
Neural Networks

15.12.2014

Lecturer: J. Matas

Authors: J. Matas, B. Flach, O. Drbohlav

1

Talk Outline

● Motivation the term “neural nets”

● Combining formal neurons to a network

● Neural network, processing input to an output

● Learning

– Cost function

– Optimization of NN parameters

– Back-propagation (a gradient descent method)

● Perspective

– History

– Present and future

2/25

Neural Network – Why That Name?

● A single neuron combines several inputs to an output

● Neurons are layered (outputs of neurons are used as inputs

of other neurons)

● A simple neuron model:

inputs output 3/25

A Formal Neuron (1/2)

Binary-valued threshold neuron (McCulloch and Pitts ’49)

� � � ∑ ������	
 � � � �
 ⋅ �	 � �
	 	 	

	� � � 	�	�1		��	� � 0
				1		��	� � 0																																									

● � � �
, … , �� ∈ �� input

●
 � �
, … , �� ∈ ��	 weights

● � ∈ � bias

● � ∈ ��1, 1� output

Given the weights
 and the bias �, the neuron produces an

output � ∈ ��1, 1� for any input �.
Note: This is a linear classifier, can be learned by the Perceptron

Algorithm or SVM methods.

��

4/25

A Formal Neuron (2/2)

Put the bias term � into the weights
:
� � �
 ⋅ �	 � � 							

� �
 ⋅ � ! �" ⋅ 1#
� �
′ ⋅ �′#														

● �′ � 1, �
, … , �� ∈ ��%
 input

●
′ � �", �
, … , �� ∈ ��%
	 weights

● � ∶ 	� → �1, 1 signum function (with � 0 � 1#
● � ∈ ��1, 1� output

� … net activation

� � � �# … activation

5/25

A Single Neuron is a Two-Layer Neural Network

● A single neuron has two layers:

the input layer �, and the output

layer.

● It is just a linear function of its

inputs, followed by applying � ⋅#.

● On the next slide, the input � is

fed to several neurons, and their

outputs are processed by another

neuron.

This will result in a three-layer NN.

Layer 1

input

Layer 2

output

6/25

Three-Layer Neural Network (1/2)

Layer 1, input

● Each neuron is a lin. combination of its inputs

(incl. the bias term), followed by a non-linear

transformation.

Weights between

Layer 1 and 2

Layer 2

Layer 2, hidden Layer 3, out

�()#
�()

,)

A 2-4-1 net

● Input �
● Output �

7/25

Three-Layer Neural Network (2/2)

Layer 1, input Layer 2, hidden Layer 3, out

● Generalization:

multidimensional

output *
● Notation:

+
 � ,1, �-
+ . � *

8/25

Three-Layer Neural Network (2/2)

+
 /) +)

Layer 1, input Layer 2, hidden

/ . + .

Layer 3, out

0),.0
,)

● Generalization:

multidimensional

output *
● Notation:

+
 � ,1, �-
+ . � *

● All just works:

Given +
 (input)

/) � 0
,) +

+) � ,1, � /) -
/ . � 0),. +)
+ . � � / . #
(� output)

Note: � / ≝ � �
 , � �) , … � ��
(� is applied element-wise) 9/25

2-Layer Neural Network

+
 /) +)

Layer 1, input Layer 2, hidden

/ 4 + 4

Layer 5, out

0
,)

● Multilayer

perceptron (MLP)

● Feed-forward

computation

● Init:

+
� ,1, �-
● Loop:

for 6 � 1: K � 1
/ 8%
� 0 8,8%
 + 8#
+ 8%
� ,1, � /8%
 -

● End:

* � + 4
∅

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

Operator ⋅ ∅: �:%
 → �:
 ;", … , ;:# ∅ � ;
, … , ;:# 10/25

Function approximation by a MLP

● Consider a simple case of 5-layer NN with a single output neuron

● Such NN partitions space to two subsets ℛ
 and ℛ)

2-Layer NN: linear boundary

between ℛ
 and ℛ)
5-Layer NN: can approximate

increasingly more complex

functions with increasing 5
Images taken from Duda, Hart, Stork: Pattern Classification

Note: Remember the Adaboost example with weak linear classifiers? The strong

classifier has been constructed as a linear combination of these. This is similar to

what happens inside a 3-layer NN. 11/25

Regression, Classification, Learning (1/2)

● NNs can be employed for function approximation.

Approximation from sample (training) points is the regression

problem. Classification can be approached as a special case of

regression.

● So far, the weight matrices 0 have been assumed to be already

known.

● Learning the weight matrices is formulated as an optimization

problem. Given the training set = � � �� , *� , � = 1. . >}, we

optimize

?@A@BC({0}) = ∑ ?(*� , *(0 , ��))D�	
 ,

where *(0 , ��) is the output of NN for ��, and ?(⋅,⋅) is the

cost function.

12/25

Regression, Classification, Learning (2/2)

● For a 2-class classification, the last layer has one neuron, and

the output * 0 , ��) is thus 1-dimensional.

● For E-class classification, a common choice is to encode the

class by an E-dimensional vector:

� � 0, 0,… , 1,… , 0 F ,

1 at 6-th coordinate if � belongs to 6-th class.

● A frequent choice for ? ⋅,⋅) is the quadratic loss:

? *, *(0 , �) = 	12 * 0 , � − *)

● Other possibilities: logistic regression cost function, etc.

13/25

Graded Activation Function G ⋅

?@A@BC({0}) = H?(*� , *(0 , ��))
D

�	

● Ready to optimize ?@A@BC ?

– ? ⋅,⋅) is a quadratic loss (no problem)

– * 4 is a composition of two types of functions:

– Linear combination (no problem)

– Activation function �(⋅) – must be differentiable

(modified signum function is not)

● Use well-behaved � ⋅)
● Common choice: a sigmoid function

� � � 	 1
1 + IJK

14/25

Learning: Minimize L

0M � argmin0 	?@A@BC �0�# � 	argmin0 H? *� , *(0 , ��)
D

�	

Apply gradient descent.

Compute gradient / partial derivatives w.r.t. all weights:

∂Jtotal

∂w
(k,k+1)
pq

=
N�

i=0

∂J(xi)

∂w
(k,k+1)
pq

15/25

Gradient of L (1/4)

Example for NN with number of layers 5 � 3, output

dimensionality U, and quadratic loss function:

Note: ⋅ V is W-th component.

∂J(x)

∂w
(k,k+1)
pq

=
D�

j=1

[y(W,x)− y]j
∂ [y(W,x)]j

∂w
(k,k+1)
pq

=

=

D�

j=1

[y(W,x)− y]j� �� �
Dj

∂a
(3)
j (x)

∂w
(k,k+1)
pq

Output

discrepancy

Dep. of W-th
output neuron on

that weight

16/25

Gradient of L (2/4)

So, we have that:

Let us have a look at the gradient patterns, based on some examples

(note: �′ is the derivative of �, ∗ is element-wise multiplication):

Thus, for 0),. :

In vector notation:

∂a
(3)
j

∂w
(2,3)
14

=
∂a

(3)
j

∂z
(3)
j

∂z
(3)
j

∂w
(2,3)
14

=

�
f ′(z

(3)
1)a

(2)
4 if j = 1

0 otherwise

∂J(x)

∂w
(2,3)
pq

= Dpf
′(z(3)p)a(2)q

∂J(x)

∂W (2,3)
=
�
D ∗ f ′(z(3))

�
a(2)T

∂J(x)

∂w
(k,k+1)
pq

=

D�

j=1

Dj
∂a

(3)
j (x)

∂w
(k,k+1)
pq

17/25

Gradient of L (3/4)

So, we have that:

In vector notation:

Cf.

∂J(x)

∂w
(k,k+1)
pq

=

D�

j=1

Dj
∂a

(3)
j (x)

∂w
(k,k+1)
pq

∂a
(3)
j

∂w
(1,2)
30

=
∂a

(3)
j

∂z
(3)
j

∂z
(3)
j

∂a
(2)
3

∂a
(2)
3

∂z
(2)
3

∂z
(2)
3

∂w
(1,2)
30

= f ′(z
(3)
j)w

(2,3)
j3 f ′(z

(2)
3)a

(1)
0

∂J(x)

∂w
(1,2)
pq

=
D�

j=1

Djf
′(z

(3)
j)w

(2,3)
jp f ′(z(2)p)a(1)q

∂J(x)

∂W (1,2)
=
�
W (2,3)T

�
D ∗ f ′(z(3))

��

∅

∗ f ′(z(2))a(1)T

∂J(x)

∂W (2,3)
=
�
D ∗ f ′(z(3))

�
a(2)T

18/25

Gradient of L (4/4)

+
 	/) +) 	/ 4 + 40
,)

Define:

Y 8,8%
 �	 Z[
Z0 \,\]^#

Compute:

_ ` � + ` � ∅�*# ∗ �M / `

_ a �	 0 a,` F_	 `
∅ ∗ �M / a

_ b �	 0 b,a F_ a
∅ ∗ �M / b

⋅⋅⋅
_) �	 0),. F_ .

∅ ∗ �M /)

Compute gradient of ?:

Y a,` � _ ` + a F
Y b,a � _ a + b F

⋅⋅⋅
Y
,) � _) +
 F

Notes:

5 � 9 used as an example

d = transposition

∗ = elementwise multiplication

⋅ ∅: remove the first vector component

output from

feed-forward

desired

output

19/25

Back-propagation algorithm (1/2)

Given �, * ∈ =
Do forward propagation.

compute predicted output for �
Compute the gradient.

Update the weights:

0 8,8%
 ← 0 8,8%
 ! fY 8,8%

f… learning rate

Repeat until convergence.

Notes:

5 � 9 used as an example

d = transposition

∗ = elementwise multiplication

+
 	/) +) 	/ 4 + 40
,)
20/25

Back-propagation algorithm (2/2)

● Update computation was shown for 1 training sample only for the

sake of clarity

● This variant of weight updates can be used (loop over the training

set like in the Perceptron algorithm)

● Back-propagation is a gradient-based minimization method.

● Variants: construct the weight update using the entire batch of

training data , or use mini-batches as a compromise between exact

gradient computation and computational expense

● The step size (learning rate) could be found by line search algorithm

as in standard gradient-based optimization

● Many variants for the cost function – logistic regression-type,

regularization term, etc. This will lead to different update rules.

21/25

NN by back-propagation - properties

Advantages:

● Handles well the problem with multiple classes

● Can do both classification and regression

● After normalization, output can be treated as aposteriori

probability

Disadvantages:

● No guarantee to reach the global minimum

Notes:

● Ways to choose network structure?

● Note that we assumed the activation functions to be identical

throughout the NN. This is not a requirement though.

22/25

Historical perspective

● Perceptron (Rosenblatt, 1956) with its simple learning algorithm

generated a lot of excitement

● Minsky and Papert (1969) showed that even a simple XOR

cannot be learnt by a perceptron, this lead to skepticism

● The problem was solved by layering the perceptrons to a MLP

23/25

Deep NNs

● Deep learning – “hot” topic, unsupervised discovery of features

● Renaissance of NNs

● What is different from the past? Massive amounts of data,

regularization, sparsity enforcement, drop-out

● Used in computer vision, speech recognition, general

classification problems

24/25

