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LECTURE PLAN
¢ Motivation: Observations with missing values

¢ Sketch of the algorithm, relation to K-means
¢ EM algorithm
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Motivation. Example (1) C
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We measure lengths of vehicles. The observation space is two-dimensional, with :
x € {car,truck} capturing vehicle type and y € R capturing length.
p(x,y) : distribution, xr € {car,truck}, yeR (1)
pleany) = 7N (lheoe = 1) = reesp { —3 = L (e = 75) @)
2 V2r
pleruck,9) = A (ol = 2) = keexp 5 (0= "} L (5= ) (3

Parameters m, m, o¢, ot are assumed to be known. The only unknowns are . and p;. We
want to recover u. and p; using Maximum Likelihood.

Example (7. = 0.6, m; =04, oc =1, 0t =2, pc=>5, py =10 )
0.25 \ | |

0.20} —  p(car,y)
= 0.15 —  p(truck,y)
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The observations are:
T = {(% y1) ($2,y2) (SUN,:UN)} (4)
= {(car, y1 ) (car, yg )), , (car, yé)) (truck, y( )) (truck, y( )), , (truck, y( ))} (5)
C car observations T truck observations
Log-likelihood L(T) = Inp(7T | ttc, pt):
N | C | T
L(T) = Y p(ai, il pes ) = Clnsic =3 3 (57 = pie)* + Tl — 23 (57 = jue)® (6)
i=1 i=1 i=1
Estimation of 1, po is very easy:
C | C
Z = =y (7)
P i=1
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Consider some observations to have the first coordinate missing (e):

T = {(car, ;) ..., (car, &), (truck, ), ..., (truck, yiP), (o, 97), ..., (. y30)}  (9)

data Wifhr uknown
vehicle type

What is the probability of observing y°*?

p(y®) = p(car,y®) + p(truck, y°) (marginalizing over uknown value)

Log-likelihood:
same term as before
N g | C | T h
L(T) = ;lnp(xi,yimc,ﬂt) = Clnk. — 5;( ( ) _ ,uc) +T1In ke — gzzzl( (> — ,ut)

(10)

+ f;ln (Hc eXp {—% (y; — Mc)2} + Ky €exp {—é (y; — Mt)2}> (11)
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Log-likelihood:
L (0 LNy, 0
. C 2 t 2
L(T) = Cln/‘?c—§;(yz’ — [he) +T1ﬂ%t—§;(yi — [it) (12)
2 1 1
£ 3 on (reew {3 0~ + e g 0i-wH) 03
Optimality condition (shown for p. only):
IL(T) <
0 = => w7 —n) + (14)

seexp { =% (7 — o)’ }

i—1 Kc €XP {—% (y5 — uc)Q} + Kyexp {—% (y; — Mt)Q}

(i —pe)  (15)
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Log-likelihood:

C T

1 c 1
L(T)=Clnkc— 5 Z(yf ) _ fe)? 4+ Tln ke — 3 Z( ) _ 11e)? (16)

+ iiln (a exp {—% (y; — ﬂc)Q} + Ky exp {—% (yi — m)Q}) (17)

Optimality condition (shown for p. only):

(18)

C
Ll Z(yﬁc) — pe)  +

8,uc p(car yz ‘/LC,/Lt

~

. % ;cc exp {—— y; — }

iZ1 K exp {—% (y5 — pc) } + Ky exp {—% (y5 — o)

\ - 7

Wi —pe)  (19)
j

J/

p(car, y; | e, pit) p(truck, y; | tc, fi)
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Log-likelihood:

C T

1 c 1
L(T)=Clnkc— 5 Z(yf ) _ fe)? 4+ Tln ke — 3 Z( ) _ 11e)? (20)

i=1 i=1
- 1 1
£ 3 om (reo {507 -} mew | gl -wif) e
Optimality condition (shown for p. only):

_ OL(T)
= oL

o 22
p(car\yﬁ-\, e, Nt) ( )

C
200
- neexp { =5 (v — o)’ }

° 2 o) 2
/@Cexp{—% (yz — fic) }‘|‘/€teXp{_% (yz — fit) }

_|_

(yz. o ,uc) (23)
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Optimality conditions (shown for both p. and p):

C
= = . 24
auc zz: p(car|y; , e, fir) (24

. 2
seexp {5 (7 — 1)’}

® ® 2
i—1| Kc€xp {—% (y; — uc)Q} + Ky exp {—% (Y7 — ) }

(y; — 1e)  (25)

T M
0=d—=>=> (" — ) + > pltruckl|y;, e, pe) (y7 — pue) (26)
) 1 =1

Things to note:
¢ Complicated equations for the uknowns pic,

¢ Both equations contain p. and p (cf. case with no missing variables)
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Optimality conditions (shown for both u. and p):
C M
Z )+ ) plear|y;, e, ) (5 — pc) =0 (27)
i=1 i=1
T M
Z ) + Y pltrucklys, s, ) (Y5 — pe) =0 (28)
i=1 i=1
If p(car|y;, tc, pr) and p(truck|y;, pe, pt) were known, the estimation would've been easy:
¢ Letz (1 =1,2,..., M), z; € {car, truck} denote the missing values. Define
q(zi) = p(2ily;, e, p1s)
® The equations lead to
C
Z(()—uc+Zqzz—car)(y5—uc)=0 (29)
i=1 i=1
C (o) °
— ,uc — Zz 1 yz + Zz 1 q( Car) y’l, (30)

C+ M q(z = car)

e :
— t k)
and similarly, g = 2=i=LY, + 3 it q(zi = truck) y; (31)

T+ M. q(z = truck)
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e = Zg 1Y ’L(C) + Zz 1 q( — car) yz. (32)
C+ M q(z = car)
T (1) °
— truck)
,UJt — Zz—l z _l_ Zz 1 Q< ruc )y'L (33)

T+ M. q(z = truck)

¢ These expressions are weighted averages of the observed y's. Data with non-missing x
have weight 1, the data with missing x have weight ¢(z;). How about trying the
following procedure for finding the ML estimate of uc and py:

1.
2
3.
4

Initialize pc, wt
Compute q(z;) = p(2i|y; s fhe, pie) for all i =1,2,..., M
Recompute ., p according to Egs.(32, 33)

If termination condition is met, finish. Otherwise goto 2.

¢ This is the essence of the EM algorithm, with Step 2 called the Expectation (E) step
and Step 3 called the Maximization (M) step.
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An extreme of the previous example is that no data have the x-coordinate value (car/truck
vehicle type). Everything works just as well:

S a(z = car)y;
e = ]\2 (34)

> i1 q(2; = car)

gl =
L=
Zij\il q(z; = truck)

(35)

Initialize e, it
Compute q(2;) = p(zi|ys, pe, pr) for all i =1,2, ..., M
Recompute i, iy according to Eqs.(36, 37)

=~ L b=

If termination condition is met, finish. Otherwise goto 2.

Note: Can you imagine this algorithm to end up at a local maximum?
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An extreme of the previous example is that no data have the x-coordinate (car/truck).
M o)
L Zz’:l Q(ZZ — Car) Y 36
He = Vi ( )
> i1 q(z; = car)
gl = k) 3
Mt = M ( 7)
> .1 4(z = truck)
EM algorithm: K-means:
1. Initialize pc, fut 1. ditto
2. Compute q(z;) = p(2i|y;, pic, i) 2. q(zi = car) = [lyi — pe| <yi — puel]
for all 7 = 1727 7M Q(zz — tI’UCk) — [Hyz._:utl < ‘yz._:uC”]

foralle =1,2,.... M
3. Recompute ., py according to Eqgs.(36, 37) 3. ditto

4. If termination condition is met, finish. 4. ditto
Otherwise goto 2.

EM-based clustering uses soft assignment. K-means can be interpreted as an
EM-based clustering with hard assignment.
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T training set
o: all observed values (no essential difference between 7 and o, just notational
convenience)
z: all unobserved values
0: model parameters to be estimated.
Goal: Find 0" using the Maximum Likelihood approach:
0" = argmax L(0) = argmax In p(o|8) (38)
0 0
Line of thought
Assume that solving this:
argmax In p(o,z|0) (39)
]

is easy (optimal parameters had z been known.)

Our goal will be to rewrite Eq. (38) in a way which will involve optimization terms of kind as
in Eq. (39).
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Inp(o|@) = In Zp 0,z|0) Marginalizing over missing values (40)
p(o z|9) . L
lnz q(z Introduction of distribution ¢(Z) (41)
AsVz:0<¢q(Z) <1 and
>.,q4(Z) =1, the sum is now a
convex combination of
p(o,z(6)/q(z).
p(o z|0) o _
> Zq Jensen's inequality. Here (42)
q(z) inequality holds because
logarithm is a concave function.
Define 0)
p(o,z
Zq - (43)

q(2)
This L(q, 0) is the lower bound for In p(0|0) due to Eq. (42), for any distribution g.

Maximizing L£(q, 0) will also push the log likelihood upwards.
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B p(o Z\H)
Inp(o|@) — L(q,0) =Inp(o Zq 2(2) (44)
= Inp(0]6) ~ 3 a(s)(Inglo.216) ~ na(e) (45)
p(z0,0)p(o]0)
=1Inp(o|6) = q(z){lnp(z|o,6) + Inp(o|6) — Ing(z)} (46)
—1np(0]6) — 3" a(z) p(o]8) — 3 4(z){Inp(z]o, 8) — ng(z)}
Z 1 V/
(47)
- Zq ‘0)6) (48)

This is the Kullback Leibler divergence between the two distributions ¢(z) and p(z|o, 0):

Dk r(qllp) = Zq |O 5) Zq |O)0) (49)
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Inp(o|0) = L(q,0) + Dk r(ql|p) (50)
T T T
log likelihood lower bound gap

We already know that due to Jensen’s inequality, £(q, @) is indeed the lower bound. This is
confirmed by the fact that Dy (q||p) > 0 for any ¢, p. Additionally,

Dk1(qllp) =0 & p=gq. (51)

When ¢ = p, the bound is tight.
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Inp(o|0) = L(q,0) + Dk r(ql|p) (52)
T T T
log likelihood lower bound gap

EM algorithm attempts to maximize the log-likelihood by instead maximizing the lower
bound (why "attempts’? Because it may end up in local maximum).

1. Initialize 8 = 8% (¢ = 0)

2. E-step (Expectation):

¢ = argmax £(q, 0") (53)
q
3. M-step (Maximization):
0"t — argmax £(¢"Y, 6) (54)
0

4. If termination condition is not met, goto 2.
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E-step: 0'") is fixed
¢ = argmax £(q, 0M) (55)
q
£(g,0'") = Inp(0]|8") — D1 (qllp) (56)

const.

Note: The distribution ¢ maximizing this term is the one which minimizes the KL
divergence. KL divergence is minimized when the two distributions are the same. Thus, the
distribution maximizing Eq. (55) is

¢""(2) = p(z]o,0"). (57)

Recall: Dk (qllp) = Zq ‘0)0) (58)
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M-step: ¢®*T1) is fixed
0"t — argmax £(¢"Y, 0) (59)
0

(t-l—l) (t-l—l) p(o,z|0)
,0) Z q(t+1)( ) (60)
— Zq(t+1) )Inp(o,z|0) Zq(tH) ) In ¢ (2) (61)

const.

Result: The parameters @ maximizing Eq. (59) are

oY) — argmaxz ¢ (z) Inp(o,z|6) . (62)

0
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Generalization of the Motivation example with missing values.

M [ ]
Tl = cany; -

M
S i1 q(z; = car)

o Mty alz = can) (yf — pe)’ o

) S gz = car)

it gz = can)
e = M (65)
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