Robust Adaptive Floating-Point Geometric Predicates

Jonathan Richard Shewchuk
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
jrs@cs.cmu.edu

Expansion

- Sorted sequence of non-overlapping machine native numbers (float, double)
- Sorted by absolute values
- Signum of the highest FP number is the signum of the expansion
- Estimate the expansion by summing from the least significant to the most significant member
- Zero members of the expansion will be deleted.

Expansions not unique

$1100+-10.1$
($=1100.0-10.1$)
$=1001+0.1$
$=1000+1+0.1$

Operations on expansions

IEEE 754 standard on floating point format and computing rules. Operations on expansions require rounding of each operation to 32 / 64bit.

Fast-Two-Sum: $(a>=b)->(x, y), \quad a+b=x+y$
Two-Sum (a, b) -> (x, y)
Linear-Expansion-Sum (exp_a interleaved with exp_b) -> expansion

Split (a) -> (a_hi, a_lo), a=a_hi+a_lo
Two-Product (a,b) -> (x, y)

Theorem 1 (Dekker [4]) Let a and b be p-bit floating-point numbers such that $|a| \geq|b|$. Then the following algorithm will produce a nonoverlapping expansion $x+y$ such that $a+b=x+y$, where x is an approximation to $a+b$ and y represents the roundoff error in the calculation of x.
$\frac{\text { Fast-Two-Sum }(a, b)}{1 \quad x \Leftarrow a \oplus b}$
// Rounded sum = approximation
$2 \quad b_{\text {virtual }} \Leftarrow x \ominus a \quad / /$ what was truly added - Rounded
$3 \quad y \Leftarrow b \ominus b_{\text {virtual }} \quad / /$ round-off error
4 return (x, y)

Theorem 2 (Knuth [10]) Let a and b be p-bit floating-point numbers, where $p \geq 3$. Then the following algorithm will produce a nonoverlapping expansion $x+y$ such that $a+b=$ $x+y$.

Two-Sum (a, b)
$1 \rightarrow x \Leftarrow a \oplus b \quad$ //Rounded sum = approximation
$2 \rightarrow b_{\text {virtual }} \Leftarrow x \ominus a \quad / /$ What b was truly added - Rounded
$3 \quad a_{\text {virtual }} \Leftarrow x \ominus b_{\text {virtual } / / \text { what a was truly added - Rounded }}$
$4 \rightarrow b_{\text {roundoff }} \Leftarrow b \ominus b_{\text {virtual }} / /$ round-off error of b
$5 \quad a_{\text {roundoff }} \Leftarrow a \ominus a_{\text {virtual //r rund-offerror of a }}$
$6 \quad y \Leftarrow a_{\text {roundoff }} \oplus b_{\text {roundoff }}$
$7 \rightarrow$ return (x, y)

Sum of two expansions (4-bit arithmetic)

Input: $\quad 1111+0.1001$ and $1100+0.1$
Output: $\quad 11100+0+0.0001$
Zeroes slow down the computation

Merge both input expansions into a single sequence g respecting the order of magnitudes

$$
1111+1100+0.1+0.1001
$$

Use LINEAR-EXPANSION-SUM (g)

Figure 1: Operation of Linear-Expansion-Sum. The expansions g and h are illustrated with their most significant components on the left. $Q_{i}+q_{i}$ maintains an approximate running total. The Fast-Two-Sum operations in the bottom row exist to clip a high-order bit off each q_{i} term, if necessary, before outputting it.

Theorem 4 (Dekker [4]) Let a be a p-bit floating-point number, where $p \geq 3$. The following algorithm will produce a $\left\lfloor\frac{p}{2}\right\rfloor$-bit value a_{hi} and a nonoverlapping $\left(\left\lceil\frac{p}{2}\right\rceil-1\right)$-bit value a_{lo} such that $\left|a_{\mathrm{hi}}\right| \geq\left|a_{\mathrm{lo}}\right|$ and $a=a_{\mathrm{hi}}+a_{\mathrm{lo}}$. $\operatorname{SPLIT}(a)$

$$
\begin{array}{ll}
1 & c \Leftarrow\left(2^{\lceil p / 2\rceil}+1\right) \otimes a \\
2 & a_{\mathrm{big}} \Leftarrow c \ominus a \\
3 & a_{\mathrm{hi}} \Leftarrow c \ominus a_{\mathrm{big}} \\
4 & a_{\mathrm{lo}} \Leftarrow a \ominus a_{\mathrm{hi}} \\
5 & \text { return }\left(a_{\mathrm{hi}}, a_{\mathrm{lo}}\right)
\end{array}
$$

Theorem 5 (Veltkamp) Let a and b be p-bit floating-point numbers, where $p \geq 4$. The following algorithm will produce a nonoverlapping expansion $x+y$ such that $a b=x+y$.

```
Two-Product \((a, b)\)
\(1 \quad x \Leftarrow a \otimes b\)
\(2\left(a_{\mathrm{hi}}, a_{\mathrm{lo}}\right)=\operatorname{SpLIT}(a)\)
\(3 \quad\left(b_{\mathrm{hi}}, b_{\mathrm{lo}}\right)=\operatorname{Split}(b)\)
\(4 \quad e r r_{1} \Leftarrow x \ominus\left(a_{\mathrm{hi}} \otimes b_{\mathrm{hi}}\right)\)
\(5 \quad e r r_{2} \Leftarrow e r r_{1} \ominus\left(a_{\mathrm{lo}} \otimes b_{\mathrm{hi}}\right)\)
\(6 \quad e r r_{3} \Leftarrow e r r_{2} \ominus\left(a_{\mathrm{hi}} \otimes b_{\mathrm{lo}}\right)\)
\(7 \quad y \Leftarrow\left(a_{\mathrm{lo}} \otimes b_{\mathrm{lo}}\right) \ominus \operatorname{err}_{3}\)
8 return \((x, y)\)
```


Orientation predicate - definition

Experiment with orientation predicate

