
1/26LEARNING & LINEAR CLASSIFIERS

J. Matas

Czech Technical University, Faculty of Electrical Engineering
Department of Cybernetics, Center for Machine Perception

121 35 Praha 2, Karlovo nám. 13, Czech Republic

matas@fel.cvut.cz, http://cmp.felk.cvut.cz

LECTURE PLAN

� The problem of classifier design.

� Learning in pattern recogniton.

� Linear classifiers.

� Perceptron algorithms.

� Optimal separating plane with the Kozinec algorithm.

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz

2/26

CLASSIFIER DESIGN (1)

The object of interest is characterised by observable properties x ∈ X and

its class membership (unobservable, hidden state) k ∈ K, where X is

the space of observations and K the set of hidden states.

The objective of classifier design is to find a function q∗ : X → K that

has some optimal properties.

Bayesian decision theory solves the problem of minimisation of risk

R(q) =
∑
x,k

W (q(x), k) p(x, k)

given the following quantities:

� p(x, k),∀x ∈ X, k ∈ K – the statistical model of the dependence of

the observable properties (measurements) on class membership

� W (q(x), k) the loss of decision q(x) if the true class is k

Do you know the solution for the 0-1 loss function?

http://cmp.felk.cvut.cz

3/26

CLASSIFIER DESIGN (2)

Non-Bayesian decision theory solves the problem if p(x|k),∀x ∈ X, k ∈ K

are known, but p(k) are unknown (or do not exist). Constraints or

preferences for different errors depend on the problem formulation.

Do you know any non-bayesion problem formulations?

However, in applications typically:

� none of the probabilities are known! The designer is only given a

training multiset T = {(x1, k1) . . . (xL, kL)}, where L is the length

(size) of the training multiset.

� the desired properties of the classifier q(x) are known

How would you proceed ?

http://cmp.felk.cvut.cz

4/26

CLASSIFIER DESIGN via PARAMETER
ESTIMATION

� Assume p(x, k) have a particular form, e.g. Gaussian (mixture),

piece-wise constant, etc., with a finite (i.e. small) number of parameters

Θk.

� Estimate the parameters from the using training set T

� Solve the classifier design problem (e.g. risk minimisation), substituting

the estimated p̂(x, k) for the true (and unknown) probabilities p(x, k)
? : What estimation principle should be used?

What estimation paradigms do you know?

– : There is no direct relationship between known properties of estimated

p̂(x, k) and the properties (typically the risk) of the obtained classifier

q′(x)
– : If the true p(x, k) is not of the assumed form, q′(x) may be arbitrarily

bad, even if the size of training set L approaches infinity!

+ : Implementation is often straightforward, especially if parameters Θk for

each class are assumed independent.

+ : Performance on training data can be predicted by crossvalidation.

http://cmp.felk.cvut.cz

5/26

LEARNING in STATISTICAL PATTERN
RECOGNITION

� Choose a class Q of decision functions (classifiers) q : X → K.

� Find q∗ ∈ Q minimising some criterion function on the training set that

approximates the risk R(q) (which cannot be computed).

� Learning paradigm is defined by the criterion function:

Empirical risk (training set error) minimization. True risk approximated

Remp(qΘ(x)) =
1
L

L∑
i=1

W (qΘ(xi), ki) ,

Θ∗ = argmin
Θ

Remp(qΘ(x))

Examples: Perceptron, Neural nets (Back-propagation), etc.

Structural risk minimization.

Example: SVM (Support Vector Machines).

http://cmp.felk.cvut.cz

6/26
OVERFITTING AND UNDERFITTING

� How rich class Q of classifiers qΘ(x) should be used?

� The problem of generalization is a key problem of pattern

recognition: a small empirical risk Remp need not imply a

small true expected risk R!

underfit fit overfit

http://cmp.felk.cvut.cz

7/26

STRUCTURAL RISK MINIMIZATION PRINCIPLE (1)

We would like to minimise the risk

R(q) =
∑
x,k

W (qΘ(x), k) p(x, k)

but p(x, k) is unknown.

Vapnik and Chervonenkis proved a remarkable inequality

R(q) ≤ Remp(q) + Rstr

(
h,

1
L

)
,

where h is VC dimension (capacity) of the class of strategies Q.

Notes:

+ Rstr does not depend on the unknown p(x, k)!!

+ Rstr known for some classes of Q, e.g. linear classifiers.

http://cmp.felk.cvut.cz

8/26

STRUCTURAL RISK MINIMIZATION PRINCIPLE (2)

� There are more types of upper bounds on R.

E.g. for linear discriminant functions

R

m
VC dimension (capacity)

h ≤ R2

m2 + 1

� Examples of learning algorithms: SVM or ε-Kozinec.

(w∗, b∗) = argmax
w,b

min
(

min
x∈X1

〈w, x〉+ b

|w|
, min
x∈X2

〈w, x〉+ b

|w|

)
.

http://cmp.felk.cvut.cz

9/26
EMPIRICAL RISK MINIMISATION REVISITED

Is then empirical risk minimisation = minimisation of training set error, e.g.

neural networks with backpropagation, dead ? No!

– Rstr may be so large that the upper bound is useless.

Find a tighter bound and you will be famous! It is not impossible!

+ Vapnik’s theory justifies using empirical risk minimisation on classes of

functions with VC dimension.

+ Vapnik suggests learning with progressively more complex classes Q.

+ Empirical risk minimisation is computationally hard (impossible for large

L). Most classes of decision functions Q where empirical risk

minimisation (at least local) can be effeciently organised are often useful.

Where does the nearest neighbour classifier fit in the picture?

http://cmp.felk.cvut.cz

10/26

WHY ARE LINEAR CLASSIFIERS
IMPORTANT?

� For some statistical models, the Bayesian or non-Bayesian

strategy is implemented by a linear discriminant function.

You should know an example!?

� Capacity (VC dimension) of linear strategies in an

n-dimensional space is n + 2. Thus, the learning task is

well-posed, i.e., strategy tuned on a finite training multiset

does not differ much from correct strategy found for a

statistical model.

� There are efficient learning algorithms for linear classifiers.

� Some non-linear discriminant functions can be implemented

as linear after the feature space transformation.

http://cmp.felk.cvut.cz

11/26

LINEAR DISCRIMINANT FUNCTION q(x)

� fj(x) = 〈wj, x〉+ bj, where 〈 〉 denotes a scalar product.

� A strategy j = argmax
j

fj(x) divides X into |K| convex

regions.

k=1 k=2

k=3

k=4

k=5
k=6

http://cmp.felk.cvut.cz

12/26

DICHOTOMY, TWO CLASSES ONLY

|K| = 2, i.e. two hidden states (typically also classes)

q(x) =

 k = 1 , if 〈w, x〉+ b ≥ 0 ,

k = −1 , if 〈w, x〉+ b < 0 .

x
1

x
2

http://cmp.felk.cvut.cz

13/26

PERCEPTRON LEARNING:
Formulation

Input: T = {(x1, k1) . . . (xL, kL)}, k ∈ {−1, 1}
Output: a weight vector w, offset b, satisfying, ∀j ∈ {1..L} :

〈w, xj〉+ b ≥ 0 if kj = 1 ,

〈w, xj〉+ b < 0 if kj = −1

equivalently, multiplying both inequalities by kj,

〈w, kjxj〉+ kjb ≥ 0

or even simpler

〈w′, kjx
′
j〉 ≥ 0,

where x′ = [x 1], w′ = [w b]

http://cmp.felk.cvut.cz

14/26

PERCEPTRON LEARNING:
Simplified Formulation

To simplify notation, we reformulate the problem.

Input: T = {x′′1, . . . x′′L} where x′′j = kj[xj 1]
Output: a weight vector w′ = [w b], such that :

〈w′, x′′j 〉 ≥ 0,∀j ∈ {1..L}

We drop the primes and go back to w, x notation. The vector w has the

offset b as last element, x has an extra 1 and has been multiplied by k.

http://cmp.felk.cvut.cz

15/26

PERCEPTRON LEARNING:
THE ALGORITHM

Input: T = {x1, . . . xL}
Output: a weight vector w

Perceptron algorithm, (Rosenblat 1962):

1. w1 = 0.

2. A wrongly classified observation xj is sought, i.e.,

〈wt, xj〉 < 0, j ∈ {1..L}.

3. If there is no misclassified observation then the algorithm terminates

otherwise

wt+1 = wt + xj .

4. Goto 2.

http://cmp.felk.cvut.cz

16/26
PERCEPTRON: WEIGHT UPDATE

http://cmp.felk.cvut.cz

17/26
NOVIKOFF THEOREM

If the data are linearly separable then there

exists a number t∗ ≤ D2

m2, such that the

vector wt∗ satisfies the inequality

〈wt∗, x
j〉 > 0,∀j ∈ {1..L}.

? What if the data is not separable?

? How to terminate perceptron learning?

D

m

http://cmp.felk.cvut.cz

18/26

PERCEPTRON LEARNING:
Non-separable case

Perceptron algorithm, batch version, handling non-separability:

Input: T = {x1, . . . xL}
Output: a weight vector w∗

1. w1 = 0, E = |T | = L, w∗ = 0 .

2. Find all mis-classified observations X− = {x ∈ X : 〈wt, x〉 < 0}.
3. if |X−| < E then E = |X−|;w∗ = wt

4. if tc(w∗, t, tlu) then terminatate else wt+1 = wt + ηt

∑
x∈X−

x

5. Goto 2.

� The algorithm converges with probability 1 to the optimal solution.

� Convergence rate not known (to me).

� Termination condition tc(.) is a complex function of the quality of the

best solution, time since last update t− tlu and requirements on the

solution.

http://cmp.felk.cvut.cz

19/26

PERCEPTRON LEARNING as an Optimisation
problem (1)

Perceptron algorithm, batch version, handling non-separability, another

perspective:

Input: T = {x1, . . . xL}
Output: a weight vector w minimsing

J(w) = |{x ∈ X : 〈wt, x〉 < 0}|
or, equivalently

J(w) =
∑

x∈X:〈wt,x〉<0

What would the most common optimisation method, i.e. gradient descent,

perform?

wt = w − η∇J(w)

The gradient of J(w) is either 0 or undefined. Gradient minimisation cannot

proceed.

http://cmp.felk.cvut.cz

20/26

PERCEPTRON LEARNING as an Optimisation
problem (2)

Let us redefine the cost function:

Jp(w) =
∑

x∈X:〈w,x〉<0

〈w, x〉

∇Jp(w) =
∂J

∂w
=

∑
x∈X:〈w,x〉<0

x

� The Perceptron Algorithm is a gradient descent method for Jp(w)!

� Learning and empirical risk minimisation is just and instance of an

optimization problem.

� Either gradient minimisation (backpropagation in neural networks) or

convex (quadratic) minimisation (in mathematical literature called

convex programming) is used.

http://cmp.felk.cvut.cz

21/26

OPTIMAL SEPARATING PLANE and
THE CLOSEST POINT TO THE CONVEX HULL

The problem of optimal separation by a hyperplane

(1) w∗ = argmax
w

min
j

〈
w

|w|
, xj

〉
can be converted to seek for the closest point to a convex hull (denoted by

the overline)

x∗ = argmin
x∈X

|x|

There holds that x∗ solves also the problem (1).

Recall that the classfier that maximises separation minimises the structural

risk Rstr (page 8)!

http://cmp.felk.cvut.cz

22/26

CONVEX HULL, ILLUSTRATION

w* = m

X

min
j

〈
w

|w|
, xj

〉
≤ m ≤ |w| , w ∈ X

lower bound upper bound

http://cmp.felk.cvut.cz

23/26
ε-SOLUTION

� The aim is to speed up the algorithm.

� The allowed uncertainty ε is introduced.

|w| −min
j

〈
w

|w|
, xj

〉
≤ ε

http://cmp.felk.cvut.cz

24/26

TRAINING ALGORITHM 2 – KOZINEC (1973)

1. w1 = xj, i.e. any observation.

2. A wrongly classified observation xt is sought, i.e.,

〈wt, x
j〉 < b, j ∈ J .

3. If there is no wrongly classified observation then the

algorithm finishes otherwise

wt+1 = (1− k) · wt + xt · k , k ∈ R .

where k = argmin
k

|(1− k) · wt + xt · k|.

4. Goto 2.

http://cmp.felk.cvut.cz

25/26

KOZINEC, PICTORIAL ILLUSTRATION

wt

wt+1

b

xt

0

w ,x = 0t

Kozinec

http://cmp.felk.cvut.cz

26/26
KOZINEC and ε-SOLUTION

The second step of Kozinec algorithm is modified to:

A wrongly classified observation xt is sought, i.e.,

|wt| −min
j

〈
wt

|wt|
, xt

〉
≥ ε

m

0

ε

t

|w |
t

http://cmp.felk.cvut.cz

	First page
	ccmp Large CLASSIFIER DESIGN hfill (1)
	ccmp Large CLASSIFIER DESIGN hfill (2)
	ccmp Large CLASSIFIER DESIGN via PARAMETER ESTIMATION
	ccmp Large LEARNING in STATISTICAL PATTERN RECOGNITION
	ccmp Large OVERFITTING AND UNDERFITTING
	ccmp large STRUCTURAL RISK MINIMIZATION PRINCIPLE (1)
	ccmp large STRUCTURAL RISK MINIMIZATION PRINCIPLE (2)
	ccmp Large EMPIRICAL RISK MINIMISATION REVISITED
	ccmp Large WHY ARE LINEAR CLASSIFIERS IMPORTANT?
	color {red}Large LINEAR DISCRIMINANT FUNCTION $q(x)$
	ccmp Large DICHOTOMY, TWO CLASSES ONLY
	ccmp Large PERCEPTRON LEARNING:\ Formulation
	ccmp Large PERCEPTRON LEARNING:\ Simplified Formulation
	ccmp Large PERCEPTRON LEARNING:\ THE ALGORITHM
	ccmp Large PERCEPTRON: WEIGHT UPDATE
	ccmp Large NOVIKOFF THEOREM
	ccmp Large PERCEPTRON LEARNING:\ Non-separable case
	ccmp Large PERCEPTRON LEARNING as an Optimisation problem (1)
	ccmp Large PERCEPTRON LEARNING as an Optimisation problem (2)
	ccmp Large OPTIMAL SEPARATING PLANE and \ THE CLOSEST POINT TO THE CONVEX HULL
	ccmp Large CONVEX HULL, ILLUSTRATION
	ccmp Large $varepsilon $-SOLUTION
	ccmp Large TRAINING ALGORITHM 2 -- KOZINEC (1973)
	ccmp Large KOZINEC, PICTORIAL ILLUSTRATION
	ccmp Large KOZINEC and $varepsilon $-SOLUTION
	Last page

