

GEOMETRIC SEARCHING PART 2: RANGE SEARCH

PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz <u>https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start</u>

Based on [Berg] and [Mount]

Version from 30.10.2019

- Orthogonal range searching
- **Canonical subsets**
- 1D range tree
- 2D-nD Range tree
 - With fractional cascading (Layered tree)
- **Kd-tree**

- Given a set of points P, find the points in the region Q

- Example: Databases (records->points)
 - Find the people with given range of salary, date of birth, kids, ...

- Given a set of points P, find the points in the region Q

- Search space: a set of points P (somehow represented)
- Example: Databases (records->points)
 - Find the people with given range of salary, date of birth, kids, ...

- Given a set of points P, find the points in the region Q
 - Search space: a set of points P (somehow represented)
 - Query: intervals Q (axis parallel rectangle)
- Example: Databases (records->points)
 - Find the people with given range of salary, date of birth, kids, ...

- Given a set of points P, find the points in the region Q
 - Search space: a set of points P (somehow represented)
 - Query: intervals Q (axis parallel rectangle)
 - Answer: points contained in Q
- Example: Databases (records->points)
 - Find the people with given range of salary, date of birth, kids, ...

Query region = axis parallel rectangle

 nDimensional search can be decomposed into set of 1D searches (separable)

Other range searching variants

Search space S: set of

- line segments,
- rectangles, ...
- Query region Q: any other searching region
 - disc,
 - polygon,

		_	-	ha	lfs	spa	ac	e,	••	•																											
		^																																			
	Answer: subset of S laying in Q																																				
																																				÷.	+
																														+	+		÷	+	÷	+	+
																	÷.							÷					÷	÷	÷	+	+	÷	+	+	+
		VV	e	C	Or	٦C	e	nt	ra	te	C)n	р	0	IN.	tS	Ir) (or	th	OC	JO	na	al	ra	n	g	es	+	+	+	+	Ŧ	+	+	+	+
																					+	+			+	÷	+	+	+	+	+	+	÷	+	+	÷	+
																			÷	4	+	+	+	+	+	+	+	+	+	÷	+	+	÷	+	+	+	+
															÷		÷	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
											+	+		ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ +		ŧ,	÷.	1							+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R		ĝ)		+
+	+	4	_			÷	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1	\mathcal{M}	K.	Q	+
÷ +	-						+	+	+	+	+	+	+	+	+	⊢ell	kel:	Com	nputa			eom	etry	+	+	+	+	+	+	+	+	+	// \	b)		57	+
+ +	-1+	+	4	4	+	+	+	+	4	4	+	4	+	+	4	4	+	4	(5)	+	+	+	+	+	+	4	÷	+	+	+	+	+		, m	ہر +	+

How to represent the search space?

Basic idea:

- Not all possible combination can be in the output (not the whole power set)
- => Represent only the "selectable" things

 (a well selected subset -> one of the canonical subsets)

How to represent the search space?

Basic idea:

- Not all possible combination can be in the output (not the whole power set)
- => Represent only the "selectable" things

 (a well selected subset -> one of the canonical subsets)

Subsets selectable by given range class

- The number of subsets that can be selected by simple ranges Q is limited
- It is usually much smaller than the power set of P
 - Power set of P where $P = \{1, 2, 3, 4\}$ (potenční množina) is $\{\{\}, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \dots, \{2,3,4\}, \}$ $\{1,2,3,4\}\}$... $O(2^n)$

Felkel: Computational geometry

- i.e. set of all possible subsets
- Simple rectangular queries are limited
 - Q defined by max 4 points along 4 sides $=> O(n^4)$ of $O(2^n)$ power set
 - Moreover not all sets can be formed
 - by \Box query Q

Canonical subsets S_i

Search space S = (P, Q) represented as a collection of canonical subsets $\{S_1, S_2, \dots, S_k\}$, each $S_i \subseteq S$,

- S_i may overlap each other (elements can be multiple times there)
- Any set can be represented as disjoint union disjunktní sjednocení of canonical subsets S_i each element knows from which subset it came
- Elements of disjoint union are ordered pairs (x, i)
 (every element x with index i of the subset S_i)
- S_i may be selected in many ways
 - from *n* singletons {*pi*} ... *O*(*n*)
 to power set of *P* ... *O*(2^{*n*})
 - Good DS balances between total number of canonical subsets and number of CS needed to answer the query

Felkel: Computational geometry

1D range queries (interval queries)

- Query: Interval $[x_{lo}, xhi]$
- Search space: Points $P = \{p_1, p_2, \dots, pn\}$ on the line
 - a) Binary search in an ordered array
 - Simple, but
 - not generalize to any higher dimensions
 - b) Balanced binary search tree

1D range tree definition

- Balanced binary search tree (with repeated keys)
 - leaves sorted points
 - inner node label the largest key in its left child
 - Each node associate with subset of descendants

Canonical subsets and <2,23> search

- Canonical subsets for any range found in O(log n)
 - Search x_{lo} : Find leftmost leaf *u* with key(*u*) $\ge x_{lo}$ 2 -> 3
 - Search x_{hi} : Find leftmost leaf v with key(v) $\ge x_{hi} 23 24$

- Canonical subsets for any range found in O(log n)
 - Search x_{lo} : Find leftmost leaf *u* with key(*u*) $\ge x_{lo}$ 2 -> 3
 - Search x_{hi} : Find leftmost leaf v with key(v) $\ge x_{hi} 23 24$
 - Points between u and v lie within the range => report canon. subsets of maximal subtrees between u and v

- Canonical subsets for any range found in O(log n)
 - Search x_{lo} : Find leftmost leaf *u* with key(*u*) $\ge x_{lo}$ 2 -> 3
 - Search x_{hi} : Find leftmost leaf v with key(v) $\ge x_{hi} 23 24$
 - Points between u and v lie within the range => report canon. subsets of maximal subtrees between u and v
 - Split node = node, where paths to u and v diverge

- Canonical subsets for any range found in O(log n)
 - Search x_{lo} : Find leftmost leaf *u* with key(*u*) $\ge x_{lo}$ 2 -> 3
 - Search x_{hi} : Find leftmost leaf v with key(v) $\ge x_{hi} 23 24$
 - Points between u and v lie within the range => report canon. subsets of maximal subtrees between u and v
 - Split node = node, where paths to u and v diverge

1D range tree search

- Reporting the subtrees (below the split node)
 - On the path to u whenever the path goes left, report the canonical subset (CS) associated to right child
 - On the path to v whenever the path goes right, report the canonical subset associated to left child
 - In the leaf *u*, if key(*u*) \in [x_{lo}:x_{hi}] then report CS of *u*
 - In the leaf v, if key(v) \in [x_{lo}:x_{hi}] then report CS of v

1D range tree search complexity

Path lengths O(log n)

=> O(log n) canonical subsets (subtrees)

Range counting queries

[Bera]

- Return just the number of points in given range
- Sum the total numbers of leaves stored in maximum subtree roots
 ... O(log *n*) time
- Range reporting queries
 - Return all k points in given range
 - Traverse the canonical subtrees ... O($\log n + k$) time

Find split node

1dRangeQuery(t, [x:x']) Input: 1d range tree t and Query range [x: x']Output: All points in t lying in the range $t_{split} = FindSplitNode(t, x, x')$ // find interval point $t \in [x:x']$ 2. // e.g. Searching [16:17] or [16:16.5] both stops in the leaf 17 in the previous example if(t_{split} is leaf) check if the point in t_{split} must be reported // $t_x \in [x: x']$ 3. else // follow the path to x, reporting points in subtrees right of the path 4. 5. $t = t_{split}$.left while(t is not a leaf) 6. if $(x \leq t.x)$ 7 ReportSubtree(t.right) // any kind of tree traversal 8 9. t = t.left10. else t = t.rightcheck if the point in leaf t must be reported 11. // Symmetrically follow the path to x' reporting points left of the path 12 = t_{split}.right Felkel: Computational geometry

Multidimensional range searching

- Equal principle find the largest subtrees contained within the range
- Separate one *n*-dimensional search into *n* 1-dimensional searches
- Different tree organization
- Orthogonal (Multilevel) range search tree
 e.g. nd range tree
 Kd tree

From 1D to 2D range tree

- Search points from [Q.x_{lo}, Q.x_{hi}] [Q.y_{lo}, Q.y_{hi}]
- Id range tree: log n canonical subsets based on x
- Construct an y auxiliary tree for each such subset

y-auxiliary tree for each canonical subset

2D range tree


```
2dRangeQuery(t, [x:x'] × [y:y'])
Input:
               2d range tree t and Query range
Output:
                All points in t laying in the range
1. t<sub>split</sub> = FindSplitNode( t, x, x')
   if( t<sub>split</sub> is leaf )
2.
3.
       check if the point in t_{split} must be reported \dots t.x \in [x:x'], t.y \in [y:y']
    else // follow the path to x, calling 1dRangeQuery on y
4.
5.
       t = t_{split}.left // path to the left
       while(t is not a leaf)
6.
7.
          if (x \leq t.x)
             1dRangeQuerry( t<sub>assoc</sub>( t.right ), [y:y'] ) // check associated su
8.
9.
             t = t.left
10.
          else t = t.right
      check if the point in leaf t must be reported \dots t.x \leq x', t.y \in [y:y
11.
      Similarly for the path to x' ... // path to the right
12.
                                   Felkel: Computational geometry
```

2D range tree

- Search $O(\log^2 n + k) \dots \log n$ in x, $\log n$ in y
- Space $O(n \log n)$
 - O(n) the tree for x-coords
 - $O(n \log n)$ trees for y-coords
 - Point p is stored in all canonical subsets along the path from root to leaf with p,
 - once for *x*-tree level (only in one *x*-range)
 - each canonical subsets is stored in one auxiliary tree
 - $\log n$ levels of x-tree => $O(n \log n)$ space for y-trees
- Construction $O(n \log n)$

- Sort points (by x and by y). Bottom up construction

nD range tree (multilevel search tree) Tree for each dimension Selected canonical subsets of 2. dimension Split node root(T)Selected canonical subsets split node of 1. dimension (nodes \in [x:x']) [Bera] Felkel: Computational geometry

Fractional cascading - principle

- Two sets S₁, S₂ stored in sorted arrays A₁, A₂
- $S_1 \supseteq S_2$ (S₂ is subset of S₁)
- Report objects in both arrays whose keys in [y:y']
- Naïve approach search twice independently
 - O(log $n_1 + k_1$) search in A₁ + report k_1 elements
 - O(log $n_2 + k_2$) search in A₂ + report k_2 elements
- Fractional cascading adds pointers from A₁ to A₂
 - O(log $n_1 + k_1$) search in A₁ + report k_1 elements
 - $-O(1 + k_2)$ jump to A₂ + report k_2 elements
 - Saves the O(logn₂) search

Felkel: Computational geometry

Fractional cascading – principle for arrays

- Add pointers from A_1 to A_2
 - From element in A_1 with a key y_i point to the element in A_2 with the smallest key *larger or equal* to y_i
- Example query with the range [20 : 65]

Fractional cascading in the 2D range tree

• How to save one log n during last dim. search?

- Store canonical subsets in arrays sorted by y
- Pointers to subsets for both child nodes v_L and v_R
- O(1) search in lower levels => in two dimensional search O(log² n) time -> O(log n)

internal node in x-tree

Orthogonal range tree - summary

- Orthogonal range queries in plane
 - Counting queries $O(\log^2 n)$ time, or with fractional cascading $O(\log n)$ time
 - Reporting queries plus O(k) time, for k reported points
 - Space $O(n \log n)$
 - Construction $O(n \log n)$
- Orthogonal range queries in d-dimensions, $d \ge 2$
 - Counting queries $O(\log^d n)$ time, or with fractional cascading $O(\log^{d-1} n)$ time
 - Reporting queries plus O(k) time, for k reported points

Felkel: Computational geometry

- Space $O(n \log^{d-1} n)$
- $\neq \neq \neq = Construction O(n \log^{d-1} n)$ time

Kd-tree

- Easy to implement
- Good for different searching problems (counting queries, nearest neighbor,...)
- Designed by Jon Bentley as k-dimensional tree (2-dimensional kd-tree was a 2-d tree, ...)
- Not the asymptotically best for orthogonal range search (=> range tree is better)
- Types of queries

 Reporting points in range
 Counting number of points in range

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space
- In node t store: cutDim, cutVal, (size (for counting queries))

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space
- In node t store: cutDim, cutVal, (size (for counting queries))

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space
- In node t store: cutDim, cutVal, (size (for counting queries))

Which dimension to cut? (cutDim)

- Cycle through dimensions (round robin)
 - Save storage cutDim is implicit ~ depth in the tree
 - May produce elongated cells (if uneven data distribution)
- Greatest spread (the largest difference of coordinates)
 - Adaptive
 - Called "Optimal kd-tree"
- Where to cut? (cutVal)
 - Median, or midpoint between upper and lower median
 -> O(n)
 - Presort coords of points in each dimension (x, y, ...) for O(1) median resp. O(d) for all d dimensions

- What about points on the cell boundary?
 - Boundary belongs to the left child
 - Left: $p_{cutDim} \leq cutVal$
 - Right: $p_{cutDim} > cutVal$

- What about points on the cell boundary?
 - Boundary belongs to the left child
 - $\ Left: \qquad p_{cutDim} \leq cutVal$
 - Right: $p_{cutDim} > cutVal$

- What about points on the cell boundary?
 - Boundary belongs to the left child
 - Left: $p_{cutDim} \leq cutVal$
 - Right: $p_{cutDim} > cutVal$

- What about points on the cell boundary?
 - Boundary belongs to the left child
 - $\ Left: \qquad p_{cutDim} \leq cutVal$
 - Right: $p_{cutDim} > cutVal$

- What about points on the cell boundary?
 - Boundary belongs to the left child
 - $\ Left: \qquad p_{cutDim} \leq cutVal$
 - Right: $p_{cutDim} > cutVal$

Kd-tree construction in 2-dimensions

BuildKdTree	e(P, depth)
Input:	A set of points P and current depth.
Output:	The root of a kD tree storing P.

- 1. If (*P* contains only one point) [or small set of (10 to 20) points]
- 2. **then return** a leaf storing this point
- 3. else if (depth is even)
- 4. **then** split *P* with a vertical line *I* through median *x* into two subsets P_1 and P_2 (left and right from median)
- 5. **else** split *P* with a horiz. line *I* through median y into two subsets P_1 and P_2 (below and above the median)
- 6. $t_{\text{left}} = \text{BuildKdTree}(P_1, depth+1)$
 - $t_{right} = BuildKdTree(P_2, depth+1)$
- 8. create node *t* storing *l*, t_{left} and t_{right} children // I = cutDim, cutVal
- 9. return t

7.

If median found in O(1) and array split in O(n) T(n) = 2 T(n/2) + n => O(n log n) construction \mathfrak{R}

Kd-tree construction in 2-dimensions

BuildKdTre	e(<i>P, depth</i>)
Input:	A set of points <i>P</i> and current <i>depth</i> .
Output:	The root of a kD tree storing P.

- 1. If (P contains only one point) [or small set of (10 to 20) points]
- 2. then return a leaf storing this point
- Split according to (*depth%max_dim*) dimension 3. else if (*depth* is even) **then** split *P* with a vertical line *I* through median *x* into two subsets 4. P_1 and P_2 (left and right from median) else split *P* with a horiz. line *I* through median y into two subsets 5. P_1 and P_2 (below and above the median) t_{left} = BuildKdTree(P_1 , depth+1) 6. t_{right} = BuildKdTree(P_2 , depth+1) 7. create node *t* storing *I*, t_{left} and t_{right} children // I = cutDim, cut 8. 9. return t If median found in O(1) and array split in O(n) $T(n) = 2 T(n/2) + n => O(n \log n)$ construction Felkel: Computational geometry

a) Compare rectang. array Q with rectangular cells C

- Rectangle C: $[x_{lo}, x_{hi}, y_{lo}, y_{hi}]$ computed on the fly
- Test of kD node cell C against query Q (in one cutDim)
 - 1. if cell is disjoint with Q $\dots C \cap Q = \emptyset \dots$ stop
 - 2. If cell C completely inside Q ... $C \subseteq Q$... stop and report cell points
 - 3. else cell C overlaps Q

... recurse on both children

Recursion stops on the largest subtree (in/out)

Kd-tree rangeCount (with rectangular cells)

int rangeC	ount(t, Q, C)											
Input:	The root t of kD tree, query range Q and t's cell C.											
Output:	Sumber of points at leaves below <i>t</i> that lie in the range.											
1. if (<i>t</i> is a	a leaf)											
2. if (<i>t</i> .	<i>point</i> lies in <i>Q) return 1</i> [4] // or loop this test for all points in leaf											
<u>3.</u> else	$\rightarrow return 0$ \square // visited, not counted											
4. else //	(<i>t</i> is not a leaf)											
5 . if (C	$\mathcal{O} Q = \emptyset$ return 0 O disjoint											
6. else	e if ($C \subseteq Q$) return t.size $\Box $ C is fully contained in Q											
7. else												
<mark>8</mark> . s	plit C along t's cutting value and dimension, C_1 C_2											
С	reating two rectangles C_1 and C_2 .											
<mark>9</mark> . re	eturn rangeCount(<i>t.left,</i> Q, C ₁) + rangeCount(<i>t.right,</i> Q, C ₂) + + + +											
	· · · · · · · · · · · · · · · · · · ·											
	// (pictograms refer to the next slide)											
$\begin{array}{c} & + \\ + & + \\ + & + \\ + & + \\ \end{array}$	+ + + + + + + + + + + + + + + + + + + +											
+ + + + + + + + + + + + + + + + + + + +	Felkel: Computational geometry											
+ + DC	G + + + + + + + + + + + + + + + + + + +											

Kd-tree rangeCount example

b) Compare Q with cutting lines

- Line = Splitting value p in one of the dimensions
- Test of single position given by dimension against Q
 - 1. Line *p* is right from Q ... recurse on left child only (prune right child)
 - 2. Line *p* intersects Q
- ... recurse on both children
- 3. Line *p* is left from Q
- ... recurse on right child only (prune left ch.)
- Recursion stops in leaves traverses the whole tree

Kd-tree rangeSearch (with cutting lines)

int rangeSea	rch(t, Q)
Input:	The root t of (a subtree of a) kD tree and query range Q.
Output:	Points at leaves below <i>t</i> that lie in the range.

- **1. if (***t* is a leaf)
- 2. **if** (*t.point* lies in *Q*) report *t.point* // or loop test for all points in leaf
- 3. else return
- 4. else (*t* is not a leaf) 5. if ($Q_{hi} \le t.cutVal$) rangeSearch(*t.left*, Q) // go left only 6. if ($Q_{lo} > t.cutVal$) rangeSearch(*t.right*, Q) // go right only 7. else 8. rangeSearch(*t.left*, Q) // go to both 9. rangeSearch(*t.right*, Q) 4. Felket: Computational geometry (38)

Kd-tree - summary

- Orthogonal range queries in the plane (in balanced 2d-tree)
 - Counting queries O(\sqrt{n}) time
 - Reporting queries O($\sqrt{n + k}$) time, where k = No. of reported points
 - Space O(n)
 - Preprocessing: Construction O(n log n) time (Proof: if presorted points to arrays in dimensions. Median in O(1) and split in O(n) per level, log n levels of the tree)

■ For d≥2:

Construction O(d n log n), space O(dn), Search O(d n^(1-1/d) + k)

Proof sqrt(n)

Každé sudé patro se testuje osa x.

- V patře 0 je jeden uzel a jde se do obou synů (v patře 1 se jde taky do obou)
- v patře 2 jsou 4 uzly, z nich jsou ale 2 bud úplně mimo, nebo úplně in => stab jen 2
- v 4. patře stab 4 z 8, ...
 v i-tém patře stab 2^i uzlů
 Výška stromu je log n
 Proto tedy sčítám sudé členy z 0..log n z 2^i. Je to exponenciála, proto dominuje poslední člen
 2^(log n /2) = 2^log (sqrt(n)) = sqrt(n)

Orthogonal range tree (RT)

- DS highly tuned for orthogonal range queries
- Query times in plane

	20	2d tree												V	versus 2d range tree																				
	0	O($\sqrt{n + k}$) time of Kd												>					O(log <i>n</i>) time query																
	0	O(n) space of Kd													< O(<i>n</i> log								bg	l r))										
	<i>n</i> = number of points															+	+																		
	k = number of reported											l points														+++++++++++++++++++++++++++++++++++++++	++		++	+	+	+	+ +		
																											÷	÷	÷	+	+	+	÷	+	+
																								÷	Ŧ	÷	+	+	+	+	+	+	+	+	+
																				÷			+	\pm	+	+	÷	+	+	+	+	+	+	+	+
																	+	÷	+	+	+	+	t	+	+	+	+	+	+	+	+	+	+	+	+
													÷		÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	÷ *								+	+		÷	+	+	+	t	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-	+	+	+
<u>+</u> +	± +	÷				t	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	S.		Y	X	+
- + +	+	: #	+	÷.	+	÷	+	+	+	t	+	+	+	Fel	kel:	Com	+ puta	ation	al de	eom	etrv	+	+	+	÷	+	+	+	+	+	//₹		S	$ \leq $	+
6	÷÷	D		5	+	+	+	+	+	+	+	+	+	+	+	+	+ (A	+	+	+	+	+	+	+	+	+	+	+	+	+b	γ \	R	$\int \vec{e}$	کر د	+
+ +	+ +	+	+	+	+	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

References

- [Berg] <u>Mark de Berg</u>, <u>Otfried Cheong</u>, <u>Marc van Kreveld</u>, <u>Mark Overmars</u>: Computational Geometry: *Algorithms and Applications*, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5, <u>http://www.cs.uu.nl/geobook/</u>
- [Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lectures 31 and 32.
 http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
- [Havran] Vlastimil Havran, Materiály k předmětu Datové struktury pro počítačovou grafiku, přednáška č. 6, Proximity search and its Applications 1, CTU FEL, 2007

