
1

PRG	– PROGRAMMING	ESSENTIALS
1

Lecture	6	– Collections,	sets,	dictionaries
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal	Reinštein
Czech	Technical	University	in	Prague,	

Faculty	of	Electrical	Engineering,	Dept.	of	Cybernetics,	
Center	for	Machine	Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague



2

ADMIN
2

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017

• No	classes	on	17.11.	2017	due	to	public	holiday
• Prepare	for	the	mid-term	test 24.11.	2017	during	labs
• Preliminary	exam	dates	(check	the	faculty	system):

19.1.	2018
26.1.	2018
2.2.	2018
9.2.	2018
Multiple	choice	test,	no	materials	or	devices allowed.	
The	exam	starts	sharp	at	8:00.	
Use	the	Faculty	information	system	to	enroll (find	the	room!).



3

SEQUENCE	TYPES
3

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017

• Sequences	of	items– they	support
• membership	operator in
• querying	for	size	len
• indexing	and	slices	[]
• Iterable

• string: immutable	ordered sequence	of	characters
• tuple: immutable	ordered sequence	of	items	of	any	data	type
• list: mutable	ordered sequence	of	items	of	any	data	type



4

SET	TYPES
4

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017

• Set	types	support
• membership	operator	in
• querying	for	size	len
• iterable
• set	operations (comparisons,	union,	intersection,	subset)

• Set: mutable	unordered collection	of unique items	of	any	type
• Frozenset: immutable	unordered collection	of unique items	of	
any	data	type

• When iterated over,	sets	provide	items in	an	arbitrary	order
• Only hashable objects	may	be	added	to	a	set:
• Immutable	data	types	are	hashable (hash	value	dos	not	
change,	compare	for	equality	to	other	objects)
(int,	float,	str,	tuple,	frozenset)

• Mutable	values	are	(usually)	not	hashable	(list,	dict,	set)



5

SET	USAGE
5

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



6

SET	USAGE
6

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



7

SET	OPERATIONS
7

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



8

SET	OPERATIONS
8

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



9

SET	OPERATIONS
9

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



10

SET	OPERATIONS
10

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



11

SET	OPERATIONS
11

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



12

MAPPING	TYPES
12

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017

• A	mapping	type	is	an unordered	collection	of	key-value	pairs
• They	support
• membership	operator in
• querying	for	size	len
• iterable

• Only	hashable (i.e.	immutable)	objects	can	be	used	as	keys
• Each	key's	associated	value	may	be	of	any	data	type



13

DICTIONARIES
13

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017

• Strings,	lists,	and	tuples	— are	sequence	types	using	integers	
as	indices to	access	the	values	they	contain	within	them

• Dictionaries are	Python’s	built-inmapping	type
• They	map keys (any	immutable	type)	to	values that	can	be	
any	type	(heterogeneous)

• Other	languages:	associative	arrays	(associate	key	with	value)

• EXAMPLE:	Create	a	dictionary	to	translate	English	words	into	
Spanish	(the	keys	are	strings).	One	way	to	create	a	dictionary	
is	to	start	with	the	empty	dictionary	and	add key	:	value	pairs.

• The	empty	dictionary	is	denoted {}



14

DICTIONARIES
14

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html



15

DICTIONARIES
15

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• To	create	a	dictionary	is	to	provide	a	list	of	key:value pairs	
using	the	same	syntax	as	the	previous	output	

• Order	of	pairs	does	not	matter	– the	values	in	a	dictionary	are	
accessed	with	keys,	not	with	indices,	no	order	guaranteed

• Key	is	used	to	look	up	the	corresponding	value:	
the	key "two" yields	the	value "dos"

• Lists,	tuples,	and	strings have	been	called sequences,	because	
their	items	occur	in	order

• The	dictionary	is	compound	type	that	is	not	a	sequence
(no	indexing	or	slicing)



16

DICTIONARIES
16

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• Keys	and	values	can	be	defined	as	separate	lists	
(order	matters!)

• Lists	can	be	paired	using	zip
• Once	paired	a	dictionary	can	be	created	using	dict



17

DICTIONARIES
17

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



18

DICTIONARIES
18

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



19

DICTIONARIES
19

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



20

DICTIONARIES
20

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



21

DICTIONARIES
21

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



22

DICTIONARIES
22

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017

dict.get()method

• Returns	the	value	corresponding	to	the	key,	
if	the	key	exists	in	the	dictionary

• Returns	None if	key	is	not	in	the	dictionary	and	no	default	
value is	given,	or

• Returns	a	default	value,	if	key	does	not	exist	in	the	dictionary	
and	the	default	value	is	specified



23

DICTIONARIES
23

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



24

DICTIONARIES
24

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017

• Counter	is	a	special	kind	of	a	mapping	type	(dictionary)
• Collection	of elements which	are	stored	as	keys,	and	
their counts are	stored	as values

• Values	are	counts,	i.e.	any	integers, including	negative
• Defined	in collections module



25

DICTIONARIES
25

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



26

DICTIONARIES
26

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



27

DICTIONARIES
27

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



28

DICTIONARIES
28

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• As	in	the	case	of	lists,	because	dictionaries	are	mutable,	we	
need	to	be	aware	of	aliasing

• Whenever	two	variables	refer	to	the	same	object,	changes	to	
one	affect	the	other

• If	we	want	to	modify	a	dictionary	and	keep	a	copy	of	the	
original,	use	the copy method

• EXAMPLE: opposites is	a	dictionary	that	contains	pairs	of	
opposites



29

DICTIONARIES
29

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• Alias and opposites refer	to	the	same	object;
• Copy refers	to	a	fresh	copy	of	the	same	dictionary.	
• If	alias is	modified, opposites is	changed	as	well:

• If	copy is	modified, opposites is	unchanged:



30

DICTIONARIES
30

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• EXAMPLE:	Function	that	counts	the	number	of	occurrences	of	
a	letter	in	a	string	using	a	frequency	table	of	the	letters	in	the	
string	(how	many	times	each	letter	appears)

• Compressing	a	text	file:	because	different	letters	appear	with	
different	frequencies,	we	can	compress	a	file	by	using	shorter	
codes	for	common	letters	and	longer	codes	for	letters	that	
appear	less	frequently.

• Dictionary	ideal	for	frequency	tables



31

DICTIONARIES
31

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

ALGORITHM:
• Start	with	an	empty	dictionary
• For	each	letter	in	the	string,	find	the	current	count	(possibly	
zero)	and	increment	it

• At	the	end	the	dictionary	contains	pairs	of	letters	and	their	
frequencies

• To	display	the	frequency	table	in	alphabetical	order	use	sort()
• NOTE:	in	the	first	line	the	type	conversion	function list	is	called	
to	get	from items into	a	list	(needed	to	use	sort method)



32

NAMED	TUPLE
32

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017

• Named	tuple	is	still	a	tuple,	can	be	used	everywhere	where	
tuple	can

• In	addition	to	indexing	by	numbers	it	has	the	ability	to refer	to	
tuple	items	by	names

• Other	languages:	struct or	record
• Function namedtuple creates a	customized	tuple	data	type:
• Argument	1:	The	name of	the	new	data	type
• Argument	2:	String	with	space-separated	names,	one	for	
each	item	in	our	customized	tuple



33

NAMED	TUPLES
33

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



34

NAMED	TUPLES
34

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



35

NAMED	TUPLES
35

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



36

NAMED	TUPLES
36

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik PRG	2016/2017



37

LINEAR	SEARCH	ALGORITHM
37

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• EXAMPLE:	Search	algorithm	– to	find	the	index	where	a	
specific	item	occurs	within	in	a	list	of	items	
(return	the	index	of	the	item	if	it	is	found,
or	return	-1	if	the	item	doesn’t	occur	in	the	list)



38

LINEAR	SEARCH	ALGORITHM
38

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• Searching	all	items	in	a	sequence	from	first	to	last	is	called	
linear	search

• Check	whether v == target is	called	a probe
• Count	probes	as	a	measure	of	how	efficient the	algorithm	is	
(indication	of	how	long	the	algorithm	will	take	to	execute)

• Linear	searching	is	characterized	by	the	fact	that	the	number	
of	probes	needed	to	find	some	target	depends	directly	on	the	
length	of	the	list



39

LINEAR	SEARCH	ALGORITHM
39

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

• Test	every	item	in	the	list	from	first	to	last	such	that	the	result	
is	returned	by	the	function	as	it	is	found	(early	return)

• NEGATIVE:	If	searching	for	a	target	that	is	not	present	in	the	
list,	then	go	all	the	way	to	the	end	before	we	can	return	the	
negative	value

• Search	has linear performance
• Interested	in	the scalability of	our	algorithms
(million	or	ten	million	items?)



40

REFERENCES
40

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

This	lecture	re-uses	selected	parts	of	the	OPEN	BOOK	PROJECT
Learning	with	Python	3	(RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available	under	GNU	Free	Documentation	License Version	1.3)

• Version	date:	October	2012
• by	Peter	Wentworth,	Jeffrey	Elkner,	Allen	B.	Downey,	and	Chris	Meyers

(based	on	2nd	edition	by	Jeffrey	Elkner,	Allen	B.	Downey,	and	Chris	
Meyers)	

• Source	repository	is	at https://code.launchpad.net/~thinkcspy-rle-
team/thinkcspy/thinkcspy3-rle

• For	offline	use,	download	a	zip	file	of	the	html	or	a	pdf	version	
from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/


