
Introduction to Object Oriented
Programming in C++

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 10

BE5B99CPL – C Programming Language

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 1 / 49

Overview of the Lecture

Part 1 – Brief Overview of C89 vs C99 vs C11

C89 vs C99

C11 K. N. King: Appendix B

Part 2 – Object Oriented Programming (in C++)

Differences between C and C++

Classes and Objects

Constructor/Destructor

Example – Class Matrix

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 2 / 49

C89 vs C99 C11

Part I

Part 1 – Brief Overview of C89 vs C99 vs
C11

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 3 / 49

C89 vs C99 C11

Differences between C89 and C99

Comments – In C99 we can use a line comment that begins with //
Identifiers – C89 requires compilers to remember the first 31
characters vs. 63 characters in C99

Only the first 6 characters of names with external linkage are
significant in C89 (no case sensitive)
In C99, it is the first 31 characters and case of letters matters

Keywords – 5 new keywords in C99: inline, restrict, _Bool,
_Complex, and _Imaginary
Expressions

In C89, the results of / and % operators for a negative operand can
be rounded either up or down. The sign of i % j for negative i or j
depends on the implementation.
In C99, the result is always truncated toward zero and the sign of
i % j is the sign of i .

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 5 / 49

C89 vs C99 C11

Differences between C89 and C99

Bool type – C99 provides _Bool type and macros in stdbool.h

Loops – C99 allows to declare control variable(s) in the first
statement of the for loop
Arrays – C99 has

designated initializers and also allows
to use variable-length arrays

Functions – one of the directly visible changes is
In C89, declarations must precede statements within a block. In
C99, it cam be mixed.

Preprocessor – e.g.,
C99 allows macros with a variable number of arguments
C99 introduces __func__ macro which behaves as a string variable
that stores the name of the currently executing function

Input/Output – conversion specification for the *printf() and
*scanf() functions has been significantly changed in C99.

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 6 / 49

C89 vs C99 C11

Differences between C89 and C99 – Additional Libraries

<stdbool.h> – macros false and true that denote the logical
values 0 and 1, respectively
<stdint.h> – integer types with specified widths
<inttypes.h> – macros for input/output of types specified in
<stdint.h>

<complex.h> – functions to perform mathematical operations on
complex numbers
<tgmath.h> – type-generic macros for easier call of functions
defined in <math.h> and <complex.h>

<fenv.h> – provides access to floating-point status flags and
control modes

Further changes, e.g., see K. N. King: Appendix B

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 7 / 49

C89 vs C99 C11

Overview of Changes in C11 – 1/2

Memory Alignment Control – _Alignas, _Alignof, and
aligned_alloc, <stdalign.h>
Type-generic macros – _Generic keyword
_Noreturn keyword as the function specifier to declare function
does not return by executing return statement (but, e.g., rather
longjmp) – <stdnoreturn.h>

<threads.h> – multithreading support
<stdatomic.h> – facilities for uninterruptible objects access
Anonymous structs and unions, e.g., for nesting union as a
member of a struct

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 9 / 49

C89 vs C99 C11

Overview of Changes in C11 – 2/2

Unicode support – <uchar.h>

Bounds-checking functions – e.g., strcat_s() and strncpy_s()
gets() for reading a while line from the standard input has been
removed.

It has been replaced by a safer version called gets_s()
In general, the bound-checking function aim to that the software written
in C11 can be more robust against security loopholes and malware attacks.

fopen() interface has been extended for exclusive
create-and-open mode ("..x") that behaves as O_CREAT|O_EXCL
in POSIX used for lock files

wx – create file for writing with exclusive access
w+x – create file for update with exclusive access

Safer fopen_s() function has been also introduced

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 10 / 49

C89 vs C99 C11

Generic Selection
In C11, we can use a generic macros, i.e., macros with results that
can be computed according to type of the pass variable (expression)

double f_i(int i)
{

return i + 1.0;
}
double f_d(double d)
{

return d - 1.0;
}

#define fce(X) _Generic((X),\
int: f_i,\
double: f_d\
)(X)

int main(void)
{

int i = 10;
double d = 10.0;

printf("i = %d; d = %f\n", i, d);
printf("Results of fce(i) %f\n",
fce(i));

printf("Results of fce(d) %f\n",
fce(d));

return EXIT_SUCCESS;
}

lec10/demo-matrix.cc
clang -std=c11 generic.c -o generic && ./generic
i = 10; d = 10.000000
Results of fce(i) 11.000000
Results of fce(d) 9.000000

A function is selected according to the type of variable during
compilation. Static (parametric/compile-time) polymorphism

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 11 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Part II

Part 2 – Introduction to Object Oriented
Programming

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 12 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

C
C was developed by Dennis
Ritchie (1969–1973) at AT&T
Bell Labs
C is a procedural (aka
structural) programming
language
C is a subset of C++
The solution is achieved through
a sequence of procedures or
steps
C is a function driven
language

C++
Developed by Bjarne Stroustrup
in 1979 with C++’s predecessor “C
with Classes”
C++ is procedural but also an
object oriented programming
language
C++ can run most of C code
C++ can model the whole solution
in terms of objects and that can
make the solution better organized
C++ is an object driven language

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 14 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

C
Concept of virtual functions is
not present in C
No operator overloading
Data can be easily accessed by
other external functions
C is a middle level language

C programs are divided into
modules and procedures

C programs use top-down
approach

C++
C++ offers the facility of using
virtual functions
C++ allows operator overloading
Data can be put inside objects,
which provides better data security
C++ is a high level language

C++ programs are divided into
classes and functions

C++ programs use bottom-up
approach

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 15 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

C
Does not provide namespaces
Exception handling is not easy
in C
Inheritance is not possible
Function overloading is not
possible
Functions are used for
input/output, e.g., scanf() and
printf()

Does not support reference
variables
Does not support definition
(overloading) operators

C++
Namespaces are available
Exception handling through Try
and Catch block
Inheritance is possible
Function overloading is possible
(i.e., functions with the same name)
Objects (streams) can be use for
input/output, e.g., std::cin and
std::cout

Supports reference variables,
using &

C++ supports definition
(overloading) of the operators

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 16 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

C
Provides malloc() (calloc())
for dynamic memory allocation
It provides free() function for
memory de-allocation
Does not support for virtual and
friend functions
Polymorphism is not possible
C supports only built-in data
types
Mapping between data and
functions is difficult in C

C programs are saved in files
with extension .c

C++
C++ provides new operator for
memory allocation
It provides delete and (delete[])
operator for memory de-allocation
C++ supports virtual and friend
functions
C++ offers polymorphism
It supports both built-in and
user-defined data types
In C++ data and functions are
easily mapped through objects

C++ programs are saved in files
with extension .cc, .cxx or .cpp

http://techwelkin.com/difference-between-c-and-c-plus-plus

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 17 / 49

http://techwelkin.com/difference-between-c-and-c-plus-plus

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Objects Oriented Programming (OOP)

OOP is a way how to design a program to fulfill requirements
and make the sources easy maintain.

Abstraction – concepts (templates) are organized into classes
Objects are instances of the classes

Encapsulation
Object has its state hidden and provides interface to communicate
with other objects by sending messages (function/method calls)

Inheritance
Hierarchy (of concepts) with common (general) properties that are
further specialized in the derived classes

Polymorphism
An object with some interface could replace another object with
the same interface

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 19 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Class
Describes a set of objects – it is a model of the objects and defines:

Interface – parts that are accessible
from outside public, protected, private

Body – implementation of the interface
(methods) that determine the ability of
the objects of the class

Instance vs class methods

Data Fields – attributes as basic and
complex data types and structures
(objects) Object composition

Instance variables – define the state of the
object of the particular class
Class variables – common for all instances
of the particular class

// header file - definition of
the class type

class MyClass {
public:

/// public read only
int getValue(void) const;

private:
/// hidden data field
/// it is object variable
int myData;

};

// source file - implementation
of the methods

int MyClass::getValue(void) const
{

return myData;
}

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 20 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Object Structure

The value of the object is structured, i.e., it consists of particular
values of the object data fields which can be of different data type

Heterogeneous data structure unlike an array

Object is an abstraction of the memory where particular values are
stored

Data fields are called attributes or instance variables

Data fields have their names and can marked as hidden or
accessible in the class definition

Following the encapsulation they are usually hidden

Object:
Instance of the class – can be created as a variable declaration or
by dynamic allocation using the new operator
Access to the attributes or methods is using . or -> (for pointers
to an object)

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 21 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Creating an Object – Class Constructor
A class instance (object) is created by calling a constructor to
initialize values of the instance variables

Implicit/default one exists if not specified

The name of the constructor is identical to the name of the class
Class definition

class MyClass {
public:

// constructor
MyClass(int i);
MyClass(int i, double d);

private:
const int _i;
int _ii;
double _d;

};

Class implementation
MyClass::MyClass(int i) : _i(i)
{

_ii = i * i;
_d = 0.0;

}
// overloading constructor
MyClass::MyClass(int i, double d) : _i(i)
{

_ii = i * i;
_d = d;

}

{
MyClass myObject(10); //create an object as an instance of MyClass

} // at the end of the block, the object is destroyed
MyClass *myObject = new MyClass(20, 2.3); //dynamic object creation
delete myObject; //dynamic object has to be explicitly destroyed

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 22 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Relationship between Objects

Objects may contain other objects
Object aggregation / composition
Class definition can be based on an existing class definition – so,
there is a relationship between classes

Base class (super class) and the derived class
The relationship is transfered to the respective objects as instances
of the classes
By that, we can cast objects of the derived class to class instances of ancestor

Objects communicate between each other using methods
(interface) that is accessible to them

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 23 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Access Modifiers

Access modifiers allows to implement encapsulation (information
hidding) by specifying which class members are private and which
are public:

public: – any class can refer to the field or call the method
protected: – only the current class and subclasses (derived
classes) of this class have access to the field or method
private: – only the current class has the access to the field or
method

Modifier Access
Class Derived Class “World”

public ! ! !
protected ! ! 7
private ! 7 7

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 24 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Constructor and Destructor

Constructor provides the way how to initialize the object, i.e.,
allocate resources

Programming idiom – Resource acquisition is initialization (RAII)

Destructor is called at the end of the object life
It is responsible for a proper cleanup of the object
Releasing resources, e.g., freeing allocated memory, closing files

Destructor is a method specified by a programmer similarly to a
constructor

However, unlike constructor, only single destructor can be specified

The name of the destructor is the same as the name of the class
but it starts with the character ∼ as a prefix

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 26 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Constructor Overloading
An example of constructor for creating an instance of the complex
number
In an object initialization, we may specify only real part or both
the real and imaginary part

class Complex {
public:

Complex(double r)
{

re = r;
}
Complex(double r, double i)
{

re = r;
im = i;

}
~Complex() { /* nothing to do in destructor */ }

private:
double re;
double im;

};
Both constructors shared the duplicate code, which we like to avoid!

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 27 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Constructor Calling 1/3

We can create a dedicated initialization method that is called from
different constructors

class Complex {

public:
Complex(double r, double i) { init(r, i); }
Complex(double r) { init(r, 0.0); }
Complex() { init(0.0, 0.0); }

private:

void init(double r, double i)
{

re = r;
im = i;

}
private:

double re;
double im;

};

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 28 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Constructor Calling 2/3

Or we can utilize default values of the arguments that is combined
with initializer list here

class Complex {
public:

Complex(double r = 0.0, double i = 0.0) : re(r), im(i) {}
private:

double re;
double im;

};

int main(void)
{

Complex c1;
Complex c2(1.);
Complex c3(1., -1.);
return 0;

}

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 29 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Constructor Calling 3/3

Alternatively, in C++11, we can use delegating constructor

class Complex {
public:

Complex(double r, double i)
{

re = r;
im = i;

}
Complex(double r) : Complex(r, 0.0) {}
Complex() : Complex(0.0, 0.0) {}

private:
double re;
double im;

};

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 30 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Constructor Summary

The name is identical to the class name
The constructor does not have return value

Not even void

Its execution can be prematurely terminated by calling return

It can have parameters similarly as any other method (function)
We can call other functions, but they should not rely on initialized
object that is being done in the constructor
Constructor is usually public
(private) constructor can be used, e.g., for:

Classes with only class methods
Prohibition to instantiate class

Classes with only constants
The so called singletons

E.g., “object factories”

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 31 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Class as an Extended Data Type with Encapsulation
Data hidding is utilized to encapsulate implementation of matrix

class Matrix {
private:

const int ROWS;
const int COLS;
double *vals;

}; 1D array is utilized to have a continuous memory.
2D dynamic array can be used in C++11.

In the example, it is shown
How initialize and free required memory in constructor and
destructor
How to report an error using exception and try-catch statement
How to use references
How to define a copy constructor
How to define (overload) an operator for our class and objects
How to use C function and header files in C++
How to print to standard output and stream
How to define stream operator for output
How to define assignment operator

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 33 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Constructor

Class Matrix encapsulate dimension of the matrix
Dimensions are fixed for the entire life of the object (const)

class Matrix {
public:

Matrix(int rows, int cols);
~Matrix();

private:
const int ROWS;
const int COLS;
double *vals;

};

Matrix::Matrix(int rows, int cols) :
ROWS(rows), COLS(cols)

{
vals = new double[ROWS * COLS];

}

Matrix::~Matrix()
{

delete[] vals;
}

Notice, for simplicity we do not test validity of the matrix dimensions.

Constant data fields ROWS and COLS must be initialized in the
constructor, i.e., in the initializer list

We should also preserve the order of the initialization as the variables
are defined

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 34 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Hidding Data Fields
Primarily we aim to hide direct access to the particular data fields
For dimensions we provide the so-called “accessor” methods
The methods are declared as const to assure they are read only
methods and do not modify the object (compiler checks that)
Private method at() is utilized to have access to the particular
cell at r row and c column

inline is used to instruct compiler to avoid function call and rather
put the function body directly at the calling place.

class Matrix {
public:

inline int rows(void) const { return ROWS; } // const method cannot
inline int cols(void) const { return COLS; } // modify the object

private:
// returning reference to the variable allows to set the variable
// outside, it is like a pointer but automatically dereferenced
inline double& at(int r, int c) const
{

return vals[COLS * r + c];
}

};
Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 35 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Using Reference
The at() method can be used to fill the matrix randomly
The random() function is defined in <stdlib.h>, but in C++ we
prefer to include C libraries as <cstdlib>

class Matrix {
public:

void fillRandom(void);
private:

inline double& at(int r, int c) const { return vals[COLS * r + c]; }
};

#include <cstdlib>

void Matrix::fillRandom(void)
{

for (int r = 0; r < ROWS; ++r) {
for (int c = 0; c < COLS; ++c) {

at(r, c) = (rand() % 100) / 10.0; // set vals[COLS * r + c]
}

}
}

In this case, it is more straightforward to just fill 1D array of vals for
i in 0..(ROWS * COLS).

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 36 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Getters/Setters
Access to particular cell
of the matrix is provided
through the so-called
getter and setter methods

class Matrix {
public:

double getValueAt(int r, int c) const;
void setValueAt(double v, int r, int c);

};

The methods are based on the private at() method but will throw
an exception if a cell out of ROWS and COLS would be requested

#include <stdexcept>
double Matrix::getValueAt(int r, int c) const
{

if (r < 0 or r >= ROWS or c < 0 or c >= COLS) {
throw std::out_of_range("Out of range at Matrix::getValueAt");

}
return at(r, c);

}
void Matrix::setValueAt(double v, int r, int c)
{

if (r < 0 or r >= ROWS or c < 0 or c >= COLS) {
throw std::out_of_range("Out of range at Matrix::setValueAt");

}
at(r, c) = v;

}

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 37 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Exception Handling
The code where an exception can be raised is put into the
try-catch block
The particular exception is specified in the catch by the class name
We use the program standard output denoted as std::cout

We can avoid std:: by using namespace std;

Or just using std::cout;#include <iostream>

#include "matrix.h"

int main(void)
{

int ret = 0;
try {

Matrix m1(3, 3);
m1.setValueAt(10.5, 2, 3); // col 3 raises the exception

m1.fillRandom();
} catch (std::out_of_range& e) {

std::cout << "ERROR: " << e.what() << std::endl;
ret = -1

}
return ret;

} lec10/demo-matrix.cc
Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 38 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Printing the Matrix

We create a print() method to nicely print the matrix to the
standard output
Formatting is controlled by i/o stream manipulators defined in
<iomanip> header file

#include <iostream>
#include <iomanip>

#include "matrix.h"

void print(const Matrix& m)
{

std::cout << std::fixed << std::setprecision(1);
for (int r = 0; r < m.rows(); ++r) {

for (int c = 0; c < m.cols(); ++c) {
std::cout << (c > 0 ? " " : "") << std::setw(4);
std::cout << m.getValueAt(r, c);

}
std::cout << std::endl;

}
}

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 39 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Printing the Matrix
Notice, the matrix variable m1 is not copied when it is passed to
print() function because of passing reference
#include <iostream>
#include <iomanip>
#include "matrix.h"

void print(const Matrix& m);

int main(void)
{

int ret = 0;
try {

Matrix m1(3, 3);
m1.fillRandom();
std::cout << "Matrix m1" << std::endl;
print(m1);

...

Example of the output
clang++ --pedantic matrix.cc demo-matrix.cc && ./a.out
Matrix m1
1.3 9.7 9.8
1.5 1.2 4.3
8.7 0.8 9.8

lec10/matrix.h, lec10/matrix.cc, lec10/demo-matrix.cc
Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 40 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Copy Constructor

We may overload the constructor to create an copy of the object
class Matrix {

public:
...
Matrix(const Matrix &m);
...

};

We create an exact copy of the matrix
Matrix::Matrix(const Matrix &m) : ROWS(m.ROWS), COLS(m.COLS)
{ // copy constructor

vals = new double[ROWS * COLS];
for (int i = 0; i < ROWS * COLS; ++i) {

vals[i] = m.vals[i];
}

}
Notice, access to private fields is allowed within in the class

We are implementing the class, and thus we are aware what are the
internal data fields

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 41 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Dynamic Object Allocation

We can create a new instance of the object by the new operator
We may also combine dynamic allocation with the copy constructor
Notice, the access to the methods of the object using the pointer
to the object is by the -> operator

ratrix m1(3, 3);
m1.fillRandom();
std::cout << "Matrix m1" << std::endl;
print(m1);

Matrix *m2 = new Matrix(m1);
Matrix *m3 = new Matrix(m2->rows(), m2->cols());
std::cout << std::endl << "Matrix m2" << std::endl;
print(*m2);
m3->fillRandom();
std::cout << std::endl << "Matrix m3" << std::endl;
print(*m3);

delete m2;
delete m3;

lec10/demo-matrix.cc

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 42 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Sum
The method to sum two matrices will return a new matrix

class Matrix {
public:

Matrix sum(const Matrix &m2);
}

The variable ret is passed using the copy constructor
Matrix Matrix::sum(const Matrix &m2)
{

if (ROWS != m2.ROWS or COLS != m2.COLS) {
throw std::invalid_argument("Matrix dimensions do not match at

Matrix::sum");
}
Matrix ret(ROWS, COLS);
for (int i = 0; i < ROWS * COLS; ++i) {

ret.vals[i] = vals[i] + m2.vals[i];
}
return ret;

}
We may also implement sum as addition to the particular matrix

The sum() method can be than used as any other method
Matrix m1(3, 3);
m1.fillRandom();
Matrix *m2 = new Matrix(m1);
Matrix m4 = m1.sum(*m2);

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 43 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Operator +
In C++, we can define our own operators, e.g., + for sum of two
matrices
It will be called like the sum() method
class Matrix {

public:
Matrix sum(const Matrix &m2);
Matrix operator+(const Matrix &m2);

}

In our case, we can use the already implemented sum() method
Matrix Matrix::operator+(const Matrix &m2)
{

return sum(m2);
}

The new operator can be applied for the operands of the Matrix
type like as to default types
Matrix m1(3,3);
m1.fillRandom();
Matrix m2(m1), m3(m1 + m2); // use sum of m1 and m2 to init m3
print(m3);

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 44 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Output Stream Operator
A output stream operator << can be defined to pass Matrix
objects directly to the output stream

#include <ostream>
class Matrix { ... };
std::ostream& operator<<(std::ostream& out, const Matrix& m);

It is defined outside the Matrix
#include <iomanip>
std::ostream& operator<<(std::ostream& out, const Matrix& m)
{

if (out) {
out << std::fixed << std::setprecision(1);
for (int r = 0; r < m.rows(); ++r) {

for (int c = 0; c < m.cols(); ++c) {
out << (c > 0 ? " " : "") << std::setw(4);
out << m.getValueAt(r, c);

}
out << std::endl;

}
}
return out;

}

“Outside” operator can be used in an output stream pipeline with other
data types. In this case, we can use just the public methods. But, if
needed, we can declare the operator as a friend method to the class,
which can access the private fields.

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 45 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Example of Usage
Having the stream operator we can use + directly in the output
std::cout << "\nMatrix demo using operators" << std::endl;
Matrix m1(2, 2);
Matrix m2(m1);
m1.fillRandom();
m2.fillRandom();
std::cout << "Matrix m1" << std::endl << m1;
std::cout << "\nMatrix m2" << std::endl << m2;
std::cout << "\nMatrix m1 + m2" << std::endl << m1 + m2;

Example of the output operator
Matrix demo using operators
Matrix m1
0.8 3.1
2.2 4.6

Matrix m2
0.4 2.3
3.3 7.2

Matrix m1 + m2
1.2 5.4
5.5 11.8 lec10/demo-matrix.cc

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 46 / 49

Differences between C and C++ Classes and Objects Constructor/Destructor Example – Class Matrix

Example – Class Matrix – Assignment Operator =
We can defined the assignment operator =

class Matrix {
public:

Matrix& operator=(const Matrix &m)
{

if (this != &m) { // to avoid overwriting itself
if (ROWS != m.ROWS or COLS != m.COLS) {

throw std::out_of_range("Cannot assign matrix with
different dimensions");

}
for (int i = 0; i < ROWS * COLS; ++i) {

vals[i] = m.vals[i];
}

}
return *this; // we return reference not a pointer

}
};
// it can be then used as
Matrix m1(2,2), m2(2,2), m3(2,2);
m1.fillRandom();
m2.fillRandom();
m3 = m1 + m2;
std::cout << m1 << " + " << std::endl << m2 << " = " << std::endl

<< m3 << std::endl;
Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 47 / 49

Topics Discussed

Summary of the Lecture

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 48 / 49

Topics Discussed

Topics Discussed

C89 vs C99 vs C11 – a brief overview of the changes
C vs C++ – a brief overview of differences
Object oriented programming in C++

Introduction to OOP
Classes and objects
Constructor
Examples of C++ constructs

Overloading constructors
References vs pointers
Data hidding – getters/setters
Exception handling
Operator definition
Stream based output

Next: OOP – Polymorphism, inheritance, and virtual methods.

Jan Faigl, 2016 BE5B99CPL – Lecture 10: OOP in C++ (Part 1) 49 / 49

	1
	C89 vs C99
	C11

	2
	Differences between C and C++
	Classes and Objects
	Constructor/Destructor
	Example – Class Matrix

	Summary
	Topics Discussed

