PRG — PROGRAMMING ESSENTIALS

Michal Reinstein

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~reinsmic/
mailto:reinstein.michal@fel.cvut.cz

e

TESTING @

Including proves invaluable if the project
becomes larger or if we have to return to it to make a small
change after a long absence

e Tests serve as a form of — by reading through

test cases we can get an idea of the expected behavior

e Test driven approach — , thereby creating a

for what the program is supposed to do, and
filling in the actual program code

il SELECTING TEST CASES @

* Two major approaches: or testing

* In testing treat tested function like an opaque
“black box” — only think about what the function is supposed
to do
(strategies: ,)

* In testing choose test cases by analyzing the code

inside our function
(strategies: ,)

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html

TESTING @ =

Example: sum digits ()

Specifications: In module tools.py, create function sum digits (string) which return the sum of all digits in string.

Solution: We create the required module as follows:

s%writefile tools.py
def sum digits(string):

"""Return the sum of all digits in the string"""

Fsum = 0
for ch in string:
if ch in '012346789':
sum += int (ch)
return sum

Writing tools.py

Are we finished? How do we test the code?

TESTING

Option 1: Try to use it in Python shell

>>> from tools import sum digits
>>> sum digits('l, 2, 3, dee, dah, dee')

6

e We have tested a single test case.

¢ We have to manually check the correctness of the result.
e What if we want to run the test again?

TESTING

Option 2: Including the test code directly in the module

The code previously written on Python console can be stored directly with the module (or in some other module).

s%writefile tools2.py
def sum digits(string):
"""Return the sum of all digits in the string"""
sum = 0
for ch in string:
if ch in '012346789':
sum += int (ch)
return sum

if name == "_ main ":
All the code below is executed only when the file is run as a script.
print (sum digits('l, 2, 3, dee, dah, dee'))

TESTING

import tools2 # "Nothing" happens when we import the module (desired),
run tools2.py # ... but the testing code is executed when we run the module!
6

o We still test a single test case only.
e We still have to manually check the correctness of the result.
e But we can run the test easilly. As many times as we want!

TESTING

Option 3: Check the correctness of the result automatically

Instead of mere printing out the result, we can check its correctness!

s%writefile tools3.py
def sum digits(string):
"""Return the sum of all digits in the string"""
sum = 0
for ch in string:
if ch in '012346789"':
sum += int (ch)
return sum

if name == " main ":
observed = sum digits('l, 2, 3, dee, dah, dee')
expected = 6
if observed == expected:

print('.")
else:
print ('Test failed.')
print ('- Expected:', str (expected))
print('- But got: ', str (observed))

TESTING @

run tools3.py

o We still test a single test case only.
¢ But we do not have to manually check the correctness of the result, we can immediately see if the test passed or not.
¢ And we can run the test easilly. As many times as we want!

TESTING

Our own module for testing!

The process of checking the correctness of a result may be extracted to a function that will

e allow us to write tests using only a little code,
e be part of a module that can be reused in many projects.

Let's create module testing with function test_equal () which shall have 3 parameters:

e the observed and expected values, and
¢ an optional name of the test.

The function shall print

e " " if the test passes, or
¢ an informative message about the failure, if the test fails.

10

TESTING

$%writefile testing.py
import sys

def quote (name) :
if name:
name —_ mrmn + name + mi "
return name

def test equal (observed, expected, name='"):
"""Compare the observed and expected results"""
if observed == expected:

print('.', end='")
else:

linenum = sys. getframe(l).f lineno # Get the caller's line number.

print ("\nTest {}at line {} FAILED:".format (quote (name), linenum))
print ("- Expected:", str (expected))
print ("- But got: ", str(observed))

TESTING

With the help of our testing module, we can rewrite the tools module as follows:

sswritefile tools4d.py
from testing import test equal

def sum digits(string):
"""Return the sum of all digits in the string"""
sum = 0
for ch in string:
if ch in '012346789"':
sum += int (ch)
return sum

if name == " main ":

test equal (sum digits('l, 2, 3, dee, dah, dee'), 6, 'Test 1')

12

TESTING @

run toolsd.py

We still test a single test case only.

But we do not have to manually check the correctness of the result, we can immediately see if the test passed or failed.
And we do not need to write much code to test a single case!

And we can run the tests easilly. As many times as we want!

13

TESTING

Adding more tests

When we have more test cases, we can add them either

e totheif — name =="_main__ " section of the main file, or

e to a separate testing module.

Let's create a separate testing module.

s%writefile test tools.py
from testing import test equal
from tools4 import *

def test sum digits():
test equal (sum digits(''), O
test equal (sum digits('0"’
test equal (sum digits('l'
test equal (sum digits('2'
test equal (sum digits('3'
test equal (sum digits('4'

14

-

r

-

4

-

4

-

4

-

test equal (sum digits('6'
test equal (sum digits('7'
test equal (sum digits('8'
test equal (sum digits('9"'),
test equal (sum digits('1l, 2,

14

-

4

-

4

-

W oo Joy Ul b WN B O~
~

w ~

)
)
)
)
)
test equal (sum digits('5"'),
)
)
)
)

Run the test suite
test sum digits()

'Test empty string')

r

'Test
'Test
'Test
'Test
'Test
'Test
'Test
'Test
'Test
'Test

dee,

0")
1")
2")
3")
4")
5")
6')
7")
8'")
9'")
dah, dee'), 6,

'"Non trivial test')

14

TESTING @

15

$run test tools.py

Test 'Test 5' at line 11 FAILED:
- Expected: 5
- But got: O

Ha! We have an error in our code! Can you find it?

With the help of a testing framework:

We can easilly build comprehensive test suites.

We do not have to manually check the correctness of the result, we can immediately see if the test passed or failed.
We do not need to write much code to test a single case!

We can run the test suite easilly. As many times as we want.

Other testing frameworks

Our module testing is not an original idea. Python has several popular testing frameworks, e.g. modules

e doctest and

e unittest.

TESTING @

16

Testing the code using doctest

e Create the habit to include examples of the functions' usage in their docstrings (see below).
e Module doctest allows you to easilly execute the examples from the docstrings:

s%writefile modulewithdoctests.py
def average(x,y):
"""Return the average of 2 numbers.

o

>>> average (10, 20)
15.0

>>> average (1.5, 2.0)
1.75

mmn

. return (x +vy) / 2

—

if name == " main ":
import doctest
doctest.testmod (verbose=True)

Writing modulewithdoctests.py

TESTING

@

Then, if you run the module, the tests are executed automatically and compared with their expected results:

%run modulewithdoctests.py

Trying:
average (10, 20)
Expecting:
15.0
ok
Trying:
average (1.5, 2.0)
Expecting:
1.75
ok
1 items had no tests:
__main
1l items passed all tests:
2 tests in main .average
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

17

@ TESTING @

18

Summary

e Testing your own code is extremely important!

e You should learn several ways how to test your code.

¢ Using a testing framework, from simple ones (like our testing) to comprehensive ones
(like unittest), gives you an considerable advantage!

e Testing frameworks like unittest are common to many other languages. If you learn it for
one languaga, you will profit from it also in the other languages.

il UNITTESTS @

19
ourprog/
ourprog/
__init__.py
db . py
gui.py
rules.py
test/
__init__.py
test_db.py
test _gui.py
test_rules. py
setup. py
* Advanced framework for testing — python module
* All testsin a file hierarchy from main the program
(directory test/)
* Createa and put them

allin a

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html

UNITTESTS

Suppose that our rutles.py file contains a single class:

class Person:
TITLES = ('Dr', '"Mr', 'Mrs', 'Ms')

def __init__ (, hame, surname):
.hame = name
.surname = surname

def fullname(, title):
if title not in .TITLES:
raise ValueError("Unrecognised title: '%s'" % title)

return "%s %s %s" % (title, .hame, .surname)

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html

UNITTESTS

Suppose that our rules.py file contains a single class:

class Person:
TITLES = ('Dr', '"Mr', 'Mrs', 'Ms'")
def __init__(, hame, surname):
.name = name
.surname = surname
def fullname(, title):
if title not in .TITLES:
raise ValueError("Unrecognised title: '%s'" % title)

return "%s %s %s" % (title, .hame, .surname)

Our test_rules.py file should look something like this:

import unittest
from ourprog.rules import Person

class TestPerson(unittest.TestCase):

def setUp()
.person = Person("Jane", "Smith")

def test_init():

.assertEqual(.person.name, "Jane")
.assertEqual(.person.surname, "Smith")
def test_fullname():
.assertEqual(.person.fullname("Ms"), "Ms Jane Smith")
.assertEqual(.person.fullname("Mrs"), "Mrs Jane Smith")

.assertRaises(ValueError, .person. fullname, "HRH")

21

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html

UNITTESTS @

import unittest
from ourprog.rules import Person

class TestPerson(unittest.TestCase):

def setUp() :
.person = Person("Jane", "Smith")

def test_init()
.assertEqual(.person.name, "Jane")
.assertEqual(.person.surname, "Smith")

def test_fullname() -
.assertEqual(.person.fullname("Ms"), "Ms Jane Smith")

.assertEqual(.person.fullname("Mrs"), "Mrs Jane Smith")
.assertRaises(ValueError, .person.fullname, "HRH")
In the package, the class serves as a

for tests to
For each collection of tests define a class that
from and define
All the tests in this test the same class, and there is
(including the initialization method)
Create multiple classes to test each of own classes

22

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html

il UNITTESTS G

import unittest 23
from ourprog.rules import Person

class TestPerson(unittest.TestCase):

def setUp():
.person = Person("Jane", "Smith")

def test_init()
.assertEqual(.person.name, "Jane")
.assertEqual(.person.surname, "Smith")

def test_fullname()

.assertEqual(:person.fullname(”Ms"), "Ms Jane Smith")
.assertEqual(.person.fullname("Mrs"), "Mrs Jane Smith")
.assertRaises(ValueError, .person.fullname, "HRH")

* Set up the class to be tested in the method

e Use method to execute statements

e Use the of to check if certain

things are true about our program behavior

()

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html

Ao

UNITTESTS @

python
python

python
python
python

python

24
if _name__ == "' main__"':
unittest.main()

-m unittest

-m unittest discover

-m unittest ourprog.test.test_rules

-m unittest ourprog.test.test_rules.TestPerson

-m unittest ourprog.test.test_rules.TestPerson.test_fullname

-m unittest -v test_rules

(test automation frameworks)

Run all the tests from a single file by adding at

the bottom of and

Execute the unittest module on the and use it

to import and run some or all of our tests

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html

UNITTESTS @

25

def suite():
suite = unittest.TestSuite()
suite.addTest(TestPerson)
return suite

The package allows to

This way many related tests can be executed at once

EXAMPLE:
One way to add all the tests from the class to a
suite is to add for example function to the

file

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html

UNITTESTS — DOCUMENTATION @

26

The unittest module provides a rich set of tools for constructing and running tests. This section
demonstrates that a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three string methods:

import unittest
class TestStringMethods(unittest.TestCase):

def test upper(self):
self.assertEqual('foo'.upper(), 'FOO0')

def test isupper(self):
self.assertTrue('FOO'.isupper())
self.assertFalse('Foo'.isupper())

def test split(self):
s = 'hello world'
self.assertEqual(s.split(), ['hello', 'world'])
check that s.split fails when the separator is not a string
with self.assertRaises(TypeError):
s.split(2)

if name == main -
unittest.main()

https://docs.python.org/3.7/library/unittest.html

UNITTESTS — DOCUMENTATION @

27

A testcase is created by subclassing unittest.TestCase. The three individual tests are defined with
methods whose names start with the letters test. This naming convention informs the test runner
about which methods represent tests.

The crux of each test is a call to assertEqual() to check for an expected result; assertTrue() or
assertFalse() to verify a condition; or assertRaises() to verify that a specific exception gets
raised. These methods are used instead of the assert statement so the test runner can accumulate all
test results and produce a report.

The setUp() and tearbDown() methods allow you to define instructions that will be executed before
and after each test method. They are covered in more detail in the section Organizing test code.

The final block shows a simple way to run the tests. unittest.main() provides a command-line in-
terface to the test script. When run from the command line, the above script produces an output that
looks like this:

Ran 3 tests in 0.000s

OK

https://docs.python.org/3.7/library/unittest.html

UNITTESTS — DOCUMENTATION @

28

Passing the -v option to your test script will instruct unittest.main() to enable a higher level of
verbosity, and produce the following output:

test isupper (__ _main_ .TestStringMethods) ... ok
test split (_ _main .TestStringMethods) ... ok
test upper (_ main .TestStringMethods) ... ok

Ran 3 tests in 0.001s

OK
The above examples show the most commonly used unittest features which are sufficient to meet

many everyday testing needs. The remainder of the documentation explores the full feature set from
first principles.

* Verbosity for the tests can be defined using

https://docs.python.org/3.7/library/unittest.html

%%5 UNITTESTS — DOCUMENTATION @

29

The unittest module can be used from the command line to run tests from modules, classes or even
individual test methods:

python -m unittest test modulel test module2
python -m unittest test module.TestClass
python -m unittest test module.TestClass.test method

You can pass in a list with any combination of module names, and fully qualified class or method
names.

Test modules can be specified by file path as well:

python -m unittest tests/test something.py

* Unit tests can be executed for specified , ,
or ; path to a python file can be used as well

https://docs.python.org/3.7/library/unittest.html

il EXCEPTIONS @

30

 Whenever occurs, it creates an exception object
* The at this point and Python prints out
the traceback, which ends with an describing

the exception that occurred

— An error that occurs at runtime
— To prevent an exception from causing
our program to crash, by wrapping the block of code in
a construct
— To create a deliberate exception by using
the raise statement

http://openbookproject.net/thinkcs/python/english3e/exceptions.html

EXCEPTIONS

>>> print(55/0)
Traceback (most recent call last):

File "<interactive input>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

>>> a = []
>>> print(a[5])
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
IndexError: list index out of range

>>> tup = ("a", "b", "d", "d")
>>> tup[2] = "c"
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

The on the last line has two parts:
e the before the colon,
* and about the error after the colon

31

http://openbookproject.net/thinkcs/python/english3e/exceptions.html

/% EXCEPTIONS

filename = input("Enter a file name: ")
try:
f = open(filename, "r")
except:
print("There is no file named", filename)

* TASK: To execute an operation that might
but the program

 SOLUTION: Handle the exception using the
statement to “wrap” a region of code

« EXAMPLE: Prompt the user for the name of a file and then try
to open it. If the file does not exist, we do not want the

program to crash

32

http://openbookproject.net/thinkcs/python/english3e/exceptions.html

EXCEPTIONS @

33

def exists(filename):
try:
f = open(filename)
f.close()
return True
except:
return False

The has three separate clauses, or parts,
introduced by the keywords

The , or the clauses can be omitted
The try statement executes and in
the first block and

If any
and then continues

http://openbookproject.net/thinkcs/python/english3e/exceptions.html

EXCEPTIONS @

>>> while True:

The

try:
X = int(input("Please enter a number: "))
break
except ValueError:
print("Oops! That was no valid number. Try again...")

try statement works as follows.

First, the try clause (the statement(s) between the try and except keywords) is executed.

If no exception occurs, the except clause is skipped and execution of the try statement is
finished.

If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then
if its type matches the exception named after the except keyword, the except clause is ex-
ecuted, and then execution continues after the try statement.

If an exception occurs which does not match the exception named in the except clause, it is
passed on to outer try statements; if no handler is found, it is an unhandled exception and exe-
cution stops with a message as shown above.

except (RuntimeError, TypeError, NameError):
pass

34

https://docs.python.org/3/tutorial/errors.html

il EXCEPTIONS @

>>> def divide(x, y): 35
try:
result = x / y
except ZeroDivisionError:
print("division by zero!")
else:
print("result is", result)
finally:
print("executing finally clause")

>>> divide(2, 1)

result is 2.0

executing finally clause

>>> divide(2, 0)

division by zero!

executing finally clause

>>> divide("2", "1")

executing finally clause

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str' and 'str'

* The clause is
whether the exception has occurred or not
 When an exception is not handled by corresponding except
clause (or is raised in the except or the else clause), it is re-
raised after the finally (see the example for division of strings)

https://docs.python.org/3/tutorial/errors.html

il EXCEPTIONS G

36

for arg in sys.argv[l:]:

try:
f = open(arg, 'r')

except OSError:
print('cannot open', arg)

else:
print(arg, 'has', len(f.readlines()), 'lines')
f.close()

The use of the else clause is better than adding additional code to the try clause because it avoids
accidentally catching an exception that wasn’t raised by the code being protected by the try ...
except statement.

e Optional clause that must follow all clauses
* Useful for code that must be executed if the clause
an exception

https://docs.python.org/3/tutorial/errors.html

@ EXCEPTIONS @

def get age():
age = int(input("Please enter your age: "))
if age < 0:
Create a new instance of an exception
my_error = ValueError("{0} is not a valid age".format(age))
raise my error
return age

37

>>> get_age()
Please enter your age: 42

42
>>> get_age()
Please enter your age: -2

Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
File "learn exceptions.py", line 4, in get age
raise ValueError("{0} is not a valid age".format(age))
ValueError: -2 is not a valid age

* |f the program detects an error condition, an exception can be

« EXAMPLE: take input from the user and check that the
number is non-negative

http://openbookproject.net/thinkcs/python/english3e/exceptions.html

/%% EXCEPTIONS @

38

e Line 5 creates an , the ,
that encapsulates specific information about the error

e EXAMPLE: Assume that in this case function A called B which
called C which called D which called

* The raise statement on line 6 carries this object out as a
kind of “return value”, and immediately exits from
get_age() to its caller D

* Then D again exits to its caller C, and C exits to B and so
on, each returning the exception object to their caller, until
it encounters a try ... except that can handle the exception

http://openbookproject.net/thinkcs/python/english3e/exceptions.html

il EXCEPTIONS G

39
raise ValueError("{0} is not a valid age".format(age))
* |tis often the case that lines 5 and 6 (
object, then) are combined into a single
statement
* Those are , so it makes

sense to keep the two steps separate

— multiple except clauses to handle different kinds of
exceptions

http://openbookproject.net/thinkcs/python/english3e/exceptions.html
https://docs.python.org/3/tutorial/errors.html

REFERENCES @

40

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under)

Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers
(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
Source repository is at

For offline use, download a zip file of the html or a pdf version
from

This lecture re-uses selected parts of the PYTHON TEXTBOOK

(released under Revision 8e685e710775)

http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html
https://creativecommons.org/licenses/by-sa/4.0/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

