# Robust Adaptive Floating-Point Geometric Predicates

Jonathan Richard Shewchuk School of Computer Science Carnegie Mellon University Pittsburgh, Pennsylvania 15213 jrs@cs.cmu.edu

## Expansion

- Sorted sequence of non-overlapping machine native numbers (float, double)
- Sorted by absolute values
- Signum of the highest FP number is the signum of the expansion
- Estimate the expansion by summing from the least significant to the most significant member
- Zero members of the expansion will be deleted.

Expansions not unique

- 1100 + -10.1
- (= 1100.0 10.1)
- = 1001 + 0.1
- = 1000 + 1 + 0.1

#### Operations on expansions

IEEE 754 standard on floating point format and computing rules. Operations on expansions require rounding of each operation to 32 / 64bit.

Fast-Two-Sum: (a>=b) -> (x, y), a+b=x+y Two-Sum (a, b) -> (x, y) Linear-Expansion-Sum (exp\_a interleaved with exp\_b) -> expansion

Split (a) -> (a\_hi, a\_lo), a=a\_hi+a\_lo Two-Product (a,b) -> (x, y) **Theorem 1 (Dekker [4])** Let a and b be p-bit floating-point numbers such that  $|a| \ge |b|$ . Then the following algorithm will produce a nonoverlapping expansion x + y such that a + b = x + y, where x is an approximation to a + b and yrepresents the roundoff error in the calculation of x. FAST-TWO-SUM(a, b)

- $\begin{array}{c} x \Leftarrow a \oplus b \\ b \leftarrow x \end{array}$ 
  - $b_{virtual} \Leftarrow x \ominus a$  $y \Leftarrow b \ominus b_{virtual}$ return (x, y)
- // Rounded sum = approximation
- // What was truly added Rounded
- // round-off error

**Theorem 2 (Knuth [10])** Let a and b be p-bit floating-point numbers, where  $p \ge 3$ . Then the following algorithm will produce a nonoverlapping expansion x + y such that a + b = x + y.

Two-SUM(a, b)  $1 \rightarrow x \Leftarrow a \oplus b$  // Rounded sum = approximation  $2 \rightarrow b_{virtual} \Leftarrow x \ominus a$  // What *b* was truly added - Rounded  $3 \quad a_{virtual} \Leftarrow x \ominus b_{virtual}$  // What a was truly added - Rounded  $4 \rightarrow b_{roundoff} \Leftarrow b \ominus b_{virtual}$  // round-off error of *b*   $5 \quad a_{roundoff} \Leftarrow a \ominus a_{virtual}$  // round-off error of a  $4 \rightarrow b_{roundoff} \Leftrightarrow b \ominus b_{virtual}$  // round-off error of *b*   $5 \quad a_{roundoff} \Leftrightarrow a \ominus a_{virtual}$  // round-off error of a  $7 \rightarrow return (x, y)$ 

## Sum of two expansions (4-bit arithmetic)

Input: 1111+0.1001 and 1100 + 0.1

Output: 11100 + 0 + 0.0001

Zeroes slow down the computation

Merge both input expansions into a single sequence *g* respecting the order of magnitudes 1111+ 1100 + 0.1 + 0.1001 Use LINEAR-EXPANSION-SUM (*g*)



Figure 1: Operation of LINEAR-EXPANSION-SUM. The expansions g and h are illustrated with their most significant components on the left.  $Q_i + q_i$  maintains an approximate running total. The FAST-TWO-SUM operations in the bottom row exist to clip a high-order bit off each  $q_i$  term, if necessary, before outputting it.

**Theorem 4 (Dekker [4])** Let a be a p-bit floating-point number, where  $p \geq 3$ . The following algorithm will produce a  $\lfloor \frac{p}{2} \rfloor$ -bit value  $a_{hi}$  and a nonoverlapping  $(\lceil \frac{p}{2} \rceil - 1)$ -bit value  $a_{lo}$  such that  $|a_{hi}| \ge |a_{lo}|$  and  $a = a_{hi} + a_{lo}$ . SPLIT(a) $c \leftarrow (2^{\lceil p/2 \rceil} + 1) \otimes a$ 1 2  $a_{\mathsf{big}} \Leftarrow c \ominus a$ 3  $a_{hi} \Leftarrow c \ominus a_{big}$  $a_{lo} \Leftarrow a \ominus a_{hi}$ 4 return  $(a_{hi}, a_{lo})$ 

**Theorem 5 (Veltkamp)** Let a and b be p-bit floating-point numbers, where  $p \ge 4$ . The following algorithm will produce a nonoverlapping expansion x + y such that ab = x + y.

Two-PRODUCT
$$(a, b)$$
  
1  $x \Leftarrow a \otimes b$   
2  $(a_{hi}, a_{lo}) = SPLIT(a)$   
3  $(b_{hi}, b_{lo}) = SPLIT(b)$   
4  $err_1 \Leftarrow x \ominus (a_{hi} \otimes b_{hi})$   
5  $err_2 \Leftarrow err_1 \ominus (a_{lo} \otimes b_{hi})$   
6  $err_3 \Leftarrow err_2 \ominus (a_{hi} \otimes b_{lo})$   
7  $y \Leftarrow (a_{lo} \otimes b_{lo}) \ominus err_3$   
8 **return**  $(x, y)$ 

#### Orientation predicate - definition orientation(p, q, r) = sign $\begin{pmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{pmatrix} =$ = sign $((q_x - p_x)(r_y - p_y) - (q_y - p_y)(r_x - p_x)),$ where point $p = (p_x, p_y), ...$ = third coordinate of = $(\vec{u} \times \vec{v})$ , orientation(p, q, r) =Three points q lie on common line = 0• form a left turn = +1 (positive) • form a right turn = -1 (negative)

#### Experiment with orientation predicate



Felkel: Computational geometry