PRG — PROGRAMMING ESSENTIALS

Michal Reinstein

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~reinsmic/
mailto:reinstein.michal@fel.cvut.cz

il EXAMPLE — PRIME NUMBERS ©

TASK: Write a program to generate a list of all prime numbers
less than 20

* Before starting it is important to note what a prime number is:

* A prime number has to be a positive integer
* Divisible by exactly 2 integers (1 and itself)
e 1isnotaprimenumber

* While there are many different ways to solve this problem,
here are a few different approaches

SOURCE:

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

@ EXAMPLE - PRIME NUMBERS

primes = []
possiblePrime range(

isPrime =
num range(possiblePrime):
possiblePrime % num ==
isPrime =

isPrime:
primes.append(possiblePrime)

 Example of a solution

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

@ EXAMPLE — PRIME NUMBERS @

primes = []
possiblePrime range(

icPrime =
num range(possiblePrime):

possiblePrime % num ==
isPrime =

isPrime:
primes.append(possiblePrime)

 Approach 1: notice that as soon is False, it is
inefficient to keep on iterating. It would be more efficient to

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

@ EXAMPLE — PRIME NUMBERS @

primes = []
possiblePrime range (

isPrime =

num range (possiblePrime):
possiblePrime % num ==
isPrime =

isPrime:
primes.append(possiblePrime)

* Approach 2: is more efficient than approach 1 because as
soon as you find a given number isn’t a prime number you can
exit out of loop using break.

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

N
/@ EXAMPLE — PRIME NUMBERS m p
6

primes = []
possiblePrime range (

isPrime =
num range(int(possiblePrime xx
possiblePrime % num ==
isPrime =

isPrime:
primes.append(possiblePrime)

* Approach 3: is similar to the approach 2 except the inner
range function. Notice that the inner range function is now:

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

EXAMPLE — PRIME NUMBERS

@

We use the properties of
Composite number is a
(which has factors other than 1 and itself)
Every composite number has a

(proof

number

)

that is

EXAMPLE: Factors of 15 below; the factors in red are just the
reverses of the green factors so by the commutative property
of multiplication 3 x5 =5 x 3 we just need to include the

“green” pairs to be sure that we have all the factors.

Factor 1

3

Factor 2

15

5

Factors of 15 |

http://mathworld.wolfram.com/Factor.html
http://mathandmultimedia.com/2012/06/02/determining-primes-through-square-root/
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

@ EXAMPLE — PRIME NUMBERS @

timeit

print(timeit.timeit('approachl(500)' =globals()

print(timeit.timeit('approach2(500)' =globals()

print(timeit.timeit('approach3(500)' =globals()

e Evaluating performance

* REFERENCE:

https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19
https://hackernoon.com/prime-numbers-using-python-824ff4b3ea19

