
Neural Networks
Boris Flach

2/10
A. (Biological) Neurons

Physiology: cell body, dendrites, axons, synapses

Information processing:

� Electrical pulse arrives at a synapse, release of neurotransmitter evokes (local) change
of membrane potential

� Two types of synapses: excitatory, inhibitory

� If several spikes arrive simultaneously ⇒ global depolarisation of the membrane ⇒
electr. pulse travelling along the axon is generated

http://cmp.felk.cvut.cz

3/10
A. (Biological) Neurons

Neuron at rest: Interplay of active ion pumps (Na+ out, K+

in) and voltage gated ion channels leads to

� 70mV negative polarisation of the cytoplasm

� sodium excess outside and potassium excess inside
Action potential: Sufficiently strong excitation of the neuron ⇒
depolarisation of the membrane⇒ electrical pulse travelling along
the axon (interplay of Na+ and K+ voltage gated channels).
The travelling spike: reaches the synapses at the end of the axon
and triggers release of neurotransmitter, which in turn changes
the polarisation of other neurons.

http://cmp.felk.cvut.cz

4/10
B. Artificial Neuron Models

Binary valued threshold neuron (McCulloch and Pitts ’49)

y = θ(w ·x− b)

� x = (x1, . . . ,xn) ∈ Rn input

� y ∈ {0,1} output

� w = (w1, . . . ,wn) ∈ Rn weights

� b ∈ R threshold

� θ(z) - Heaviside step function

Clearly: this is a linear classifier! can be learned by Perceptron algorithm or SVM methods.

Graded response neuron:

� real valued output y ∈ R

� activation function f : R→ R, asymptotically bounded, e.g.
f(z) = 1/(1+e−z)

� y = f(w ·x− b)

http://cmp.felk.cvut.cz

5/10
C. Neural networks as classifiers/regressors

Any binary valued classifier can be approximated by a three layer Feed Forward Network
(FFN) of binary threshold units.

Idea:

� represent the classifier by a {0,1}-valued function defined on the feature space,
approximate its support by a union of convex polyhedra.

� convex polyhedron = intersection of half spaces, can be implemented by a two layer
FFN.

� Hence, one more layer is needed. It consists of one neuron which implements the union
via an OR function.

Problems: How to choose the appropriate size of the network? How to learn its weights and
thresholds?

http://cmp.felk.cvut.cz

6/10
C. Neural networks as classifiers/regressors

Theorem 1. (Kolmogorov, 1957) Any continuous function F defined on a compact set in
Rn, e.g. F : In→ R can be represented in the form

F (x1, . . . ,xn) =

2n+1∑
j=1

gi

(n∑
i=1

fij(xi)
)

where functions gi are continuous and fij are monotone and continuous functions
independent of F .

Theorem 2. (Cybenko, 1989) Any continuous function F defined on a compact set in Rn,
e.g. F : In→ R can be approximated arbitrarily well by

F (x)≈
k∑

i=1

αif(wi ·x− bi)

where f is a continuous sigmoid function.

Remark 1. (Lusin, 1912) Any measurable (decision) function is nearly continuous.

http://cmp.felk.cvut.cz

7/10
D. Learning a FFN by Error back propagation

Suppose we want to implement a k-valued classifier for features x ∈ Rn by a FFN of graded
response units.

� network input x ∈ Rn

� k classes ⇒ network has k neurons in the output
layer. Use “1 out of k” coding.

� training data T = {(xj,yj) | j = 1, . . . , `}.

� outputs of neurons in layer m= 1,2, . . . , q

y
(m)
i = f

(nm−1∑
j=1

w
(m)
ij y

(m−1)
j − b(m)

i

)
Objective function

E(T ,W) =
∑

(x,y)∈T

k∑
i=1

[
yi−y(q)i

(
W,x

)]2
→min

W

Minimise E(T ,W) by gradient descent.

http://cmp.felk.cvut.cz

8/10
D. Learning a FFN by Error Back Propagation

For simplicity: calculate the gradient of the objective function for one element (x,y) ∈ T of
the training data.

E =

k∑
i=1

[
yi−y(q)i

(
W,x

)]2
Output y(q)i

(
W,x

)
is a composition of functions

y
(q)
i

(
W,x

)
= fwq ◦fwq−1 ◦ . . .◦fw1(x),

hence, apply chain rule in order to compute gradient ∇wm, m= 1, . . . , q.

Notation: h(m)
i =

∑
jw

(m)
ij y

(m−1)
j − b(m)

i net input of the i-th neuron in the m-th layer.

http://cmp.felk.cvut.cz

9/10
D. Learning a FFN by Error Back Propagation

We have

∂E

∂w
(m)
ij

=
∂E

∂h
(m)
i

· y(m−1)i

∂E

∂b
(m)
i

=− ∂E

∂h
(m)
i

· 1

Hence, the problem is to compute the derivatives w.r.t. the net inputs. This can be done
recursively starting from the output layer

� output layer
∂E

∂h
(q)
i

=−2
[
yi−y(q)i

(
W,x

)]
·f ′
(
h
(q)
i

)
� back propagation

∂E

∂h
(m)
j

=
∑

i

∂E

∂h
(m+1)
i

· ∂h
(m+1)
i

∂h
(m)
j

=
∑

i

∂E

∂h
(m+1)
i

·w(m+1)
ij ·f ′

(
h
(m)
j

)

http://cmp.felk.cvut.cz

10/10
D. Learning a FFN by Error Back Propagation

Advantages:

� handles well problems with multiple classes

� handles both classification and regression

Disadvantages:

� no guarantee to reach the global optimum

� not clear how to choose the appropriate network structure and size (network too big ⇒
over-fitting, network too small ⇒ not enough expressive power to handle the task)

Generalisations:

� stochastic neurons

� bidirectional interactions

⇒ Markov Random Fields and Deep Learning.

http://cmp.felk.cvut.cz

	First page
	cmporange A.~(Biological) Neurons
	cmporange A.~(Biological) Neurons
	cmporange B.~Artificial Neuron Models
	cmporange C.~Neural networks as classifiers/regressors
	cmporange C.~Neural networks as classifiers/regressors
	cmporange D.~Learning a FFN by Error back propagation
	cmporange D.~Learning a FFN by Error Back Propagation
	cmporange D.~Learning a FFN by Error Back Propagation
	cmporange D.~Learning a FFN by Error Back Propagation
	Last page

