

Expectation Maximization (EM) Algorithm

lecturer: O. Drbohlav, drbohlav@cmp.felk.cvut.cz

author: J. Matas, O. Drbohlav

Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

http://cmp.felk.cvut.cz

14/Dec/2015

Last update: 14/Dec/2015, 4pm

LECTURE PLAN

- Motivation: Observations with missing values
- Sketch of the algorithm, relation to K-means
- EM algorithm

Motivation. Example (1)

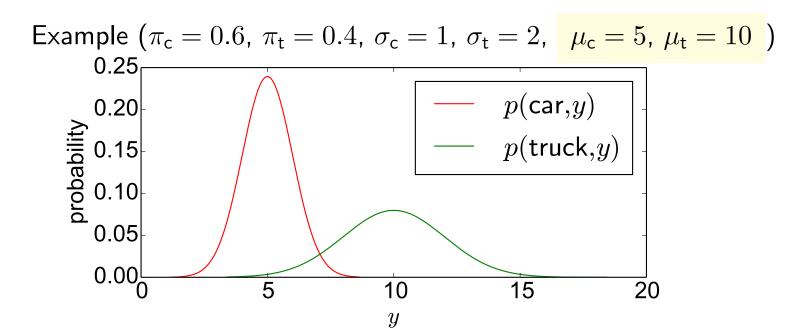
We measure lengths of vehicles. The observation space is two-dimensional, with $x \in \{\text{car}, \text{truck}\}\$ capturing vehicle type and $y \in \mathbb{R}$ capturing length.

$$p(x,y): {\sf distribution}\,, \qquad x \in \{{\sf car}, {\sf truck}\}\,, \quad y \in \mathbb{R}$$

$$p(\text{car}, y) = \pi_{c} \mathcal{N}(y|\mu_{c}, \sigma_{c} = 1) = \kappa_{c} \exp\left\{-\frac{1}{2}(y - \mu_{c})^{2}\right\}, (\kappa_{c} = \frac{\pi_{c}}{\sqrt{2\pi}})$$
 (2)

$$p(\text{truck}, y) = \pi_{t} \mathcal{N}(y | \mu_{t}, \sigma_{t} = 2) = \kappa_{t} \exp \left\{ -\frac{1}{8} (y - \mu_{t})^{2} \right\}, (\kappa_{t} = \frac{\pi_{c}}{\sqrt{8\pi}})$$
 (3)

Parameters π_c , π_t , σ_c , σ_t are assumed to be known. The **only unknowns** are μ_c and μ_t . We want to recover μ_c and μ_t using Maximum Likelihood.



Motivation. Example (2)

The observations are:

$$\mathcal{T} = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$
(4)

$$=\{\underbrace{(\mathsf{car},y_1^{(\mathsf{c})}),(\mathsf{car},y_2^{(\mathsf{c})}),...,(\mathsf{car},y_C^{(\mathsf{c})})}_{C \text{ car observations}},\underbrace{(\mathsf{truck},y_1^{(\mathsf{t})}),(\mathsf{truck},y_2^{(\mathsf{t})}),...,(\mathsf{truck},y_T^{(\mathsf{t})})}_{T \text{ truck observations}}\} \tag{5}$$

Log-likelihood $L(\mathcal{T}) = \ln p(\mathcal{T}|\mu_c, \mu_t)$:

$$L(\mathcal{T}) = \sum_{i=1}^{N} \ln p(x_i, y_i | \mu_{c}, \mu_{t}) = C \ln \kappa_{c} - \frac{1}{2} \sum_{i=1}^{C} (y_i^{(c)} - \mu_{c})^2 + T \ln \kappa_{t} - \frac{1}{8} \sum_{i=1}^{T} (y_i^{(t)} - \mu_{t})^2$$
 (6)

Estimation of μ_1 , μ_2 is very easy:

$$\frac{\partial L(\mathcal{T})}{\partial \mu_{\mathsf{c}}} = \sum_{i=1}^{C} (y_i^{(\mathsf{c})} - \mu_{\mathsf{c}}) = 0 \qquad \Rightarrow \qquad \mu_{\mathsf{c}} = \frac{1}{C} \sum_{i=1}^{C} y_i^{(\mathsf{c})} \tag{7}$$

$$\frac{\partial L(\mathcal{T})}{\partial \mu_{\mathsf{t}}} = \frac{1}{4} \sum_{i=1}^{T} (y_i^{(\mathsf{t})} - \mu_{\mathsf{t}}) = 0 \qquad \Rightarrow \qquad \mu_{\mathsf{t}} = \frac{1}{T} \sum_{i=1}^{T} y_i^{(\mathsf{t})} \tag{8}$$

Motivation. Missing Values (3)

Consider some observations to have the first coordinate **missing** (•):

$$\mathcal{T} = \{(\mathsf{car}, y_1^{(\mathsf{c})}), ..., (\mathsf{car}, y_C^{(\mathsf{c})}), (\mathsf{truck}, y_1^{(\mathsf{t})}), ..., (\mathsf{truck}, y_T^{(\mathsf{t})}), \underbrace{(\bullet, y_1^{\bullet}), ..., (\bullet, y_M^{\bullet})}_{\text{data with uknown vehicle type}}\} \tag{9}$$

What is the probability of observing y^{\bullet} ?

$$p(y^{\bullet}) = p(\operatorname{car}, y^{\bullet}) + p(\operatorname{truck}, y^{\bullet})$$
 (marginalizing over uknown value)

Log-likelihood:

$$L(\mathcal{T}) = \sum_{i=1}^{N} \ln p(x_i, y_i | \mu_c, \mu_t) = C \ln \kappa_c - \frac{1}{2} \sum_{i=1}^{C} (y_i^{(c)} - \mu_c)^2 + T \ln \kappa_t - \frac{1}{8} \sum_{i=1}^{T} (y_i^{(t)} - \mu_t)^2$$
(10)

$$+\sum_{i=1}^{M}\ln\left(\kappa_{\mathsf{c}}\exp\left\{-\frac{1}{2}\left(y_{i}^{\bullet}-\mu_{\mathsf{c}}\right)^{2}\right\}+\kappa_{\mathsf{t}}\exp\left\{-\frac{1}{8}\left(y_{i}^{\bullet}-\mu_{\mathsf{t}}\right)^{2}\right\}\right) \tag{11}$$

Motivation. Missing Values (4)

$$L(\mathcal{T}) = C \ln \kappa_{c} - \frac{1}{2} \sum_{i=1}^{C} (y_{i}^{(c)} - \mu_{c})^{2} + T \ln \kappa_{t} - \frac{1}{8} \sum_{i=1}^{T} (y_{i}^{(t)} - \mu_{t})^{2}$$
(12)

$$+ \sum_{i=1}^{M} \ln \left(\kappa_{c} \exp \left\{ -\frac{1}{2} (y_{i}^{\bullet} - \mu_{c})^{2} \right\} + \kappa_{t} \exp \left\{ -\frac{1}{8} (y_{i}^{\bullet} - \mu_{t})^{2} \right\} \right)$$
 (13)

Optimality condition (shown for μ_c only):

$$0 = \frac{\partial L(\mathcal{T})}{\partial \mu_{c}} = \sum_{i=1}^{C} (y_i^{(c)} - \mu_{c}) + \tag{14}$$

$$+ \sum_{i=1}^{M} \frac{\kappa_{c} \exp\left\{-\frac{1}{2} (y_{i}^{\bullet} - \mu_{c})^{2}\right\}}{\kappa_{c} \exp\left\{-\frac{1}{2} (y_{i}^{\bullet} - \mu_{c})^{2}\right\} + \kappa_{t} \exp\left\{-\frac{1}{8} (y_{i}^{\bullet} - \mu_{t})^{2}\right\}} (y_{i}^{\bullet} - \mu_{c})$$
(15)

Motivation. Missing Values (5)

Log-likelihood:

$$L(\mathcal{T}) = C \ln \kappa_{c} - \frac{1}{2} \sum_{i=1}^{C} (y_{i}^{(c)} - \mu_{c})^{2} + T \ln \kappa_{t} - \frac{1}{8} \sum_{i=1}^{T} (y_{i}^{(t)} - \mu_{t})^{2}$$
(16)

$$+\sum_{i=1}^{M} \ln \left(\kappa_{\mathsf{c}} \exp \left\{ -\frac{1}{2} \left(y_{i}^{\bullet} - \mu_{\mathsf{c}} \right)^{2} \right\} + \kappa_{\mathsf{t}} \exp \left\{ -\frac{1}{8} \left(y_{i}^{\bullet} - \mu_{\mathsf{t}} \right)^{2} \right\} \right) \tag{17}$$

Optimality condition (shown for μ_c only):

$$0 = \frac{\partial L(\mathcal{T})}{\partial \mu_{c}} = \sum_{i=1}^{C} (y_{i}^{(c)} - \mu_{c}) + \underbrace{p(car, y_{i}^{\bullet} | \mu_{c}, \mu_{t})}_{\kappa_{c} \exp\left\{-\frac{1}{2}(y_{i}^{\bullet} - \mu_{c})^{2}\right\}} + \underbrace{\sum_{i=1}^{M} \underbrace{\kappa_{c} \exp\left\{-\frac{1}{2}(y_{i}^{\bullet} - \mu_{c})^{2}\right\}}_{p(car, y_{i}^{\bullet} | \mu_{c}, \mu_{t})} + \underbrace{\kappa_{t} \exp\left\{-\frac{1}{8}(y_{i}^{\bullet} - \mu_{t})^{2}\right\}}_{p(truck, y_{i}^{\bullet} | \mu_{c}, \mu_{t})} (19)$$

Motivation. Missing Values (6)

Log-likelihood:

$$L(\mathcal{T}) = C \ln \kappa_{c} - \frac{1}{2} \sum_{i=1}^{C} (y_{i}^{(c)} - \mu_{c})^{2} + T \ln \kappa_{t} - \frac{1}{8} \sum_{i=1}^{T} (y_{i}^{(t)} - \mu_{t})^{2}$$
(20)

$$+\sum_{i=1}^{M} \ln \left(\kappa_{\mathsf{c}} \exp \left\{ -\frac{1}{2} \left(y_{i}^{\bullet} - \mu_{\mathsf{c}} \right)^{2} \right\} + \kappa_{\mathsf{t}} \exp \left\{ -\frac{1}{8} \left(y_{i}^{\bullet} - \mu_{\mathsf{t}} \right)^{2} \right\} \right) \tag{21}$$

Optimality condition (shown for μ_c only):

$$0 = \frac{\partial L(\mathcal{T})}{\partial \mu_{c}} = \sum_{i=1}^{C} (y_{i}^{(c)} - \mu_{c}) + p(\operatorname{car}|y_{i}^{\bullet}, \mu_{c}, \mu_{t})$$

$$+ \sum_{i=1}^{M} \frac{\kappa_{c} \exp\left\{-\frac{1}{2} (y_{i}^{\bullet} - \mu_{c})^{2}\right\}}{\kappa_{c} \exp\left\{-\frac{1}{2} (y_{i}^{\bullet} - \mu_{c})^{2}\right\} + \kappa_{t} \exp\left\{-\frac{1}{8} (y_{i}^{\bullet} - \mu_{t})^{2}\right\}} (y_{i}^{\bullet} - \mu_{c})$$
(23)

Motivation. Missing Values (7)

Optimality conditions (shown for both μ_c and μ_t):

$$0 = \frac{\partial L(\mathcal{T})}{\partial \mu_{c}} = \sum_{i=1}^{C} (y_{i}^{(c)} - \mu_{c}) + p(\operatorname{car}|y_{i}^{\bullet}, \mu_{c}, \mu_{t})$$

$$+ \sum_{i=1}^{M} \frac{\kappa_{c} \exp\left\{-\frac{1}{2}(y_{i}^{\bullet} - \mu_{c})^{2}\right\}}{\kappa_{c} \exp\left\{-\frac{1}{2}(y_{i}^{\bullet} - \mu_{c})^{2}\right\} + \kappa_{t} \exp\left\{-\frac{1}{8}(y_{i}^{\bullet} - \mu_{t})^{2}\right\}} (y_{i}^{\bullet} - \mu_{c}) \quad (25)$$

$$0 = 4 \frac{\partial L(\mathcal{T})}{\partial \mu_{\mathsf{t}}} = \sum_{i=1}^{T} (y_i^{(\mathsf{t})} - \mu_{\mathsf{t}}) + \sum_{i=1}^{M} p(\mathsf{truck}|y_i^{\bullet}, \mu_{\mathsf{c}}, \mu_{\mathsf{t}}) \ (y_i^{\bullet} - \mu_{\mathsf{t}})$$

$$(26)$$

Things to note:

- lacktriangle Complicated equations for the uknowns $\mu_{ extsf{c}}$, $\mu_{ extsf{t}}$
- Both equations contain μ_c and μ_t (cf. case with no missing variables)

Motivation. Missing Values (8)

Optimality conditions (shown for both μ_c and μ_t):

$$\sum_{i=1}^{C} (y_i^{(c)} - \mu_c) + \sum_{i=1}^{M} p(\text{car}|y_i^{\bullet}, \mu_c, \mu_t) \ (y_i^{\bullet} - \mu_c) = 0$$
 (27)

$$\sum_{i=1}^{T} (y_i^{(t)} - \mu_t) + \sum_{i=1}^{M} p(\text{truck}|y_i^{\bullet}, \mu_c, \mu_t) \ (y_i^{\bullet} - \mu_t) = 0$$
 (28)

If $p(\text{car}|y_i^{\bullet}, \mu_c, \mu_t)$ and $p(\text{truck}|y_i^{\bullet}, \mu_c, \mu_t)$ were known, the estimation would've been easy:

- Let z_i (i=1,2,...,M), $z_i \in \{\text{car}, \text{truck}\}$ denote the missing values. Define $q(z_i) = p(z_i|y_i^{\bullet}, \mu_c, \mu_t)$
- The equations lead to

$$\sum_{i=1}^{C} (y_i^{(c)} - \mu_c) + \sum_{i=1}^{M} q(z_i = car) (y_i^{\bullet} - \mu_c) = 0$$
(29)

$$\Rightarrow \mu_{c} = \frac{\sum_{i=1}^{C} y_{i}^{(c)} + \sum_{i=1}^{M} q(z_{i} = car) y_{i}^{\bullet}}{C + \sum_{i=1}^{M} q(z_{i} = car)}$$
(30)

and similarly,
$$\mu_{\mathsf{t}} = \frac{\sum_{i=1}^{T} y_i^{(\mathsf{t})} + \sum_{i=1}^{M} q(z_i = \mathsf{truck}) y_i^{\bullet}}{T + \sum_{i=1}^{M} q(z_i = \mathsf{truck})} \tag{31}$$

Motivation. Missing Values (9)

$$\mu_{c} = \frac{\sum_{i=1}^{C} y_{i}^{(c)} + \sum_{i=1}^{M} q(z_{i} = car) y_{i}^{\bullet}}{C + \sum_{i=1}^{M} q(z_{i} = car)}$$
(32)

$$\mu_{t} = \frac{\sum_{i=1}^{T} y_{i}^{(t)} + \sum_{i=1}^{M} q(z_{i} = \text{truck}) y_{i}^{\bullet}}{T + \sum_{i=1}^{M} q(z_{i} = \text{truck})}$$
(33)

- These expressions are weighted averages of the observed y's. Data with non-missing x have weight 1, the data with missing x have weight $q(z_i)$. How about trying the following procedure for finding the ML estimate of μ_c and μ_t :
 - 1. Initialize $\mu_{\rm c}$, $\mu_{\rm t}$
 - 2. Compute $q(z_i) = p(z_i|y_i^{\bullet}, \mu_c, \mu_t)$ for all i = 1, 2, ..., M
 - 3. Recompute μ_c , μ_t according to Eqs.(32, 33)
 - 4. If termination condition is met, finish. Otherwise goto 2.
- ◆ This is the essence of the **EM algorithm**, with Step 2 called the **Expectation** (E) step and Step 3 called the **Maximization** (M) step.

Clustering, Soft Assignment, Relation to K-means (1)

11/20

An extreme of the previous example is that **no** data have the x-coordinate value (car/truck vehicle type). Everything works just as well:

$$\mu_{c} = \frac{\sum_{i=1}^{M} q(z_{i} = car) y_{i}^{\bullet}}{\sum_{i=1}^{M} q(z_{i} = car)}$$
(34)

$$\mu_{\mathsf{t}} = \frac{\sum_{i=1}^{M} q(z_i = \mathsf{truck}) \, y_i^{\bullet}}{\sum_{i=1}^{M} q(z_i = \mathsf{truck})} \tag{35}$$

- 1. Initialize μ_c , μ_t
- 2. Compute $q(z_i) = p(z_i|y_i^{\bullet}, \mu_c, \mu_t)$ for all i = 1, 2, ..., M
- 3. Recompute μ_c , μ_t according to Eqs.(36, 37)
- 4. If termination condition is met, finish. Otherwise goto 2.

Note: Can you imagine this algorithm to end up at a local maximum?

Clustering, Soft Assignment, Relation to K-means (2)

An extreme of the previous example is that **no** data have the x-coordinate (car/truck).

$$\mu_{c} = \frac{\sum_{i=1}^{M} q(z_{i} = car) y_{i}^{\bullet}}{\sum_{i=1}^{M} q(z_{i} = car)}$$
(36)

$$\mu_{\mathsf{t}} = \frac{\sum_{i=1}^{M} q(z_i = \mathsf{truck}) \, y_i^{\bullet}}{\sum_{i=1}^{M} q(z_i = \mathsf{truck})} \tag{37}$$

EM algorithm:

- 1. Initialize μ_c , μ_t
- 2. Compute $q(z_i) = p(z_i|y_i^{\bullet}, \mu_c, \mu_t)$ for all i = 1, 2, ..., M

K-means:

- 1 ditto
- 2. $\begin{aligned} q(z_i = \mathsf{car}) &= \llbracket |y_i^\bullet \mu_\mathsf{c}| < |y_i^\bullet \mu_\mathsf{t}| \rrbracket \\ q(z_i = \mathsf{truck}) &= \llbracket |y_i^\bullet \mu_\mathsf{t}| \le |y_i^\bullet \mu_\mathsf{c}| \rrbracket \\ \text{for all } i = 1, 2, ..., M \end{aligned}$
- 3. Recompute μ_c , μ_t according to Eqs.(36, 37) 3. ditto
- 4. If termination condition is met, finish. 4. ditto Otherwise goto 2.

EM-based clustering uses soft assignment. K-means can be interpreted as an EM-based clustering with hard assignment.

- → T: training set
- ullet o: all observed values (no essential difference between ${\cal T}$ and ${f o}$, just notational convenience)
- z: all unobserved values
- \bullet θ : model parameters to be estimated.

Goal: Find θ^* using the Maximum Likelihood approach:

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \ln p(\mathbf{o}|\boldsymbol{\theta}) \tag{38}$$

Line of thought

Assume that solving this:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta}) \tag{39}$$

is easy (optimal parameters had z been known.)

Our goal will be to rewrite Eq. (38) in a way which will involve optimization terms of kind as in Eq. (39).

$$\ln p(\mathbf{o}|\boldsymbol{\theta}) = \ln \sum_{\mathbf{z}} p(\mathbf{o}, \mathbf{z}|\boldsymbol{\theta})$$
 Marginalizing over missing values (40)
$$= \ln \sum_{\mathbf{z}} q(\mathbf{z}) \frac{p(\mathbf{o}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})}$$
 Introduction of distribution $q(Z)$ (41)
$$\Delta \mathbf{s} \ \forall \mathbf{z} : 0 \le q(Z) \le 1 \text{ and }$$

As $\forall \mathbf{z} : 0 \leq q(Z) \leq 1$ and $\sum_{\mathbf{z}} q(Z) = 1$, the sum is now a convex combination of $p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta}) / q(\mathbf{z})$.

$$\geq \sum_{\mathbf{z}} q(\mathbf{z}) \ln \frac{p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta})}{q(\mathbf{z})}$$
 Jensen's inequality. Here inequality holds because logarithm is a concave function. (42)

Define

$$\mathcal{L}(q, \boldsymbol{\theta}) = \sum_{\mathbf{z}} q(\mathbf{z}) \ln \frac{p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta})}{q(\mathbf{z})}.$$
 (43)

This $\mathcal{L}(q, \boldsymbol{\theta})$ is the lower bound for $\ln p(\mathbf{o}|\boldsymbol{\theta})$ due to Eq. (42), for any distribution q.

Maximizing $\mathcal{L}(q, \boldsymbol{\theta})$ will also push the log likelihood upwards.

How Tight Is This Bound? (1)

15/20

$$\ln p(\mathbf{o}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = \ln p(\mathbf{o}|\boldsymbol{\theta}) - \sum_{\mathbf{z}} q(\mathbf{z}) \ln \frac{p(\mathbf{o},\mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})}$$
(44)

$$= \ln p(\mathbf{o}|\boldsymbol{\theta}) - \sum_{\mathbf{z}} q(\mathbf{z}) \{ \ln \underbrace{p(\mathbf{o}, \mathbf{z}|\boldsymbol{\theta})}_{p(\mathbf{z}|\mathbf{o}, \boldsymbol{\theta})} - \ln q(\mathbf{z}) \}$$
(45)

$$= \ln p(\mathbf{o}|\boldsymbol{\theta}) - \sum_{\mathbf{z}} q(\mathbf{z}) \{ \ln p(\mathbf{z}|\mathbf{o}, \boldsymbol{\theta}) + \ln p(\mathbf{o}|\boldsymbol{\theta}) - \ln q(\mathbf{z}) \}$$
(46)

$$= \ln p(\mathbf{o}|\boldsymbol{\theta}) - \sum_{\mathbf{z}} q(\mathbf{z}) \ln p(\mathbf{o}|\boldsymbol{\theta}) - \sum_{\mathbf{z}} q(\mathbf{z}) \{ \ln p(\mathbf{z}|\mathbf{o},\boldsymbol{\theta}) - \ln q(\mathbf{z}) \}$$

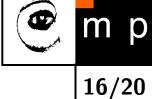
(47)

$$= -\sum_{\mathbf{z}} q(\mathbf{z}) \ln \frac{p(\mathbf{z}|\mathbf{o}, \boldsymbol{\theta})}{q(\mathbf{z})} \tag{48}$$

This is the Kullback Leibler divergence between the two distributions $q(\mathbf{z})$ and $p(\mathbf{z}|\mathbf{o},\boldsymbol{\theta})$:

$$D_{KL}(q||p) = \sum_{\mathbf{z}} q(\mathbf{z}) \ln \frac{q(\mathbf{z})}{p(\mathbf{z}|\mathbf{o}, \boldsymbol{\theta})} = -\sum_{\mathbf{z}} q(\mathbf{z}) \ln \frac{p(\mathbf{z}|\mathbf{o}, \boldsymbol{\theta})}{q(\mathbf{z})}$$
(49)

How Tight Is This Bound? (2)



$$\ln p(\mathbf{o}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + D_{KL}(q||p)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad (50)$$

log likelihood lower bound gap

We already know that due to Jensen's inequality, $\mathcal{L}(q, \theta)$ is indeed the lower bound. This is confirmed by the fact that $D_{KL}(q||p) \geq 0$ for any q, p. Additionally,

$$D_{KL}(q||p) = 0 \qquad \Leftrightarrow \qquad p = q. \tag{51}$$

When q = p, the bound is tight.

EM algorithm

$$\ln p(\mathbf{o}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + D_{KL}(q||p)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad (52)$$

log likelihood lower bound gap

EM algorithm attempts to maximize the log-likelihood by instead maximizing the lower bound (why 'attempts'? Because it may end up in local maximum).

- 1. Initialize $\boldsymbol{\theta} = \boldsymbol{\theta}^{(0)}$ (t=0)
- 2. **E-step** (Expectation):

$$q^{(t+1)} = \operatorname*{argmax}_{q} \mathcal{L}(q, \boldsymbol{\theta}^{(t)})$$
(53)

3. **M-step** (Maximization):

$$\boldsymbol{\theta}^{(t+1)} = \operatorname*{argmax}_{\boldsymbol{\theta}} \mathcal{L}(q^{(t+1)}, \boldsymbol{\theta})$$
 (54)

4. If termination condition is not met, goto 2.

18/20

E-step: $\boldsymbol{\theta}^{(t)}$ is fixed

$$q^{(t+1)} = \underset{q}{\operatorname{argmax}} \mathcal{L}(q, \boldsymbol{\theta}^{(t)})$$
 (55)

$$\mathcal{L}(q, \boldsymbol{\theta}^{(t)}) = \underbrace{\ln p(\mathbf{o}|\boldsymbol{\theta}^{(t)})}_{\text{const.}} - D_{KL}(q||p)$$
(56)

Note: The distribution q maximizing this term is the one which minimizes the KL divergence. KL divergence is minimized when the two distributions are the same. Thus, the distribution maximizing Eq. (55) is

$$q^{(t+1)}(\mathbf{z}) = p(\mathbf{z}|\mathbf{o}, \boldsymbol{\theta}^{(t)}). \tag{57}$$

Recall:
$$D_{KL}(q||p) = -\sum_{\mathbf{z}} q(\mathbf{z}) \ln \frac{p(\mathbf{z}|\mathbf{o}, \boldsymbol{\theta})}{q(\mathbf{z})}$$
 (58)

Maximization step

M-step: $q^{(t+1)}$ is fixed

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathcal{L}(q^{(t+1)}, \boldsymbol{\theta})$$
 (59)

$$\mathcal{L}(q^{(t+1)}, \boldsymbol{\theta}) = \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln \frac{p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta})}{q^{(t+1)}(\mathbf{z})}$$

$$= \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta}) - \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln q^{(t+1)}(\mathbf{z})$$

$$= \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta}) - \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln q^{(t+1)}(\mathbf{z})$$

$$= \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta}) - \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln q^{(t+1)}(\mathbf{z})$$

$$= \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta}) - \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln q^{(t+1)}(\mathbf{z})$$

$$= \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta}) - \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln q^{(t+1)}(\mathbf{z})$$

$$= \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta}) - \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln q^{(t+1)}(\mathbf{z})$$

Result: The parameters θ maximizing Eq. (59) are

$$\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{\mathbf{z}} q^{(t+1)}(\mathbf{z}) \ln p(\mathbf{o}, \mathbf{z} | \boldsymbol{\theta}).$$
 (62)

Mixture Models

m p

Generalization of the Motivation example with missing values.

$$\mu_{c} = \frac{\sum_{i=1}^{M} q(z_{i} = car) y_{i}^{\bullet}}{\sum_{i=1}^{M} q(z_{i} = car)}$$
(63)

$$\sigma_{\rm c}^2 = \frac{\sum_{i=1}^M q(z_i = {\rm car}) \, (y_i^{\bullet} - \mu_{\rm c})^2}{\sum_{i=1}^M q(z_i = {\rm car})}$$

$$\pi_{\mathsf{c}} = rac{\sum_{i=1}^{M} q(z_i = \mathsf{car})}{M}$$

(64)

(65)