Robust Adaptive Floating-Point Geometric Predicates

Jonathan Richard Shewchuk
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
Jjrs@cs.cmu.edu

Expansion

e Sorted sequence of non-overlapping machine native numbers (float,
double)

e Sorted by absolute values
e Signum of the highest FP number is the sighum of the expansion

e Estimate the expansion by summing from the least significant to the most
significant member

e Zero members of the expansion will be deleted.

Expansions not unique

1100 +-10.1
(=1100.0-10.1)
=1001 +0.1
=1000+1+0.1

Operations on expansions

IEEE 754 standard on floating point format and computing rules.
Operations on expansions require rounding of each operation to 32 / 64bit.

Fast-Two-Sum: (a>=b) -> (x, y), a+b=x+y
Two-Sum (a, b) -> (x, y)
Linear-Expansion-Sum (exp_a interleaved with exp_b) -> expansion

Split (a) -> (a_hi, a_lo), a=a_hi+a_lo
Two-Product (a,b) -> (x, y)

numbers such that||a| > Then the following algorithm
will produce a nonoverlapping expansion x + vy such that
a + b = x + y, where(x)is an approximation to a + b and[y|
represents the roundoff error in the calculation of . |

FAST-TWO-SuM(a, b)

Tr<<= a9 b // Rounded sum = approximation
bVlI’tual <= I &S @ //Whatwastruly added - Rounded

]
2
3 y — b @ bvlrtual // round-off error
4 return (z,y)

Theorem 1 (Dekker [4]) Let a and b be p-bit floating-point
b].

Theorem 2 (Knuth [10]) Let a and b be p-bit floating-point
numbers, where p > 3. Then the following algorithm will
produce a nonoverlapping expansion x + vy such that a + b =

T+ .

Two-SuM(a, b)

— rx<=ad®b
— byirtual =700

// Rounded sum = approximation

// What b was truly added - Rounded

G’Viﬁual =T @ bVlI’tual // What a was truly added - Rounded

broundo

r<=bS b

Vlr‘tual // round-off error of b

%roundo

LN U AW N =
!

|

.

N — -
) a e a’VlI’tual // round-off error of a

Y <= aroundoff @ Proundoff
return (z,y)

Sum of two expansions (4-bit arithmetic)

Input: 1111+0.1001 and 1100+ 0.1
Output: 11100 + 0 + 0.0001
Zeroes slow down the computation

Merge both input expansions into a single sequence g
respecting the order of magnitudes

1111+ 1100 + 0.1 +0.1001
Use LINEAR-EXPANSION-SUM (g)

gs g4 g3 g2 g1
Vstupni expanze l
Zaokrquhleny =
Qs TwWO i Q4 TwWO - Q3 TwWO -\/'ysledlak Q2 Tt?;
SUM SUM SUM SUM

A
? ' ' korekce
FAST FAST FAST
Two — TWO |t TWO [rtpm—

q5 Rs| sum | Ryl Sum | B R3| sum |2

vy \ \ '

hs h4 h} hg h’I

Figure 1. Operation of LINEAR-EXPANSION-SUM. The expansions g
and h are illustrated with their most significant components on the left.
Q; + g; maintains an approximate running total. The FAST-TwWO-SuMm
operations in the bottom row exist to clip a high-order bit off each ¢;

term, if necessary, before outputting it.

Theorem 4 (Dekker [4]) Let a be a p-bit floating-point

number, where p > 3. The following algorithm will pro-

duce a | % | -bit value ay,; and a nonoverlapping (| 5| — 1)-bit

value ay, such that |ay;| > |a),| and a = ap; + ap, _
SPLIT(a)]

ce= P2 1) ®a

big =Ccoa

(R < C S a“big

Ao < @ O Ap

return (ahij alo)

h &= W N —

Theorem S (Veltkamp) Let a and b be p-bit floating-point
numbers, where p > 4. The following algorithm will produce
a nonoverlapping expansion x + y such that ab = = + v.

|
Two-PrRODUCT(a, b)

1 r<=ax®b

(anj, a1g) = SPLIT(a)
(bhj»> b19) = SPLIT(b)

erry <= T O (ap @ byi)
erry < erry © (a lc: 9 bhl)
erry < erry © (a

y <= (a1p ®by) © errs
return (z, y)

O~ Onn & W

Orientation predicate - definition

1 px Dyl
orientation(p, q,r) =sign | det |1 qx qy| | =
1 o n

= sign ((qx —p)(ry = py) = (ay —py) (- px))’

where pointp = (Px» Py),
= third coordinate of = (u X v),

Three points orientation(p, q,r) =
e lie on common line
e form a left turn = +1 (positive)

e form a right turn = -1 (negative)

Experiment with orientation predicate

r=[24, 24]

* orientation(p,q,r) = sign((p,-r,)(a,r,)-(p,-r,), ry)

d

yl

Ideal return
values

{ p=[0.5+d,,05+d], d,,d,=k2%

Value of the LSB

Felkel: Computational geometry (22)

