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Talk Outline

● Motivation the term “neural nets”

● Combining formal neurons to a network 

● Neural network, processing input to an output

● Learning

– Cost function

– Optimization of NN parameters 

– Back-propagation (a gradient descent method)

● Perspective

– History

– Present and future 
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Neural Network – Why That Name?

● A single neuron combines several inputs to an output

● Neurons are layered (outputs of neurons are used as inputs 

of other neurons)

● A simple neuron model:

inputs output 3/25



A Formal Neuron (1/2)

Binary-valued threshold neuron (McCulloch and Pitts ’49)

� � � ∑ ������	
 � � � � 
 ⋅ �	 � �
	 	 	

	� � � 	�	�1		��	� � 0
				1		��	� � 0																																									

● � � �
, … , �� ∈ �� input  

● 
 � �
, … , �� ∈ ��	 weights

● � ∈ � bias

● � ∈ ��1, 1� output

Given the weights 
 and the bias �, the neuron produces an 

output � ∈ ��1, 1� for any input �.
Note: This is a linear classifier, can be learned by the Perceptron 

Algorithm or SVM methods.

��
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A Formal Neuron (2/2)

Put the bias term � into the weights 
:
� � � 
 ⋅ �	 � � 							

� � 
 ⋅ � ! �" ⋅ 1#
� � 
′ ⋅ �′#														

● �′ � 1, �
, … , �� ∈ ��%
 input  

● 
′ � �", �
, … , �� ∈ ��%
	 weights

● � ∶ 	� → �1, 1 signum function (with � 0 � 1#
● � ∈ ��1, 1� output

� …     net activation

� � � �# … activation
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A Single Neuron is a Two-Layer Neural Network

● A single neuron has two layers: 

the input layer �, and the output 

layer.

● It is just a linear function of its 

inputs, followed by applying � ⋅#.

● On the next slide, the input � is 

fed to several neurons, and their 

outputs are processed by another 

neuron. 

This will result in a three-layer NN.

Layer 1 

input

Layer 2 

output
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Three-Layer Neural Network (1/2)

Layer 1, input

● Each neuron is a lin. combination of its inputs 

(incl. the bias term), followed by a non-linear 

transformation.

Weights between

Layer 1 and 2

Layer 2

Layer 2, hidden Layer 3, out

�( )#
�()


,)

A 2-4-1 net

● Input �
● Output �
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Three-Layer Neural Network (2/2)

Layer 1, input Layer 2, hidden Layer 3, out

● Generalization: 

multidimensional 

output *
● Notation:

+ 
 � ,1, �-
+ . � *
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Three-Layer Neural Network (2/2)

+ 
 / ) + )

Layer 1, input Layer 2, hidden

/ . + .

Layer 3, out

0 ),.0 
,)

● Generalization: 

multidimensional 

output *
● Notation:

+ 
 � ,1, �-
+ . � *

● All just works: 

Given + 
 (input)

/ ) � 0 
,) + 

+ ) � ,1, � / ) -
/ . � 0 ),. + )
+ . � � / . #
(� output)

Note: � / ≝ � �
 , � �) , … � ��
(� is applied element-wise) 9/25



2-Layer Neural Network

+ 
 / ) + )

Layer 1, input Layer 2, hidden

/ 4 + 4

Layer 5, out

0 
,)

● Multilayer 

perceptron (MLP)

● Feed-forward 

computation

● Init:

+ 
# � ,1, �-
● Loop:

for 6 � 1: K � 1
/ 8%
# � 0 8,8%
 + 8#
+ 8%
# � ,1, � /8%
 -

● End:

* � + 4
∅

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

Operator ⋅ ∅: �:%
 → �:
 ;", … , ;:# ∅ �  ;
, … , ;:# 10/25



Function approximation by a MLP

● Consider a simple case of 5-layer NN with a single output neuron

● Such NN partitions space to two subsets ℛ
 and ℛ)

2-Layer NN: linear boundary 

between ℛ
 and ℛ)
5-Layer NN: can approximate 

increasingly more complex 

functions with increasing 5
Images taken from Duda, Hart, Stork: Pattern Classification

Note: Remember the Adaboost example with weak linear classifiers? The strong 

classifier has been constructed as a linear combination of these. This is similar to 

what happens inside a 3-layer NN. 11/25



Regression, Classification, Learning (1/2)

● NNs can be employed for function approximation. 

Approximation from sample (training) points is the regression

problem. Classification can be approached as a special case of 

regression. 

● So far, the weight matrices 0 have been assumed to be already 

known. 

● Learning the weight matrices is formulated as an optimization 

problem. Given the training set = � � �� , *� , � = 1. . >}, we 

optimize

?@A@BC({0}) = ∑ ?(*� , *( 0 , ��))D�	
 ,

where *( 0 , ��) is the output of NN for ��, and ?(⋅,⋅) is the 

cost function.
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Regression, Classification, Learning (2/2)

● For a 2-class classification, the last layer has one neuron, and 

the output * 0 , ��) is thus 1-dimensional.

● For E-class classification, a common choice is to encode the 

class by an E-dimensional vector:

� � 0, 0,… , 1,… , 0 F , 

1 at 6-th coordinate if � belongs to 6-th class.

● A frequent choice for ? ⋅,⋅) is the quadratic loss:

? *, *( 0 , �) = 	12 * 0 , � − * )

● Other possibilities: logistic regression cost function, etc.
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Graded Activation Function G ⋅

?@A@BC({0}) = H?(*� , *( 0 , ��))
D

�	

● Ready to optimize ?@A@BC ? 

– ? ⋅,⋅) is a quadratic loss (no problem)

– * 4 is a composition of two types of functions: 

– Linear combination (no problem)

– Activation function �(⋅) – must be differentiable 

(modified signum function is not)

● Use well-behaved � ⋅)
● Common choice: a sigmoid function

� � � 	 1
1 + IJK
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Learning: Minimize L

0M � argmin0 	?@A@BC �0�# � 	argmin0 H? *� , *( 0 , ��)
D

�	


Apply gradient descent.

Compute gradient / partial derivatives w.r.t. all weights:  

∂Jtotal

∂w
(k,k+1)
pq

=
N�

i=0

∂J(xi)

∂w
(k,k+1)
pq
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Gradient of  L (1/4)

Example for NN with number of layers 5 � 3, output 

dimensionality U, and quadratic loss function:  

Note: ⋅ V is W-th component.

∂J(x)

∂w
(k,k+1)
pq

=
D�

j=1

[y(W,x)− y]j
∂ [y(W,x)]j

∂w
(k,k+1)
pq

=

=

D�

j=1

[y(W,x)− y]j� �� �
Dj

∂a
(3)
j (x)

∂w
(k,k+1)
pq

Output 

discrepancy

Dep. of W-th
output neuron on 

that weight 
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Gradient of  L (2/4)

So, we have that:

Let us have a look at the gradient patterns, based on some examples 

(note: �′ is the derivative of �, ∗ is element-wise multiplication):

Thus, for 0 ),. :

In vector notation: 

∂a
(3)
j

∂w
(2,3)
14

=
∂a

(3)
j

∂z
(3)
j

∂z
(3)
j

∂w
(2,3)
14

=

�
f ′(z

(3)
1 )a

(2)
4 if j = 1

0 otherwise

∂J(x)

∂w
(2,3)
pq

= Dpf
′(z(3)p )a(2)q

∂J(x)

∂W (2,3)
=
�
D ∗ f ′(z(3))

�
a(2)T

∂J(x)

∂w
(k,k+1)
pq

=

D�

j=1

Dj
∂a

(3)
j (x)

∂w
(k,k+1)
pq
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Gradient of  L (3/4)

So, we have that:

In vector notation:

Cf. 

∂J(x)

∂w
(k,k+1)
pq

=

D�

j=1

Dj
∂a

(3)
j (x)

∂w
(k,k+1)
pq

∂a
(3)
j

∂w
(1,2)
30

=
∂a

(3)
j

∂z
(3)
j

∂z
(3)
j

∂a
(2)
3

∂a
(2)
3

∂z
(2)
3

∂z
(2)
3

∂w
(1,2)
30

= f ′(z
(3)
j )w

(2,3)
j3 f ′(z

(2)
3 )a

(1)
0

∂J(x)

∂w
(1,2)
pq

=
D�

j=1

Djf
′(z

(3)
j )w

(2,3)
jp f ′(z(2)p )a(1)q

∂J(x)

∂W (1,2)
=
�
W (2,3)T

�
D ∗ f ′(z(3))

��

∅

∗ f ′(z(2))a(1)T

∂J(x)

∂W (2,3)
=
�
D ∗ f ′(z(3))

�
a(2)T
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Gradient of  L (4/4)

+ 
 	/ ) + ) 	/ 4 + 40 
,)

Define:

Y 8,8%
 �	 Z[
Z0 \,\]^#

Compute:

_ ` �  + ` � ∅�*# ∗ �M / `

_ a �	 0 a,` F_	 `
∅ ∗ �M / a

_ b �	 0 b,a F_ a
∅ ∗ �M / b

⋅⋅⋅
_ ) �	 0 ),. F_ .

∅ ∗ �M / )

Compute gradient of ?:

Y a,` � _ ` + a F
Y b,a � _ a + b F

⋅⋅⋅
Y 
,) � _ ) + 
 F

Notes:

5 � 9 used as an example

d = transposition

∗ = elementwise multiplication

⋅ ∅: remove the first vector component

output from 

feed-forward

desired

output
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Back-propagation algorithm (1/2)

Given �, * ∈ =
Do forward propagation.

compute predicted output for �
Compute the gradient.

Update the weights:

0 8,8%
 ← 0 8,8%
 ! fY 8,8%

f… learning rate

Repeat until convergence.

Notes:

5 � 9 used as an example

d = transposition

∗ = elementwise multiplication

+ 
 	/ ) + ) 	/ 4 + 40 
,)
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Back-propagation algorithm (2/2)

● Update computation was shown for 1 training sample only for the 

sake of clarity

● This variant of weight updates can be used (loop over the training 

set like in the Perceptron algorithm)

● Back-propagation is a gradient-based minimization method. 

● Variants: construct the weight update using the entire batch of 

training data , or use mini-batches as a compromise between exact 

gradient computation and computational expense 

● The step size (learning rate) could be found by line search algorithm 

as in standard gradient-based optimization

● Many variants for the cost function – logistic regression-type, 

regularization term, etc. This will lead to different update rules. 
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NN by back-propagation - properties

Advantages:

● Handles well the problem with multiple classes

● Can do both classification and regression

● After normalization, output can be treated as aposteriori

probability

Disadvantages:

● No guarantee to reach the global minimum

Notes:

● Ways to choose network structure?

● Note that we assumed the activation functions to be identical 

throughout the NN. This is not a requirement though.
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Historical perspective

● Perceptron (Rosenblatt, 1956) with its simple learning algorithm 

generated a lot of excitement

● Minsky and Papert (1969) showed that even a simple XOR 

cannot be learnt by a perceptron, this lead to skepticism

● The problem was solved by layering the perceptrons to a MLP
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Deep NNs

● Deep learning – “hot” topic, unsupervised discovery of features

● Renaissance of NNs

● What is different from the past? Massive amounts of data, 

regularization, sparsity enforcement, drop-out

● Used in computer vision, speech recognition, general 

classification problems
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