PRG — PROGRAMMING ESSENTIALS

Michal Reinstein

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~reinsmic/
mailto:reinstein.michal@fel.cvut.cz

EXAMPLES

datetime

Person:

(name, surname, birthdate, address, telephone, email):
.name = name
.Surname = surname
.birthdate = birthdate

.address = address
.telephone = telephone
.email = email

age() E
today = datetime.date.today()
age = today.year - .birthdate.year

today < datetime.date(today.year .birthdate.month
.birthdate.day):
age -=

age

person = Person(
"Jane"
IIDoeII
datetime.date()
"No. 12 Short Street, Greenville"
"555 456 0987"
"jane.doe@example.com"

EXAMPLES FROM Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

il EXAMPLES @

(person.name)

Jane
(person.email)
jane.doe@example.com
(person.age())
25

Exercise 1

1. Explain what the following variables refer to, and their scope:

Person

person

surname

self

age (the function name)

age (the variable used inside the function)

self.email

© N oLk~ WD

person.email

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

Answer to exercise 1

1. 1. rerson is a class defined in the global scope. It is a global variable.
2. person is an instance of the rerson class. It is also a global variable.
3. surname is a parameter passed intothe init_ method - it is a local variable in the scope
ifthe init method.
4. self is a parameter passed into each instance method of the class - it will be replaced by
the instance object when the method is called on the object with the . operator. It is a new

local variable inside the scope of each of the methods - it just always has the same value,
and by convention it is always given the same name to reflect this.
5. age is amethod of the rerson class. It is a local variable in the scope of the class.

6. age (the variable used inside the function) is a local variable inside the scope of the age

method.
7. self.email isn't really a separate variable. It's an example of how we can refer to attributes

and methods of an object using a variable which refers to the object, the . operator and
the name of the attribute or method. We use the seif variable to refer to an object inside
one of the object’s own methods - wherever the variable se1f is defined, we can use
self.email , self.age() , etc..
8. person.email is another example of the same thing. In the global scope, our person instance
is referred to by the variable name person . Wherever person is defined, we can use

person.email , person.age() , etc..

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

datetime

Person:

(name, surname, birthdate, address, telephone, email):
.hame = name
.Surname = surname
.birthdate = birthdate

.address = address
.telephone = telephone
.email = email

age() E
today = datetime.date.today()
age = today.year - .birthdate.year

today < datetime.date(today.year .birthdate.month
.birthdate.day):

age -=

age

Exercise 2 %

1. Rewrite the rerson class so that a person’s age is calculated for the first time when a new
person instance is created, and recalculated (when it is requested) if the day has changed since

the last time that it was calculated.

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES

Answer to exercise 2
1. Here is an example program:

import datetime
class Person:

def __init__ (, hame, surname, birthdate, address, telephone, email):
.name = name
.surname = surname
.birthdate = birthdate

.address = address

.telephone = telephone
.email = email

._age = None
._age_last_recalculated = None
._recalculate_age()
def _recalculate_age():
today = datetime.date.today()
age = today.year - .birthdate.year

if today < datetime.date(today.year, .birthdate.month, .birthdate.day):
age -=1

._age = age
._age_last_recalculated = today

def age():
if (datetime.date.today() > ._age_last_recalculated):
._recalculate_age()

return ._age

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

Exercise 3

1. Explain the differences between the attributes name , surname and profession , and what

values they can have in different instances of this class:

class Smith:

surname = "Smith"
profession = "smith"
def __init__ (, name, profession=None):

.name = name
if profession is not None:
.profession = profession

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

class Smith:
surname = "Smith"
profession = "smith"

def __init__ (self, name, profession=None):
self.name = name
if profession is not None:
self.profession = profession

Answer to exercise 3

1. name is always an instance attribute which is set in the constructor, and each class instance can
have a different name value. surname is always a class attribute, and cannot be overridden in
the constructor - every instance will have a surname value of Smith . profession is a class

attribute, but it can optionally be overridden by an instance attribute in the constructor. Each
instance will have a profession value of smith unless the optional surname parameter is passed
into the constructor with a different value.

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

%% EXAMPLES @

Exercise 4

1. Create a class called numbers , which has a single class attribute called muLTIPLIER ,and a
constructor which takes the parameters x and y (these should all be numbers).

1. Write a method called add which returns the sum of the attributes x and vy .

2. Write a class method called muitipiy , which takes a single number parameter a2 and
returns the product of a and MULTIPLIER.

3. Wrrite a static method called subtract , which takes two number parameters, » and ¢,
and returns b - c.

4. Write a method called vaiue which returns a tuple containing the values of x and vy .
Make this method into a property, and write a setter and a deleter for manipulating the

valuesof x and vy .

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES

Answer to exercise 4
1. Here is an example program:

class Numbers:
MULTIPLIER = 3.5

def __init__(self, x, y):

self.x
self.y

S
X
y

def add(self):

return self.x + self.y

@classmethod
def multiply(cls, a):

return cls.MULTIPLIER * a

@staticmethod
def subtract(b, c¢):
return b - ¢

@property
def value(self):

return (self.x, self.y)

@value.setter

def value(self, xy_tuple):
self.x, self.y = xy_tuple

@value.deleter

def value(self):
del self.x
del self.y

10

Create a class called numbers , which has a single class attribute called muLTIPLIER ,and a

constructor which takes the parameters x and y (these should all be numbers).

1. Write a method called add which returns the sum of the attributes x and vy .

2. Write a class method called muttiply , which takes a single number parameter a and
returns the product of 2 and MULTIPLIER .

3. Write a static method called subtract , which takes two number parameters, b and ¢,
andreturns b - c.

4. Write a method called vaiue which returns a tuple containing the values of x and y .
Make this method into a property, and write a setter and a deleter for manipulating the
valuesof x and vy .

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

@é EXAMPLES @

11

Exercise 5

1. Create an instance of the rerson class from example 2. Use the dir function on the instance.

Then use the dir function on the class.

1. What happens if you call the _ str method on the instance? Verify that you get the
same result if you call the str function with the instance as a parameter.

2. What is the type of the instance?

3. What is the type of the class?
4. Write a function which prints out the names and values of all the custom attributes of

any object that is passed in as a parameter.

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

@ INSPECTING OBJECTS @

Person:
__init__(self, name, surname):
self.name = name
self.surname = surname

fullname(self):
"%s %s" % (self.name, self.surname)

Person("Jane", "Smith")

(dir(jane))
' _ipit__ "', '_module__', 'fullname', 'name', 'surname’]

* Use function dir for inspecting objects: output list of the
attributes and methods

EXAMPLES FROM UNDER Revision 8e685e710775

12

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

13
Answer to exercise 5
1. 1. You should see something like '< main__ .Person object at 0x7fcb233301d6>" .
2. <class '_main__.Person'> - _ main__ is Python’s name for the program you are executing.

3. <class 'type'> - any class has the type type .
4. Here is an example program:
def print_object_attrs(any_object):

for k, v in any_object. dict__ .items():
print("%s: %s" % (k, v))

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

il EXAMPLES @

14

Exercise 6

1. Write a class for creating completely generic objects: its __ init__ function should accept any

number of keyword parameters, and set them on the object as attributes with the keys as
names. Writea _ str__ method for the class - the string it returns should include the name of

the class and the values of all the object’s custom instance attributes.

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES @

15

Answer to exercise 6
1. Here is an example program:

class AnyClass:

def __init__ (, **kwargs):
for k, v in kwargs.items():
setattr(, k, v)

def __ str__ ():
attrs = ["%s=%s" % (k, v) for (k, v) in .__dict__.items()]
classname = .__Class__.__name___
return "%s: %s" % (classname, " ".join(attrs))

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

REFERENCES @

16

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under)

Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers
(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
Source repository is at

For offline use, download a zip file of the html or a pdf version
from

This lecture re-uses selected parts of the PYTHON TEXTBOOK

(released under Revision 8e685e710775)

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

