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Talk Outline

Motivation the term “neural nets”

Combining formal neurons to a network

Neural network, processing input to an output
Learning

— Cost function

— Optimization of NN parameters

— Back-propagation (a gradient descent method)
Perspective

— History

— Present and future
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Neural Network — Why That Name?
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e Asingle neuron combines several inputs to an output

e Neurons are layered (outputs of neurons are used as inputs

of other neurons)
dendrites (receive signals) The neuron

cell nucleus terminal buttons
(=end signals) V¥

cytoplasm

axon hilock

axon
cell body

(soma) myelin sheath nodes of Ranvier

e A simple neuron model: O
O Onon -linear f{( - Q::/____

inputs output ;5



A Formal Neuron (1/2)

Binary-valued threshold neuron (McCulloch and Pitts '49)

y = fQiziwixi—b)=f(w-x —b)
-1ifz<0
flz) = { 1ifz=0 .
=oYo

x=(xq,...,x,) ER™ input b
w = (Wy,..,w,) € R" weights @
beR bias
y € {—1,1} output

Given the weights w and the bias b, the neuron produces an
output y € {—1, 1} for any input x.

Note: This is a linear classifier, can be learned by the Perceptron
Algorithm or SVM methods.



A Formal Neuron (2/2)

Put the bias term b into the weights w:

fw-x —b) ®

y —
= f(w-x+wy-1)
fFow' - x)
@ ) “@_ %
e OR0.

Z .. netactivation

y = f(2) ... activation
x'=(1,xq,..,x,) € R*1 input
w' = (wy, Wy, ...,w,)) € R*1  weights
f: R->{-1,1} signum function (with f(0) = 1)

y € {—1,1} output



A Single Neuron is a Two-Layer Neural Network
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A single neuron has two layers: @

the input layer x, and the output

layer.

It is just a linear function of its @ w, 4 5
inputs, followed by applying f(+). N @ f@

On the next slide, the input x is
fed to several neurons, and their

outputs are processed by another  ayer1 Layer 2
neuron. input output
This will result in a three-layer NN.



Three-Layer Neural Network (1/2)
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Layer 1, input Layer 2, hidden Layer 3, out
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A 2-4-1 net @) Layer 2
e Each neuronis a lin. combination of its inputs 4 Weights between
(incl. the bias term), followed by a non-linear wbB< Layer Land 2

transformation. 15



Three-Layer Neural Network (2/2)
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® Generalization:

Layer 1, input

multidimensional

output y

e Notation:

aV = [1,x]
a® =y
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Three-Layer Neural Network (2/2)
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Layer 1, input Layer 2, hidden Layer 3, out

_______________________________________________________

e Generalization: iii T i ! o
multidimensional ;| 1, T T
output y 0 ofy B 1L e [

g f :f: | s S

e Notation: o AN N 2

o AT " :f:i

aV =[1,x] e VU op %y u-ig‘""::: A 4
I » hOAN L gl ! ) 11! '

3) __ : 1 _ EAY ,f| e T Ll :
a® =y @ @ @ e R
A L S ONAC)!

® Alljust works: S NP gi
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| ¥ ¥ S 1 ¥ .

a? =[1,f(z¥)] HGS Gk Lo
3) = w23)g@ | o () L) (3)
z =W a a0 wi) 12z a@ W@ 73 q®

(3) — £(,(3) Aot N R B et A e A
. J(Z5) Note: f(z) = (f(Zl) f(Zz) f(z))

= output
( put) (f is applied element-W|se) 9/25
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Function approximation by a MLP
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Consider a simple case of K-layer NN with a single output neuron

Such NN partitions space to two subsets R; and R,
X, £
A i

g -1
2-Layer NN: linear boundary  K-Layer NN: can approximate
between R; and R, increasingly more complex

functions with increasing K
Images taken from Duda, Hart, Stork: Pattern Classification

Note: Remember the Adaboost example with weak linear classifiers? The strong
classifier has been constructed as a linear combination of these. This is similar to
what happens inside a 3-layer NN.



Regression, Classification, Learning (1/2)

NNs can be employed for function approximation.
Approximation from sample (training) points is the regression
problem. Classification can be approached as a special case of
regression.

So far, the weight matrices W have been assumed to be already
known.

Learning the weight matrices is formulated as an optimization
problem. Given the training set 7 = {(x;,y;),i = 1..N}, we
optimize

Jrotat {W}) = £V=1](Yi»y({w}: Xi)),

where y({W}, x;) is the output of NN for x;, and J(+,-) is the
cost function.



Regression, Classification, Learning (2/2)

For a 2-class classification, the last layer has one neuron, and
the output y({W}, x;) is thus 1-dimensional.

For M-class classification, a common choice is to encode the
class by an M-dimensional vector:

y — (O; O) e 11 ’O)T ,

e

1 at k-th coordinate if x belongs to k-th class.

A frequent choice for J(+,-) is the quadratic loss:

1
], y({W},x)) = 5 [ly((W3, x) — yl?

Other possibilities: logistic regression cost function, etc.



Graded Activation Function f(:)

N
Jrowal (WD) = ) J i, YW}, %))
=1

Ready to optimize Jigtar ?
— J(+,-) is a quadratic loss (no problem)

— y(K) is @ composition of two types of functions:
Linear combination (no problem)

Activation function f(-) — must be differentiable
(modified signum function is not)

Use well-behaved f(+)
Common choice: a sigmoid function

f(z) =

1/7(1 + Exp(-x))

1+e%




Learning: Minimize J

N
(W'} = argmin Jiora ({W}) = argrp“i,gl;] i, y(AW}, x;))

Apply gradient descent.

Compute gradient / partial derivatives w.r.t. all weights:
N
0Jtotal B Z 8J(33z')

(k,k+1) (k,k+1)
8wpq i=0 C%Jpq




Gradient of ] (1/4)

Example for NN with number of layers K = 3, output
dimensionality D, and quadratic loss function:

8. (x) D a0 [y(W, z)].
= [y(W,z) — 1y, T =
a2 " Qg™
S (W) 0, " (0
— Yy y L) — Y| L.k
j=1> ~ 2 8w1(9q’ =
D]\ \
Output Dep. of j-th
discrepancy output neuron on

Note: [-]; is j-th component. that weight



Gradient of | (2/4)
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( )
So, we have that: ( )
O} (k k+1) Z D (k k—+1)
71=1

Let us have a look at the gradlent patterns, based on some examples
(note: f'is the derivative of f, * is element-wise multiplication):

3 3 3
(9&5-) _ (9&5-) 87;](- ) [ r (3))%(1) if j=1
8w(2’3) 8Z](3) 8w(2’3) 0 otherwise

14 14

Thus, for W(23);
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In vector notation: / o . @)

8J( z
W% D« ()] a1 .‘\“'.
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Gradient of ] (3/4)
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: (3)( )
So, we have that: Z D

k,k+1 k. kt1
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Gradient of | (4/4)
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Define: Notes:

AKk+1) 0] K = 9 used as an example
k.k+1 .
WAy _ T = transposition
output from - desired + = elementwise multiplication

feed-forward output ]
Compute: V4 / P |-]: remove the first vector component

6 = (|[aP )], —y) = f' (")
5® = [WEITE O]« f/(2®)
57 = [WISTE®] s (27

______________________________________________

5D = [WEATE®)]  f/(2)

Compute gradient of /:
AB9 — 59 q(BT

A0 = 50" . o

AGD) — 52 qT a) Wi 7@ @ 20K



Back-propagation algorithm (1/2)

CENTER FOR MACHINE
PERCEPTION

Given (x,y) €T

Do forward propagation.
compute predicted output for x

Compute the gradient.

Update the weights:
W(k,k+1) — W(k,k+1) n IBA(k,k+1)

f... learning rate
Repeat until convergence.

Notes:

K = 9 used as an example

T = transposition

* = elementwise multiplication

___________________________________
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Back-propagation algorithm (2/2)
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Update computation was shown for 1 training sample only for the
sake of clarity

This variant of weight updates can be used (loop over the training
set like in the Perceptron algorithm)

Back-propagation is a gradient-based minimization method.

Variants: construct the weight update using the entire batch of
training data , or use mini-batches as a compromise between exact
gradient computation and computational expense

The step size (learning rate) could be found by line search algorithm
as in standard gradient-based optimization

Many variants for the cost function — logistic regression-type,
regularization term, etc. This will lead to different update rules.



NN by back-propagation - properties ~
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Advantages:
Handles well the problem with multiple classes
Can do both classification and regression
After normalization, output can be treated as aposteriori
probability

Disadvantages:
No guarantee to reach the global minimum

Notes:
Ways to choose network structure?
Note that we assumed the activation functions to be identical
throughout the NN. This is not a requirement though.



Historical perspective

Perceptron (Rosenblatt, 1956) with its simple learning algorithm
generated a lot of excitement

Minsky and Papert (1969) showed that even a simple XOR
cannot be learnt by a perceptron, this lead to skepticism

The problem was solved by layering the perceptrons to a MLP



Deep NNs
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Deep learning — “hot” topic, unsupervised discovery of features

Renaissance of NNs

What is different from the past? Massive amounts of data,
regularization, sparsity enforcement, drop-out

Used in computer vision, speech recognition, general
classification problems



