
1

PRG – PROGRAMMING ESSENTIALS
1

Lecture 7 – Files, I/O
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal Reinštein
Czech Technical University in Prague, 

Faculty of Electrical Engineering, Dept. of Cybernetics, 
Center for Machine Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

07/11/2019 Michal Reinštein, Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~reinsmic/
mailto:reinstein.michal@fel.cvut.cz


2

RECAP: DICTIONARIES
2

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• EXAMPLE: Function that counts the number of occurrences of 
a letter in a string using a frequency table of the letters in the 
string (how many times each letter appears)

• Dictionary ideal for frequency tables

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html


3

FILES
3

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• During program execution, its data are stored in random 

access memory (RAM)

• RAM is fast and inexpensive but volatile
• To preserve data when the system is not powered the data 

has to be written to a non-volatile storage medium
• Data on non-volatile storage media are stored in named 

locations on the media called files
• By reading and writing files, programs can save information 

between program runs

• To open a file, we specify its name (path) and indicate 
whether we want to read or write.

http://openbookproject.net/thinkcs/python/english3e/files.html


4

FILES
4

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: program writes three lines of text into a file

• Line 1: the open function takes two arguments: 
the first is the name of the file, and the second is the mode

• Mode "w" means that we are opening the file for writing:

• If there is no file on the disk, it will be created
• If the file exists it will be replaced

http://openbookproject.net/thinkcs/python/english3e/files.html


5

FILES
5

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: program writes three lines of text into a file

• Opening a file creates a file handle
• Variable myfile refers to the new handle object

• Program calls methods on the handle (dot notation) changing 
the actual file which is usually located on our disk

http://openbookproject.net/thinkcs/python/english3e/files.html


6

FILES
6

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• To store data into the file we invoke the write method on the 
handle (lines 2, 3 and 4)

• Lines 2 – 4: should usually be replaced by a loop that writes 
more lines into the file, i.e. the content we want to store

• Line 5: closing the file handle tells the system that writing the 
content is finished and makes the disk file available for 
reading by other programs

http://openbookproject.net/thinkcs/python/english3e/files.html


7

FILES – HANDLE 
7

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

http://openbookproject.net/thinkcs/python/english3e/files.html


8

FILES
8

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• Reading a file one line-at-a-time using the mode argument 
is "r" for reading

• More extensive logic into the body of the loop at line 8

http://openbookproject.net/thinkcs/python/english3e/files.html


9

FILES
9

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• Line 8: the newline character that print usually appends to 
our strings is suppressed

• The string already has its own newline: the readline method 
in line 3 returns everything up to and including the newline

• The end-of-file detection logic: when there are no more lines 
to be read from the file, readline returns an empty string 
(no newline at the end, hence its length is 0)

http://openbookproject.net/thinkcs/python/english3e/files.html


10

FILES – END OF FILE
10

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

http://openbookproject.net/thinkcs/python/english3e/files.html


11

FILES – READLINES vs. READ
11

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: fetch data from a disk file, perform processing 
(sorting) and turn it into a list of lines written back into the file

• The readlines method in line 2 reads all the lines and returns 
a list of the strings

http://openbookproject.net/thinkcs/python/english3e/files.html


12

FILES – READLINES vs. READ
12

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: reading the whole file at once
• Read the complete contents of the file into a single string, and 

then to use string-processing skills to work with the contents

• Not interested in the line structure of the file

• EXAMPLE: use the split method on strings which can break a 
string into words (e.g. counting the number of words in a file)

• The "r" mode in line 1 is omitted since by default Python 

opens the file for reading

http://openbookproject.net/thinkcs/python/english3e/files.html


13

FILES
13

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

http://openbookproject.net/thinkcs/python/english3e/files.html


14

FILES – BINARY 
14

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• Working with binary files
• Binary files usually hold photographs, videos, zip files, 
executable programs

• Binary files are not organized into lines and cannot be opened 
with a normal text editor

• Reading binary files gets bytes back rather than a string

http://openbookproject.net/thinkcs/python/english3e/files.html


15

FILES – BINARY
15

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• Mode "b" to tell Python that the files are binary
• Line 5: read takes an argument telling how many bytes to 

attempt to read from the file
(read and write up to 1024 bytes on each iteration of the loop)

• When an empty buffer is returned from the attempt to read, 
break out of the loop and close both the files

• The type of buf is bytes

http://openbookproject.net/thinkcs/python/english3e/files.html


16

EXAMPLE – FILE CONTENT FILTER
16

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

http://openbookproject.net/thinkcs/python/english3e/files.html


17

EXAMPLE – FILE CONTENT FILTER
17

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: filter that copies one file to another, omitting any 
lines that begin with #, i.e. comments

• Line 9: the continue statement skips over remaining lines in 
the current iteration of the loop, but the loop will still iterate

http://openbookproject.net/thinkcs/python/english3e/files.html


18

EXAMPLE – FILE CONTENT FILTER
18

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• If text is the empty string, the loop exits
• If the first character of text is a hash mark, the flow of 

execution goes to the top of the loop, ready to start 
processing the next line

• Only if both conditions fail, writing the line into the new file 

http://openbookproject.net/thinkcs/python/english3e/files.html


19

DIRECTORIES
19

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



20

DIRECTORIES
20

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• Files on non-volatile storage media are organized by a set of 
rules known as a file system

• File systems are made of files and directories (and symbolic 
links), which are containers for files and other directories.

• When we create a new file by opening it and writing, the new 
file goes into the current directory

• When we want to open a file somewhere else, we have to 
specify the path to the file, which is the name of the directory 
(or folder) where the file is located

http://openbookproject.net/thinkcs/python/english3e/files.html


21

PATHS
21

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



22

PATHS
22

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



23

PATHS
23

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• A Windows path might be:
"C:/temp/words.txt" or "C:\temp\words.txt"

• Backslashes are used to escape things like newlines and tabs, 
we need to write two backslashes in a literal string to get 
one! (the length of these two strings is the same)

• We cannot use / or \ as part of a filename
(reserved as a delimiter between directory and filenames)

• The file /usr/share/dict/words should exist on Unix-based 
systems, and contains a list of words in alphabetical order

http://openbookproject.net/thinkcs/python/english3e/files.html


24

PATHS
24

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



25

FILES
25

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



26

ENCODING
26

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



27

ENCODING
27

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



28

FILES – „WITH“ STATEMENT
28

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



29

FILES – „WITH“ STATEMENT
29

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



30

FILES – „WITH“ STATEMENT
30

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



31

FILES
31

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



32

EXAMPLE – COLLATZ SEQUENCE
32

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



33

EXAMPLE – COLLATZ SEQUENCE
33

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



34

FILES – WRITE vs. APPEND
34

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



35

FILES – WRITE vs. APPEND
35

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



36

EXAMPLE – READ and WRITE
36

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



37

EXAMPLE – READ and WRITE
37

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



38

EXAMPLE – DATA FROM WEB
38

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: copy contents at some web URL to a local file

• The urlretrieve function can be used to download any kind of 
content from the Internet (resources to fetch must exist)

• Need of permissions to write to the destination filename, 
and the file will be created in the “current directory” 
(i.e. the same folder that the Python program is saved in)

• Authorization necessary if behind a proxy server

http://openbookproject.net/thinkcs/python/english3e/files.html


39

EXAMPLE – DATA FROM WEB
39

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/files.html

• Rather than saving the web resource to local disk, we read it 
directly into a string, and return it

• Opening the remote url returns a socket (handle to end of the 
connection between the program and the remote web server) 

• Call read, write, and close methods on the socket object

http://openbookproject.net/thinkcs/python/english3e/files.html


40

SUMMARY
40

07/11/2019 Michal Reinštein, Czech Technical University in Prague

source courtesy of Petr Posik BE5b33PR 2016/2017



41

REFERENCES
41

07/11/2019 Michal Reinštein, Czech Technical University in Prague

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris 
Meyers) 

• Source repository is at https://code.launchpad.net/~thinkcspy-rle-
team/thinkcspy/thinkcspy3-rle

• For offline use, download a zip file of the html or a pdf version 
from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

