Neural Networks

15.12.2014

Lecturer: J. Matas
Authors: J. Matas, B. Flach, O. Drbohlav

Talk Outline

Motivation the term “neural nets”

Combining formal neurons to a network

Neural network, processing input to an output
Learning

— Cost function

— Optimization of NN parameters

— Back-propagation (a gradient descent method)
Perspective

— History

— Present and future

CENTER FOR MACHINE
PERCEPTION

Neural Network — Why That Name?

CENTER FOR MACHINE
PERCEPTION

e Asingle neuron combines several inputs to an output

e Neurons are layered (outputs of neurons are used as inputs

of other neurons)
dendrites (receive signals) The neuron

cell nucleus terminal buttons
(=end signals) V¥

cytoplasm

axon hilock

axon
cell body

(soma) myelin sheath nodes of Ranvier

e A simple neuron model: O
O Onon -linear f{(- Q::/____

inputs output ;5

A Formal Neuron (1/2)

Binary-valued threshold neuron (McCulloch and Pitts '49)

y = fQiziwixi—b)=f(w-x —b)
-1ifz<0
flz) = { 1ifz=0 .
=oYo

x=(xq,...,x,) ER™ input b
w = (Wy,..,w,) € R" weights @
beR bias
y € {—1,1} output

Given the weights w and the bias b, the neuron produces an
output y € {—1, 1} for any input x.

Note: This is a linear classifier, can be learned by the Perceptron
Algorithm or SVM methods.

A Formal Neuron (2/2)

Put the bias term b into the weights w:

fw-x —b) ®

y —
= f(w-x+wy-1)
fFow' - x)
@) “@_ %
e OR0.

Z .. netactivation

y = f(2) ... activation
x'=(1,xq,..,x,) € R*1 input
w' = (wy, Wy, ...,w,)) € R*1 weights
f: R->{-1,1} signum function (with f(0) = 1)

y € {—1,1} output

A Single Neuron is a Two-Layer Neural Network

CENTER FOR MACHINE
PERCEPTION

A single neuron has two layers: @

the input layer x, and the output

layer.

It is just a linear function of its @ w, 4 5
inputs, followed by applying f(+). N @ f@

On the next slide, the input x is
fed to several neurons, and their

outputs are processed by another ayer1 Layer 2
neuron. input output
This will result in a three-layer NN.

Three-Layer Neural Network (1/2)

CENTER FOR MACHINE
PERCEPTION

Layer 1, input Layer 2, hidden Layer 3, out

: Inputx © o
e OQOutput y4

i R(jofl.\-)j 2

‘\\‘}\ ((/’JQ)..;)/
\\:l\ \S\v\w’ b .
() Wi | L 12) .@ f.@ ;009
%" 2 IR
, X

2 > R
2.3) q,2!
\L‘ 11) ‘\2- \»
32
f(,r /J‘;)
2

.\')

A\ T
G @)

A 2-4-1 net @) Layer 2
e Each neuronis a lin. combination of its inputs 4 Weights between
(incl. the bias term), followed by a non-linear wbB< Layer Land 2

transformation. 15

Three-Layer Neural Network (2/2)

CENTER FOR MACHINE

® Generalization:

Layer 1, input

multidimensional

output y

e Notation:

aV = [1,x]
a® =y

U: \\
((} //_9
2y
(‘(,I //‘;)

Layer 2, hidden

({ (1\)
’ . .
(2.3
W '<9)
1]

1.2)
W (2.3)
<2

?
’&
o
by x\‘«r\"’
(12 f .
'3 0. (23)
33
&/ K
7 /-\9. B)
7 </ N
E ‘_\\,ﬂ;-\

PERCEPTION

Layer 3, out

& /_)
N7 "/

w 117

)

w)’.

& /)
o J)

W 7‘\

')(/)

8/25

Three-Layer Neural Network (2/2)

CENTER FOR MACHINE
PERCEPTION

Layer 1, input Layer 2, hidden Layer 3, out

e Generalization: iii T i ! o
multidimensional ;| 1, T T
output y 0 ofy B 1L e [

g f :f: | s S

e Notation: o AN N 2

o AT " :f:i

aV =[1,x] e VU op %y u-ig‘""::: A 4
I » hOAN L gl !) 11! '

3) __ : 1 _ EAY ,f| e T Ll :
a® =y @ @ @ e R
A L S ONAC)!

® Alljust works: S NP gi
1 (1) 1 i:i“‘ll lLS’(zl.Q:): :f: :: (2.3 ?(:/')I: : : i
Given a*~ (input) "2/ 0, NS NS ey AN I
| T ((/*//:): L :: o™ :: :f::

2?2 =wt2dgW SRR w;i"‘::.: N4
| ¥ ¥ S 1 ¥ .

a? =[1,f(z¥)] HGS Gk Lo
3) = w23)g@ | o () L) (3)
z =W a a0 wi) 12z a@ W@ 73 q®

(3) — £(,(3) Aot N R B et A e A
. J(Z5) Note: f(z) = (f(Zl) f(Zz) f(z))

= output
(put) (f is applied element-W|se) 9/25

wz 1
z° S /K\ :
= O S
o« L L .. L oy ocr .oy cci N |
S o S S
B I O
e e e 8
> N
a— |||
—
-
% e
S ~N
< 'y
III L
< |~ ~ e o ~
I N
2l 2 G0 G0 «Co) T i
S ! mm
= (0 Jllelels p~Sgalnl, Y. ulnllge? e el Nl el ~llyl g s A el -
e . .(I‘V..fz 3 oy nH/. //..nn/ m 4 //\V. ."
2 “ S EECTERE\ G 5 O “
|) N\
= | o
1 i 1
r 1 \—r/ 1
3|l =3
S| P B m | F AR !
S | Qe w5 R §]
r III
Q - = |
"v' ‘e N~
o | - NN S
1 y _ TN
K g — al
— (a1 ~ +
e — - X
= + N
= T - — 2
S— o)
. c ©0 = g
ot a &5 ~ — |
= Lo NS - -
o O O m . a Q __ + + .o
> % 96 = S w2 T
\—r
= o w o £ T R~ B
@)
o o o) Y— ®

10/25

Function approximation by a MLP

CENTER FOR MACHINE
PERCEPTION

Consider a simple case of K-layer NN with a single output neuron

Such NN partitions space to two subsets R; and R,
X, £
A i

g -1
2-Layer NN: linear boundary K-Layer NN: can approximate
between R; and R, increasingly more complex

functions with increasing K
Images taken from Duda, Hart, Stork: Pattern Classification

Note: Remember the Adaboost example with weak linear classifiers? The strong
classifier has been constructed as a linear combination of these. This is similar to
what happens inside a 3-layer NN.

Regression, Classification, Learning (1/2)

NNs can be employed for function approximation.
Approximation from sample (training) points is the regression
problem. Classification can be approached as a special case of
regression.

So far, the weight matrices W have been assumed to be already
known.

Learning the weight matrices is formulated as an optimization
problem. Given the training set 7 = {(x;,y;),i = 1..N}, we
optimize

Jrotat {W}) = £V=1](Yi»y({w}: Xi)),

where y({W}, x;) is the output of NN for x;, and J(+,-) is the
cost function.

Regression, Classification, Learning (2/2)

For a 2-class classification, the last layer has one neuron, and
the output y({W}, x;) is thus 1-dimensional.

For M-class classification, a common choice is to encode the
class by an M-dimensional vector:

y — (O; O) e 11 ’O)T ,

e

1 at k-th coordinate if x belongs to k-th class.

A frequent choice for J(+,-) is the quadratic loss:

1
], y({W},x)) = 5 [ly((W3, x) — yl?

Other possibilities: logistic regression cost function, etc.

Graded Activation Function f(:)

N
Jrowal (WD) =) J i, YW}, %))
=1

Ready to optimize Jigtar ?
— J(+,-) is a quadratic loss (no problem)

— y(K) is @ composition of two types of functions:
Linear combination (no problem)

Activation function f(-) — must be differentiable
(modified signum function is not)

Use well-behaved f(+)
Common choice: a sigmoid function

f(z) =

1/7(1 + Exp(-x))

1+e%

Learning: Minimize J

N
(W'} = argmin Jiora ({W}) = argrp“i,gl;] i, y(AW}, x;))

Apply gradient descent.

Compute gradient / partial derivatives w.r.t. all weights:
N
0Jtotal B Z 8J(33z')

(k,k+1) (k,k+1)
8wpq i=0 C%Jpq

Gradient of] (1/4)

Example for NN with number of layers K = 3, output
dimensionality D, and quadratic loss function:

8. (x) D a0 [y(W, z)].
= [y(W,z) — 1y, T =
a2 " Qg™
S (W) 0, " (0
— Yy y L) — Y| L.k
j=1> ~ 2 8w1(9q’ =
D]\ \
Output Dep. of j-th
discrepancy output neuron on

Note: [-]; is j-th component. that weight

Gradient of | (2/4)

CENTER FOR MACHINE

PERCEPTION

()
So, we have that: ()
O} (k k+1) Z D (k k—+1)
71=1

Let us have a look at the gradlent patterns, based on some examples
(note: f'is the derivative of f, * is element-wise multiplication):

3 3 3
(9&5-) _ (9&5-) 87;](-) [r (3))%(1) if j=1
8w(2’3) 8Z](3) 8w(2’3) 0 otherwise

14 14

Thus, for W(23);

2%
((/!
0J (z) :
- /. e
Dy f'(25))a? w5

(2 3) N ik 0
\ts Wy
WAL
' o
@ @ “ {) Cf\

In vector notation: / o . @)

8J(z
W% D« ()] a1 .‘\“'.

17/25

Gradient of] (3/4)

CENTER FOR MACHINE

PERCEPTION

: (3)()
So, we have that: Z D

k,k+1 k. kt1
3foq“ wl A

(3) (3) 5,(3) 2 2
Oaj _ 9a; 9z 8a§) 5() —f’((Jw (23)f() (1)
Ow (1 2) a (3) da (2) 82(2) I (1 2) 2

<12> ZDf Jwiy ™ f/(2§)al

In vector notation:

aJ() (2,3)T (3) :; iy : %%
gz = WO [P \
*f/() ()T AP xv:‘]) f 5%,

' -
= 4 (< N
= 7 9 n
Cf o “e “ oY
A .
G 23
. DAY aQ ‘\.--
1\ 2 E o) W 93
Wad @ /
: 2 @
W (2,3 & 1
32 w (<3 ey
e (1o (33 Ga o)
2)T o :
217, IS
D (3) a () v &
oW (2 3) z

\3

w
—

Gradient of | (4/4)

CENTER FOR MACHINE
PERCEPTION

Define: Notes:

AKk+1) 0] K = 9 used as an example
k.k+1 .
WAy _ T = transposition
output from - desired + = elementwise multiplication

feed-forward output]
Compute: V4 / P |-]: remove the first vector component

6 = (|[aP)], —y) = f' (")
5® = [WEITE O]« f/(2®)
57 = [WISTE®] s (27

__

5D = [WEATE®)] f/(2)

Compute gradient of /:
AB9 — 59 q(BT

A0 = 50" . o

AGD) — 52 qT a) Wi 7@ @ 20K

Back-propagation algorithm (1/2)

CENTER FOR MACHINE
PERCEPTION

Given (x,y) €T

Do forward propagation.
compute predicted output for x

Compute the gradient.

Update the weights:
W(k,k+1) — W(k,k+1) n IBA(k,k+1)

f... learning rate
Repeat until convergence.

Notes:

K = 9 used as an example

T = transposition

* = elementwise multiplication

oo
oo
o Yo
6o
a wt2) 1z g

———————————

=1 = __1 1

|7 (KD ()

Back-propagation algorithm (2/2)

CENTER FOR MACHINE

PERCEPTION

Update computation was shown for 1 training sample only for the
sake of clarity

This variant of weight updates can be used (loop over the training
set like in the Perceptron algorithm)

Back-propagation is a gradient-based minimization method.

Variants: construct the weight update using the entire batch of
training data , or use mini-batches as a compromise between exact
gradient computation and computational expense

The step size (learning rate) could be found by line search algorithm
as in standard gradient-based optimization

Many variants for the cost function — logistic regression-type,
regularization term, etc. This will lead to different update rules.

NN by back-propagation - properties ~

PERCEPTION

Advantages:
Handles well the problem with multiple classes
Can do both classification and regression
After normalization, output can be treated as aposteriori
probability

Disadvantages:
No guarantee to reach the global minimum

Notes:
Ways to choose network structure?
Note that we assumed the activation functions to be identical
throughout the NN. This is not a requirement though.

Historical perspective

Perceptron (Rosenblatt, 1956) with its simple learning algorithm
generated a lot of excitement

Minsky and Papert (1969) showed that even a simple XOR
cannot be learnt by a perceptron, this lead to skepticism

The problem was solved by layering the perceptrons to a MLP

Deep NNs

CENTER FOR MACHIN
TI

E
PERCEP ON

Deep learning — “hot” topic, unsupervised discovery of features

Renaissance of NNs

What is different from the past? Massive amounts of data,
regularization, sparsity enforcement, drop-out

Used in computer vision, speech recognition, general
classification problems

