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Statistical Estimation

e General setting:
— random variable X = a variable representing a random event
— sample space X = space of possible outcomes
— realization x = observed or hypothetical outcome

— set of probability distributions P over X parameterized by
some parameter vector 0, p(-;0) € P.

— E.g. p(-;0) > is a probabiliy density function [, p(x;6)dx =1

e Statistical estimation: given an observation or a set of
observations, infer an optimal parameter 6
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Maximum Likelihood Estimation
e Use likelihood as criterion to rate different hypotheses (6).

e More convenient tu use so-called log-likelihood function
L(0:x) = log p(x;0)

e This means, a parameter 6 is preferred over some 6, if the

observed data is more likely under 6 than 6.

e Maximum Likelihood Estimation

) = arg m@axﬁ(@; X) = arg max log p(x;0)

e i.i.d. sample x = x1,...,x%,,: 0 = arg maxy > log p(x;;0)
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MLE: Gaussian Case

e Example: Gaussian distribution, X =R, 6 = (u, 0)’, probability
density

2
1 L fx—pu
p(z;p,0) = Tore &P |73 ( )

e Maximum likelihood estimates
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MLE: Multivariate Normal Distribution

e Multivariate normal

1 1
p(X; 1, 20) = T exp [——X—M’Elx—u
(%) = e |~ 105 e )
e MLE
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o= — Xi
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. 1 — A .
= ” (xi — f1)(x; — f1)
1=1
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MLE: Multivariate Normal Distribution
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Mixture Models (1)

Statistical classification: assume that the observed patterns
X1,...,X, belong to a certain number of K classes ¢, ..., cx.

Assume further that we do not observe these classes, but rather a
mixture of patterns from different classes.

For each class we assume that patterns are distributed according

to a class-conditional distribution py(x; ;) parameterized by
O, pr(x;0) = p(x|C = ¢;0;). Denote 0 = (04,...,0k)".

These assumptions lead to a mixture model

XT('@ Zﬂ'kkatgk

where 7}, is the prior probability of class ¢, (mixing proportions).
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Mixture Models (2)

e Notice that m;, > 0 and Zle T = 1.

e A simple example of a density consisting of a mixture of three

Gaussians

T
— mixture
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Why Mixture Models?

e Mixture models are more powerful than the component models

used for the class-conditional distribution

e Mixture models can capture multimodality and offer a systematic

way to define complex statistical models based on simpler ones.

e Mixture models can also be utilized to “unmix” the data, i.e. to

assign patterns to the unobserved classes (data clustering)
e Bayes rule: posterior probabilities

Tk 'pk(X; Hk)
Zl[il T - pi(x; 0;)

P(Ck‘X; T, (9) —
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MLE in Mixtures: Complete Data Log-Likelihood
e Key question: how to fit the parameters 7, 6 of a mixture model
e Expectation Maximization (EM) algorithm

e Introduce unobserved cluster membership variables z;, € {0, 1}

— z; = 1 denotes the fact that data point x; has been
generated from the k-th component or class

K .
- > o zxk=1foralli=1,....n

e |f membership variables were observed, then one could define the
so-called complete data log-likelihood,

E 7T 0;x, z Zzzzk 1ngk Xzaek) ‘HOng]

1=1 k=1
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MLE in Mixtures: Observed Data Log-Likelihood

e Since class membership variables z are not observed, we only
have access to the observed data log-likelihood

(7, 0;x) Zlogp X;; 0 Zlongkpk (x;;0%),
1=1

e Problem: direct maximization is difficult (logarithm of a sum

effectively introduces complicated couplings)
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Statistical Models with Unobserved Variables

e Imagine we would have some estimate of what the unobserved

variables could be:

Qi = Pr(z;x = 1) = probability that x; belongs to cluster ¢

e [ry to maximize the expected complete data log-likelihood
n K

Eq [Le(m, 0;x,2)| = Z Z Qir [log pr.(xi; Ok ) + log x| .
i=1 k=1

e () is called a variational distribution (we don’t know yet how to

chose it appropriately)
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Expected Complete Data Log-Likelihood

e Consider the following line of argument

L(m,0;x) = ilogp(xi;w 0) Zlongkpk (x;; 0r)
1=1 1=1

o TPk Xza Hk)
— ; log Z sz sz

TePE (X3 0
2 ZZszlo kkak k):L(T{',@,Q;X)
i=1 k=1 ¢

e Inequality follows from the concavity of the logarithm, or more
specifically from Jensen’s inequality.
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Jensen’s Inequality

e Jensen's inequality: for a convex function f and any probability

mass function p
E[f(x)] =) px)f(x) = f (ZP(X)X> = [(E[x])

e Proof uses a simple inductive argument over the state space size.

June 2, 2005 (© Thomas Hofmann Page 13



Variational Upper Bound

e No matter what () is, we will get a lower bound on the

log-likelihood function.

e [nstead of maximizing L directly, we can hence try to maximize
the (simpler) lower bound L(6,7,(Q);x) w.r.t. the parameters

6 and .
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Expectation Maximization Algorithm (1)
e Each choice of () defines a different lower bound L(6, 7, Q; x)

e Key idea: optimize lower bound also w.r.t. (). Get tightest
lower bound for a given estimate of 6.

e Alternation scheme, maximizes L(m, 0, Q);x) in every step.
— E-step: QY = argmaxg L(7™®, 00 Q;x)
— M-step: (79 0U+D)) = argmax, o L(0, 7, Q) x)

e M-step optimizes a lower bound instead of the true likelihood

function

e E-step adjusts the bound
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Expectation Maximization Algorithm (2)

e \What does that have to do with the function we referred to as
expected complete data Iog likelihood above?

L(m,6,Q:x) = ZZszlgW’“ i O]

i=1 k=1 Qi
n K
— ZZsz log mppr (x;; 0r) — ZZsz log Qi
i=1 k=1 i=1 k=1
— EQ[L‘, (7, 0;%,2)] ZZszlongk
1=1 k=1

e Second term: entropy of () (does not depend on 7 or 0)

e Maximizing L(m, 0, Q);x) is the same as maximizing the expected
complete data log-likelihood.
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Expectation Maximization Algorithm (3)
e How about the F-step?
e |t is easy to find a general answer to how () should be chosen.

e Posterior probability Q7 = Pr(z; = 1|x;; 7, 0) maximizes
L(m,6,0);x) for given m and 6.

e Proof: insert this choice for Q* into L(m, 0, Q;x)

n K
* * Tk Pr\Xq; 0
L(ﬂ-797Q ,X) — ZZszlog ‘ ]2(2* k)
i=1 k=1 ik

n K
— ZZijlogp(Xi;ﬂ,Q) = L(7,0;x)

1=1 k=1

e Since L(m,0,Q;x) < L(m,0;x) for all (), equality is optimal.
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Normal Mixture Model

e In the case of a mixture of multivariate normal distributions:
e M-step: differentiating expected complete data log-likelihood
e Mixing proportions 7ty = = > 1" | Qu,

e Normal model

A Z?ﬂ QikX;

H o n
D VYo
Z?:l sz
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Normal Mixture Model (2)

o E-Step

 m Sk exp [—3(x; uk)Z (% — )]
2

S m| S| 2 exp — )3 (% — )]
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EM for Normal Mixture Model

. initialize ji; at random

2 is the overall data variance

. initialize 3, = 021, where o
. repeat

for each data point x; do

1

2

3

4

5: for each component £k =1,..., K do
6 compute posterior probability (),
7 end for

8: end for

9:  for each component k =1,..., K do
10: compute [ig, ik,ﬁk

11:  end for

12: until convergence
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