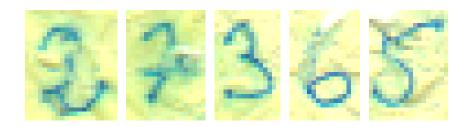
Non-Bayesian Decision Making

Boris Flach

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
Center for Machine Perception
http://cmp.felk.cvut.cz/~flachbor, flachbor@cmp.felk.cvut.cz

Check yourself: have you understood the principles of Bayesian decision making? Answer the following two questions.

- An individual has been described by a neighbour as follows: "Steve is very shy and withdrawn, invariably helpful but with little interest in people or in the world of reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail." Is Steve more likely to be a librarian or a farmer?
- You are given ℓ images x_1, x_2, \ldots, x_ℓ of digits. You should decide on their sum s. The loss function is $W(s,s')=(s-s')^2$. An OCR algorithm is available for this purpose. It returns the posterior probabilities $p_{K|X}(k\mid x_i)$, $k=0,\ldots,9$ for each of the images. What is the optimal decision on s?



2. When do we need non-Bayesian decisions?

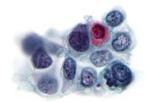
Ingredients & pre-requisites of Bayesian decision making:

- lack feature space X, (hidden) state space K, decision space D
- lacktriangle real valued loss function $W: K \times D \to \mathbb{R}$
- \bullet $x \in X$ and $k \in K$ are random events, joint probability

$$p_{XK}(x,k) = p_{X|K}(x \mid k) \ p_K(k) = p_{K|X}(k \mid x) \ p_X(x)$$

A. Can you define a reasonable **loss function** in the following cases?

- lacktriangle automated ZIP-code recognition (OCR). K-set of all ZIP-codes, $D=K\cup\{\text{reject}\}$. "reject" means "a human shall decide..."
- lacktriangle automated cervical cancer screening, $K = \{ \text{pre-cancer, healthy} \}$, $D = \{ NAD, check up nec. \}$



nuclear reactor, $K = \{ \text{safe mode, dangerous state} \}, D = K$

- 4/11
- **B.** Are the hidden states $k \in K$ random events (i.e. can we assign probabilities $p_K(k)$?) in the following cases?
 - lacktriangle automated ZIP-code recognition (OCR). K-set of all ZIP-codes
 - lacktriangle isolated word speech recognition for a service robot, K-vocabulary
 - nuclear reactor, K={safe mode, dangerous state}
- **C.** Are the observed features $x \in X$ given the hidden state $k \in K$ random events? Can we assign probabilities $p_{X|K}(x \mid k)$ to them? Consider the following case
 - ◆ The service robot (mentioned above) is controlled by a fixed set of speakers $s \in S$. If $x \in X$ denotes the audio signal and $k \in K$ denotes the word (class), then $p_{X|SK}(x \mid s, k)$ is a (conditional) probability. But $s \in S$ is not necessarily random!

Conclusion: We need different decision strategies if the criteria for Bayesian decision making are not met!

A. Neyman-Pearson task

- lacktriangle observations $x \in X$, hidden states k = 1 normal, k = 2 dangerous, i.e., $K = \{1, 2\}$.
- p.d.s $p_{X|K}(x \mid k)$ are known
- ullet decision strategy: given x decide if the object is in normal or dangerous state, i.e.
 - partition X into two subsets $X_1 \cap X_2 = \emptyset$, $X_1 \cup X_2 = X$ or, more general,
 - $\alpha_{1,2} \colon X \to [0,1]$, where $\alpha_1(x) + \alpha_2(x) = 1$, $\forall x \in X$
- each strategy is characterised by two numbers

$$\sum_{x \in X_2} p_{X|K}(x \mid 1) = \sum_{x \in X} \alpha_2(x) p_{X|K}(x \mid 1)$$
 false alarm
$$\sum_{x \in X_1} p_{X|K}(x \mid 2) = \sum_{x \in X} \alpha_1(x) p_{X|K}(x \mid 2)$$
 overlooked danger

Task: Choose the strategy which minimises the probability of false alarm subject to: the probability of overlooked danger is less then ϵ .

3. Formulation of non-Bayesian tasks

Neyman, Pearson (1928,1933) optimal strategy decides based on

$$\frac{p_{X|K}(x\mid 1)}{p_{X|K}(x\mid 2)} \leq \theta$$

where θ is some threshold.

3. Formulation of non-Bayesian tasks

- ♦ as in Neyman-Pearson task no loss function, hidden states are non-random
- p.d.s $p_{X|K}(x \mid k)$ are known
- lacktriangle in contrast to N-P, hidden states $k \in K$ are symmetric

The decision strategy

- lack partitions X into |K| subsets, $\bigcup_{k\in K}X_k=X$, $X_k\cap X_{k'}=\emptyset$ or, more general,
- $\alpha_k \colon X \to [0,1]$, where $\sum_{k \in K} \alpha_k(x) = 1$, $\forall x \in X$

and is characterised by |K| numbers (error probabilities)

$$\omega_k(\alpha) = \sum_{x \notin X_k} p_{X|K}(x \mid k) = \sum_{x \in X} \left(1 - \alpha_k(x)\right) p_{X|K}(x \mid k)$$

Task: Choose the strategy which minimises the maximum of these numbers

$$\alpha^* = \underset{\alpha \in \mathcal{A}}{\operatorname{arg\,min\,max}} \ \omega_k(\alpha)$$

3. Formulation of non-Bayesian tasks

$$k^* = \underset{k \in K}{\operatorname{arg\,max}} \left[\tau_k \ p_{X|K}(x \mid k) \right]$$

where τ_k , $k \in K$ are some non-negative weights.

C. Wald task

Generalise the Minimax task by allowing for rejection (i.e. introduce X_0 or α_0). Each strategy is now characterised by (modified) numbers ω_k and numbers

$$\chi_k = \sum_{x \in X_0} p_{X|K}(x \mid k) = \sum_{x \in X} \alpha_0(x) \ p_{X|K}(x \mid k)$$

Task: minimise the highest rejection probability, i.e., $\max_{k \in K} \chi_k$ subject to: all misclassification probabilities are less then some ϵ , i.e., $\omega_k < \epsilon$, $\forall k \in K$.

The optimal decision strategy for the case |K| = 2: compare the likelihood ratio

$$\gamma(x) = \frac{p_{X|K}(x \mid 1)}{p_{X|K}(x \mid 2)}$$

with two thresholds θ_1 and θ_2 .

How to find the optimal decision strategy for a particular task of non-Bayesian decision making?

All these tasks are usually **linear optimisation tasks**. Apply duality for LP and consider **complementary slackness**.

Example: Neyman-Pearson task

$$\begin{array}{ll} \text{minimise} & \sum_{x \in X} p_{X|K}(x \mid 1) \; \alpha_2(x) \\ \\ \text{subject to} & -\sum_{x \in X} p_{X|K}(x \mid 2) \; \alpha_1(x) \geqslant -\epsilon \qquad \qquad | \; \tau \geqslant 0 \\ \\ & \alpha_1(x) + \alpha_2(x) = 1, \quad \forall x \in X \qquad \qquad | \; t(x) \\ \\ & \alpha_1(x), \alpha_2(x) \geqslant 0, \quad \forall x \in X \end{array}$$

4. Solving non-Bayesian tasks

The dual task reads

$$\begin{array}{ll} \text{maximise} & \sum_{x \in X} t(x) - \epsilon \tau \\ \\ \text{subject to} & t(x) - p_{X|K}(x \mid 2) \; \tau \leqslant 0, \quad \forall x \in X \qquad \qquad |\; \alpha_1(x) \geqslant 0 \\ \\ & t(x) \leqslant p_{X|K}(x \mid 1), \quad \forall x \in X \qquad \qquad |\; \alpha_2(x) \geqslant 0 \\ \\ & \tau \geqslant 0 \end{array}$$

and complementary slackness

$$\alpha_1^*(x) [\tau^* p_{X|K}(x \mid 2) - t^*(x)] = 0 \quad \forall x \in X$$

 $\alpha_2^*(x) [p_{X|K}(x \mid 1) - t^*(x)] = 0 \quad \forall x \in X$

where the asterisk is used to denote the solution of the primal and dual task.

4. Solving non-Bayesian tasks

It follows:

$$t^*(x) = \min[p_{X|K}(x \mid 1), \tau^* p_{X|K}(x \mid 2)]$$

and the optimal decision reads

- decide for k = 1 (i.e. $\alpha_1^*(x) = 1$) if $p_{X|K}(x \mid 1) > \tau^* p_{X|K}(x \mid 2)$
- lack decide for k=2 (i.e. $\alpha_2^*(x)=1$)) if $p_{X\mid K}(x\mid 1)<\tau^*\,p_{X\mid K}(x\mid 2)$

i.e. the decision is made based on the liklehood ratio

$$\gamma(x) = \frac{p_{X|K}(x \mid 1)}{p_{X|K}(x \mid 2)} \le \tau^*$$

More details in Chapter 2 of

Schlesinger M.I., Hlaváč V.: Ten lectures on statistical and structural pattern recognition. Kluwer Academic Publisher, Dordrecht, The Netherlands, 2002, 519 p.