehow represented)
• Query: intervals Q (axis parallel rectangle)

– Example: Databases (records->points)
• Find the people with given range of salary, date of birth, kids, …

in YYYYMMDD format

2D: axis parallel rectangle 3D: axis parallel box

[Berg]

Felkel: Computational geometry

(3)

Orthogonal range searching
– Given a set of points P, find the points in the region Q

• Search space: a set of points P (somehow represented)
• Query: intervals Q (axis parallel rectangle)
• Answer: points contained in Q

– Example: Databases (records->points)
• Find the people with given range of salary, date of birth, kids, …

in YYYYMMDD format

2D: axis parallel rectangle 3D: axis parallel box

[Berg]

Felkel: Computational geometry

(4)

Orthogonal range searching

 Query region = axis parallel rectangle
– nDimensional search can be decomposed into

set of 1D searches (separable)

Felkel: Computational geometry

(5)

Other range searching variants
 Search space S: set of

– line segments,
– rectangles, …

 Query region Q: any other searching region
– disc,
– polygon,
– halfspace, …

 Answer: subset of S laying in Q

 We concentrate on points in orthogonal ranges

How to represent the search space?

Basic idea:
 Not all possible combination can be in the output

(not the whole power set)
 => Represent only the “selectable” things

(a well selected subset –> one of the canonical
subsets)

Felkel: Computational geometry

(6)

How to represent the search space?

Basic idea:
 Not all possible combination can be in the output

(not the whole power set)
 => Represent only the “selectable” things

(a well selected subset –> one of the canonical
subsets)

Felkel: Computational geometry

(6)

Example?

Felkel: Computational geometry

(7)

Subsets selectable by given range class

 The number of subsets that can be selected by
simple ranges Q is limited

 It is usually much smaller than the power set of P
– Power set of P where P = {1,2,3,4} (potenční množina)

is {{ }, {1},{2},{3},{4}, {1,2},{1,3},{1,4}, {2,3},…,{2,3,4},
{1,2,3,4} } … O(2n)
i.e. set of all possible subsets

– Simple rectangular queries are limited
• Defined by max 4 points along 4 sides

=> O(n4) of O(2n) power set
• Moreover – not all sets can be formed

by query Q
e.g. sets {1,4} and {1,2,4} cannot be formed

[Mount]

Felkel: Computational geometry

(8)

Canonical subsets Si

Search space represented as a collection
of canonical subsets 1 2 ݇ , each ݅	 	 ,

– Si may overlap each other (elements can be multiple times there)

– Any set can be represented as disjoint union disjunktní sjednocení

of canonical subsets ܵ݅ each element knows from which subset it came

– Elements of disjoint union are ordered pairs (ݔ, ݅)
(every element ݔ with index ݅ of the subset ܵ݅)

Si may be selected in many ways
• from n singletons {݅݌} … ܱ(݊)
• to power set of ܲ … ܱ(2݊)

– Good DS balances between total number of canonical
subsets and number of CS needed to answer the query

Felkel: Computational geometry

(9)

1D range queries (interval queries)

 Query: Search the interval ݈݋ ݄݅
 Search space: Points 1 2 ݊ on the line

a) Binary search in an array
• Simple, but
• not generalize to any higher dimensions

b) Balanced binary search tree
• 1D range tree
• maintains canonical subsets
• generalize to higher dimensions

0݌ ݊݌
݋݈ݔ ݄݅ݔ
Selected points

Felkel: Computational geometry

(10)

1D range tree definition

 Balanced binary search tree (with repeated keys)
– leaves – sorted points
– inner node label – the largest key in its left child
– Each node associate with subset of descendants

=> ܱ(݊) canonical subsets
31

[Mount]

≤ 15 > 15

Felkel: Computational geometry

(11)

Canonical subsets and <2,23> search

31

 Canonical subsets for this subtree are
{ {1}, {3}, …, {31},
{1, 3}, {4, 7}, …, {29, 31}
{1, 3, 4, 7}, {9, 12, 14, 15}, …, {25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31}

}

#
16
8
4
2
1

O(n)

[Mount]

Felkel: Computational geometry

(12)

1D range tree search interval <2,23>

 Canonical subsets for any range found in O(log n)
– Search xlo: Find leftmost leaf u with key(u) ¥ xlo 2 ->
– Search xhi: Find leftmost leaf v with key(v) ¥ xhi 23 ->
– Points between u and v lie within the range => report

canon. subsets of maximal subtrees between u and v
– Split node = node, where paths to u and v diverge

31
split node

[Mount]

to u to v

to u and v

3

24

Felkel: Computational geometry

(13)

1D range tree search

 Reporting the subtrees (below the split node)
– On the path to u whenever the path goes left, report

the canonical subset (CS) associated to right child
– On the path to v whenever the path goes right, report

the canonical subset associated to left child
– In the leaf u, if key(u) œ [xlo:xhi] then report CS of u
– In the leaf v, if key(v) œ [xlo:xhi] then report CS of v

31
split node

[Mount]

Felkel: Computational geometry

(14)

 Path lengths O(log n)
=> O(log n) canonical subsets

(subtrees)

 Range counting queries
– Return just the number of points in given range
– Sum the total numbers of leaves stored in maximum

subtree roots … O(log n) time

 Range reporting queries
– Return all k points in given range
– Traverse the canonical subtrees … O(log n + k) time

 O(n) storage, O(n log n) preprocessing (sort P)

split node

1D range tree search complexity

[Berg]

Input:
Output:

Felkel: Computational geometry

(15)

split node

Find split node
FindSplitNode(T, [x:x’])

Tree T and Query range [x:x’], x § x’
The node, where the paths to x and x’ split
or the leaf, where both paths end

1. t = root(T)
2. while(t is not a leaf and (x’ § t.x or t.x < x)) // t out of the range [x:x’]
3. if(x’ § t.x) t = t.left
4. else t = t.right
5. return t

position

x’ § t.x

position

x§ t.x < x’

position

t.x < x

[Berg]

STOP

Input:
Output:

Felkel: Computational geometry

(16)

1D range search (2D on slide 30)

1dRangeQuery(t, [x:x’])
1d range tree t and Query range :ݔ] [′ݔ
All points in t lying in the range

1. tsplit = FindSplitNode(t, x, x’) // find interval point t œ [x:x’]
2. if(tsplit is leaf) // e.g. Searching [16:17] or [16:16.5] both stops in the leaf 17 in the previous example

3. check if the point in tsplit must be reported // ௫ݐ ∈ :ݔ] [′ݔ
4. else // follow the path to x, reporting points in subtrees right of the path
5. t = tsplit.left
6. while(t is not a leaf)
7. if(x § t.x)
8. ReportSubtree(t.right) // any kind of tree traversal
9. t = t.left
10. else t = t.right
11. check if the point in leaf t must be reported
12. // Symmetrically follow the path to x’ reporting points left of the path

t = tsplit.right …

Felkel: Computational geometry

(17)

Multidimensional range searching

 Equal principle – find the largest subtrees
contained within the range

 Separate one n-dimensional search
into n 1-dimensional searches

 Different tree organization
– Orthogonal (Multilevel) range search tree

e.g. nd range tree
– Kd tree

Felkel: Computational geometry

(18)

From 1D to 2D range tree

 Search points from [Q.xlo, Q.xhi] [Q.ylo, Q.yhi]
 1d range tree: log n canonical subsets based on x
 Construct an y auxiliary tree for each such subset

31

[Mount]

y-auxiliary tree for each canonical subset

Felkel: Computational geometry

(19)

Felkel: Computational geometry

(20)

2D range tree

[Mount]

Input:
Output:

Felkel: Computational geometry

(21)

2D range search
2dRangeQuery(t, [x:x’] μ [y:y’])

2d range tree t and Query range
All points in t laying in the range

1. tsplit = FindSplitNode(t, x, x’)
2. if(tsplit is leaf)
3. check if the point in tsplit must be reported … t.x œ [x:x’], t.y œ [y:y’]
4. else // follow the path to x, calling 1dRangeQuery on y
5. t = tsplit.left // path to the left
6. while(t is not a leaf)
7. if(x § t.x)
8. 1dRangeQuerry(tassoc(t.right), [y:y’]) // check associated subtree
9. t = t.left
10. else t = t.right
11. check if the point in leaf t must be reported … t.x § x’, t.y œ [y:y’]
12. Similarly for the path to x’ … // path to the right

Felkel: Computational geometry

(22)

2D range tree

 Search 2 … in , in
 Space – ܱ(݊) the tree for x-coords– ܱ(݊	log	݊)	trees for y-coords

• Point p is stored in all canonical subsets
along the path from root to leaf with p,

• once for ݔ-tree level (only in one (range-ݔ
• each canonical subsets is stored in one auxiliary tree • log	݊ 	levels of ݔ-tree => ܱ(݊	log	݊)	space for ݕ-trees

 Construction -
– Sort points (by ݔ and by ݕ). Bottom up construction

[Berg]

Felkel: Computational geometry

(23)

Canonical subsets

31

 Canonical subsets for this subtree are
{ {1}, {3}, …, {31},
{1, 3}, {4, 7}, …, {29, 31}
{1, 3, 4, 7}, {9, 12, 14, 15}, …, {25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31}

}

#
16
8
4
2
1

O(n)

[Mount]

Felkel: Computational geometry

(24)

nD range tree (multilevel search tree)

Split node

split node
canonical subsets

of 1. dimension
(nodes œ [x:x’])

Tree for each dimension

canonical subsets
of 2. dimension

[Berg]

Fractional cascading - principle

 Two sets S1, S2 stored in sorted arrays A1, A2

 Report objects in both arrays whose keys in [y:y’]
 Naïve approach – search twice independently

– O(logn1+k1) – search in A1 + report k1 elements
– O(logn2+k2) – search in A2 + report k2 elements

 Fractional cascading – adds pointers from A1 to A2
– O(logn1+k1) – search in A1 + report k1 elements
– O(1 + k2) – jump to A2 + report k2 elements
– Saves the O(logn2) – search

Felkel: Computational geometry

(25)

Fractional cascading – principle for arrays

 Add pointers from 1 to 2
– From element in 1ܣ with a key ݅ݕ point to the element in 2ܣ with the smallest key larger or equal to ݅ݕ

 Example query with the range [20 : 65]

Felkel: Computational geometry

(26)

[Berg]

Felkel: Computational geometry

(27)

Fractional cascading in the 2D range tree

 How to save one log n during last dim. search?
– Store canonical subsets in arrays sorted by y
– Pointers to subsets for both child nodes ܮݒ and ܴݒ– (1) search in lower levels => in two dimensional

search (log2	݊)	time -> (log	݊)	
internal node in x-tree

points p1 to p6 sorted by - y

right son of v

Pointer to the smallest
larger or equal y-value

[Mount]

nil

Felkel: Computational geometry

(28)

Orthogonal range tree - summary

 Orthogonal range queries in plane
– Counting queries (log2	݊)	time,

or with fractional cascading (log	݊)	time
– Reporting queries plus (݇)	time, for ݇ reported points
– Space (݊	log	݊)
– Construction (݊	log	݊)

 Orthogonal range queries in d-dimensions, ¥
– Counting queries ,time	(݊	݀݃݋݈)

or with fractional cascading (logௗିଵ ݊)	time
– Reporting queries plus (݇)	time, for ݇ reported points
– Space (݊	logௗିଵ ݊)	
– Construction (݊ logௗିଵ ݊) time

Felkel: Computational geometry

(29)

Kd-tree

 Easy to implement
 Good for different searching problems

(counting queries, nearest neighbor,…)
 Designed by Jon Bentley as k-dimensional tree

(2-dimensional kd-tree was a 2-d tree, …)
 Not the asymptotically best for orthogonal range

search (=> range tree is better)
 Types of queries

– Reporting – points in range
– Counting – number of points in range

Felkel: Computational geometry

(30)

Kd-tree principle

 Subdivide space according to different dimension
(-coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))

[Mount]

= Cutting line

Felkel: Computational geometry

(30)

Kd-tree principle

 Subdivide space according to different dimension
(-coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))
Each tree node
represents a region

[Mount]

= Cutting line

Felkel: Computational geometry

(30)

Kd-tree principle

 Subdivide space according to different dimension
(-coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))
Each tree node
represents a region

[Mount]

= Cutting line

Felkel: Computational geometry

(30)

Kd-tree principle

 Subdivide space according to different dimension
(-coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))
Each tree node
represents a region

[Mount]

= Cutting line

Felkel: Computational geometry

(30)

Kd-tree principle

 Subdivide space according to different dimension
(-coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))
Each tree node
represents a region

[Mount]

= Cutting line

Felkel: Computational geometry

(30)

Kd-tree principle

 Subdivide space according to different dimension
(-coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))
Each tree node
represents a region

[Mount]

= Cutting line

Felkel: Computational geometry

(30)

Kd-tree principle

 Subdivide space according to different dimension
(-coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))
Each tree node
represents a region

[Mount]

= Cutting line

Felkel: Computational geometry

(30)

Kd-tree principle

 Subdivide space according to different dimension
(-coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))
Each tree node
represents a region

[Mount]

= Cutting line

Felkel: Computational geometry

(30)

Kd-tree principle

 Subdivide space according to different dimension
(-coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))

[Mount]

= Cutting line

Felkel: Computational geometry

(30)

Kd-tree principle

 Subdivide space according to different dimension
(-coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))

Where is a mistake in the figure?

[Mount]

= Cutting line

Felkel: Computational geometry

(31)

Kd-tree principle

 Which dimension to cut? (cutDim)
– Cycle through dimensions (round robin)

• Save storage – cutDim is implicit ~ depth in the tree
• May produce elongated cells (if uneven data distribution)

– Greatest spread (the largest difference of coordinates)
• Adaptive
• Called “Optimal kd-tree”

 Where to cut? (cutVal)
– Median, or midpoint between upper and lower median

-> (݊)
– Presort coords of points in each dimension (ݔ, ,ݕ …)	for (1)	median – resp. (݀) for all ݀ dimensions

Felkel: Computational geometry

(32)

Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7

p9

p10

p8

p6

Subdivision [Mount]

Felkel: Computational geometry

(32)

Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7

p9

p10

p8

p6

Subdivision [Mount]

§

Felkel: Computational geometry

(32)

Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7

p9

p10

p8

p6

Subdivision [Mount]

§ >

Felkel: Computational geometry

(32)

Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7

p9

p10

p8

p6

Subdivision [Mount]

§

§

>

>

Felkel: Computational geometry

(32)

Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7

p9

p10

p8

p6

Subdivision [Mount]

§

§

§

>

>

>

Input:
Output:

Felkel: Computational geometry

(33)

Kd-tree construction in 2-dimensions
BuildKdTree(P, depth)

A set of points P and current depth.
The root of a kD tree storing P.

1. If (P contains only one point) [or small set of (10 to 20) points]
2. then return a leaf storing this point
3. else if (depth is even)
4. then split P with a vertical line l through median x into two subsets

P1 and P2 (left and right from median)
5. else split P with a horiz. line l through median y into two subsets

P1 and P2 (below and above the median)
6. t left = BuildKdTree(P1, depth+1)
7. t right = BuildKdTree(P2, depth+1)
8. create node t storing l, tleft and tright children // l = cutDim, cutVal
9. return t

If median found in O(1) and array split in O(n)
T(n) = 2 T(n/2) + n => O(n log n) construction

Input:
Output:

Felkel: Computational geometry

(33)

Kd-tree construction in 2-dimensions
BuildKdTree(P, depth)

A set of points P and current depth.
The root of a kD tree storing P.

1. If (P contains only one point) [or small set of (10 to 20) points]
2. then return a leaf storing this point
3. else if (depth is even)
4. then split P with a vertical line l through median x into two subsets

P1 and P2 (left and right from median)
5. else split P with a horiz. line l through median y into two subsets

P1 and P2 (below and above the median)
6. t left = BuildKdTree(P1, depth+1)
7. t right = BuildKdTree(P2, depth+1)
8. create node t storing l, tleft and tright children // l = cutDim, cutVal
9. return t

If median found in O(1) and array split in O(n)
T(n) = 2 T(n/2) + n => O(n log n) construction

Split according to (depth%max_dim) dimension

Felkel: Computational geometry

(34)

Kd-tree test variants

a) Compare rectang. array Q with rectangular cells C
– Rectangle C:[xlo, xhi, ylo, yhi] – computed on the fly
– Test of kD node cell C against query Q (in one cutDim)

1. if cell is disjoint with Q … C … Q = « … stop
2. If cell C completely inside Q … C Œ Q … stop and report cell points
3. else cell C overlaps Q … recurse on both children

– Recursion stops on the largest subtree (in/out)

cutDim

Chi § Qlo

cutDim

Qhi § Clo

cutDim

Clo § Qhi § Chi

cutDim

Clo § Qlo § Chi

cutDim

Qlo § Clo Chi § Qhi

Test interval-interval

1 2 3

if (CutDim == x) Clo = xlo

Input:
Output:

Felkel: Computational geometry

(35)

Kd-tree rangeCount (with rectangular cells)
int rangeCount(t, Q, C)

The root t of kD tree, query range Q and t’s cell C.
Number of points at leaves below t that lie in the range.

1. if (t is a leaf)
2. if (t.point lies in Q) return 1 // or loop this test for all points in leaf
3. else return 0 // visited, not counted
4. else // (t is not a leaf)
5. if (C … Q = «) return 0 … disjoint
6. else if (C Œ Q) return t.size … C is fully contained in Q
7. else
8. split C along t’s cutting value and dimension,

creating two rectangles C1 and C2.
9. return rangeCount(t.left, Q, C1) + rangeCount(t.right, Q, C2)

// (pictograms refer to the next slide)

C1

C
C2

4

k
1

Felkel: Computational geometry

(36)

Kd-tree rangeCount example

[Mount]

Tree node (rectangular region)

(prune)

Felkel: Computational geometry

(37)

Kd-tree test variants

b) Compare Q with cutting lines
– Line = Splitting value p in one of the dimensions
– Test of single position given by dimension against Q

1. Line p is right from Q … recurse on left child only (prune right child)
2. Line p intersects Q … recurse on both children
3. Line p is left from Q … recurse on right child only (prune left ch.)

– Recursion stops in leaves - traverses the whole tree

[Havran]

position

Qhi § p

position

Qlo § p § Qhi

position

Qlo § p

Test point-interval

Input:
Output:

Felkel: Computational geometry

(38)

Kd-tree rangeSearch (with cutting lines)
int rangeSearch(t, Q)

The root t of (a subtree of a) kD tree and query range Q.
Points at leaves below t that lie in the range.

1. if (t is a leaf)
2. if (t.point lies in Q) report t.point // or loop test for all points in leaf
3. else return
4. else (t is not a leaf)
5. if (Qhi § t.cutVal) rangeSearch(t.left, Q) // go left only
6. if (Qlo > t.cutVal) rangeSearch(t.right, Q) // go right only
7. else
8. rangeSearch(t.left, Q) // go to both
9. rangeSearch(t.right, Q)

Felkel: Computational geometry

(39)

Kd-tree - summary

 Orthogonal range queries in the plane
(in balanced 2d-tree)

– Counting queries O(◊n) time
– Reporting queries O(◊n + k) time,

where k = No. of reported points
– Space O(n)
– Preprocessing: Construction O(n log n) time

(Proof: if presorted points to arrays in dimensions. Median in O(1)
and split in O(n) per level, log n levels of the tree)

 For d¥2:
– Construction O(d n log n), space O(dn), Search O(d n^(1-1/d) + k)

Proof sqrt(n)
Každé sudé patro se testuje osa x.
• V patře 0 je jeden uzel a jde se do obou synů (v patře 1 se jde taky do

obou)
• v patře 2 jsou 4 uzly, z nich jsou ale 2 bud úplně mimo, nebo úplně in

=> stab jen 2
• v 4. patře stab 4 z 8, …
• v i-tém patře stab 2^i uzlů
Výška stromu je log n
Proto tedy sčítám sudé členy z 0..log n z 2^i. Je to exponenciála, proto
dominuje poslední člen
2^(log n /2) = 2^log (sqrt(n)) = sqrt(n)

Felkel: Computational geometry

(40)

Felkel: Computational geometry

(41)

Orthogonal range tree (RT)

 DS highly tuned for orthogonal range queries
 Query times in plane

n = number of points
k = number of reported points

2d tree versus 2d range tree
O(◊n + k) time of Kd > O(log n) time query
O(n) space of Kd < O(n log n) space

Felkel: Computational geometry

(42)

References
 [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark

Overmars: Computational Geometry: Algorithms and Applications,
Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 5, http://www.cs.uu.nl/geobook/

 [Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland , Lectures 17 and 18.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

 [Havran] Vlastimil Havran, Materiály k předmětu Datové struktury pro
počítačovou grafiku, přednáška č. 6, Proximity search and its
Applications 1, CTU FEL, 2007

