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• No	classes	on	17.11.	2017	due	to	public	holiday
• Prepare	for	the	mid-term	test 24.11.	2017	during	labs
• Preliminary	exam	dates	(check	the	faculty	system):

19.1.	2018
26.1.	2018
2.2.	2018
9.2.	2018
Multiple	choice	test,	no	materials	or	devices allowed.	
The	exam	starts	sharp	at	8:00.	
Use	the	Faculty	information	system	to	enroll (find	the	room!).
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• Sequences	of	items– they	support
• membership	operator in
• querying	for	size	len
• indexing	and	slices	[]
• Iterable

• string: immutable	ordered sequence	of	characters
• tuple: immutable	ordered sequence	of	items	of	any	data	type
• list: mutable	ordered sequence	of	items	of	any	data	type
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• Set	types	support
• membership	operator	in
• querying	for	size	len
• iterable
• set	operations (comparisons,	union,	intersection,	subset)

• Set: mutable	unordered collection	of unique items	of	any	type
• Frozenset: immutable	unordered collection	of unique items	of	
any	data	type

• When iterated over,	sets	provide	items in	an	arbitrary	order
• Only hashable objects	may	be	added	to	a	set:
• Immutable	data	types	are	hashable (hash	value	dos	not	
change,	compare	for	equality	to	other	objects)
(int,	float,	str,	tuple,	frozenset)

• Mutable	values	are	(usually)	not	hashable	(list,	dict,	set)
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• A	mapping	type	is	an unordered	collection	of	key-value	pairs
• They	support
• membership	operator in
• querying	for	size	len
• iterable

• Only	hashable (i.e.	immutable)	objects	can	be	used	as	keys
• Each	key's	associated	value	may	be	of	any	data	type
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• Strings,	lists,	and	tuples	— are	sequence	types	using	integers	
as	indices to	access	the	values	they	contain	within	them

• Dictionaries are	Python’s	built-inmapping	type
• They	map keys (any	immutable	type)	to	values that	can	be	
any	type	(heterogeneous)

• Other	languages:	associative	arrays	(associate	key	with	value)

• EXAMPLE:	Create	a	dictionary	to	translate	English	words	into	
Spanish	(the	keys	are	strings).	One	way	to	create	a	dictionary	
is	to	start	with	the	empty	dictionary	and	add key	:	value	pairs.

• The	empty	dictionary	is	denoted {}
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• To	create	a	dictionary	is	to	provide	a	list	of	key:value pairs	
using	the	same	syntax	as	the	previous	output	

• Order	of	pairs	does	not	matter	– the	values	in	a	dictionary	are	
accessed	with	keys,	not	with	indices,	no	order	guaranteed

• Key	is	used	to	look	up	the	corresponding	value:	
the	key "two" yields	the	value "dos"

• Lists,	tuples,	and	strings have	been	called sequences,	because	
their	items	occur	in	order

• The	dictionary	is	compound	type	that	is	not	a	sequence
(no	indexing	or	slicing)
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• Keys	and	values	can	be	defined	as	separate	lists	
(order	matters!)

• Lists	can	be	paired	using	zip
• Once	paired	a	dictionary	can	be	created	using	dict
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dict.get()method

• Returns	the	value	corresponding	to	the	key,	
if	the	key	exists	in	the	dictionary

• Returns	None if	key	is	not	in	the	dictionary	and	no	default	
value is	given,	or

• Returns	a	default	value,	if	key	does	not	exist	in	the	dictionary	
and	the	default	value	is	specified
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• Counter	is	a	special	kind	of	a	mapping	type	(dictionary)
• Collection	of elements which	are	stored	as	keys,	and	
their counts are	stored	as values

• Values	are	counts,	i.e.	any	integers, including	negative
• Defined	in collections module
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• As	in	the	case	of	lists,	because	dictionaries	are	mutable,	we	
need	to	be	aware	of	aliasing

• Whenever	two	variables	refer	to	the	same	object,	changes	to	
one	affect	the	other

• If	we	want	to	modify	a	dictionary	and	keep	a	copy	of	the	
original,	use	the copy method

• EXAMPLE: opposites is	a	dictionary	that	contains	pairs	of	
opposites
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• Alias and opposites refer	to	the	same	object;
• Copy refers	to	a	fresh	copy	of	the	same	dictionary.	
• If	alias is	modified, opposites is	changed	as	well:

• If	copy is	modified, opposites is	unchanged:
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• EXAMPLE:	Function	that	counts	the	number	of	occurrences	of	
a	letter	in	a	string	using	a	frequency	table	of	the	letters	in	the	
string	(how	many	times	each	letter	appears)

• Compressing	a	text	file:	because	different	letters	appear	with	
different	frequencies,	we	can	compress	a	file	by	using	shorter	
codes	for	common	letters	and	longer	codes	for	letters	that	
appear	less	frequently.

• Dictionary	ideal	for	frequency	tables



31

DICTIONARIES
31

03/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

ALGORITHM:
• Start	with	an	empty	dictionary
• For	each	letter	in	the	string,	find	the	current	count	(possibly	
zero)	and	increment	it

• At	the	end	the	dictionary	contains	pairs	of	letters	and	their	
frequencies

• To	display	the	frequency	table	in	alphabetical	order	use	sort()
• NOTE:	in	the	first	line	the	type	conversion	function list	is	called	
to	get	from items into	a	list	(needed	to	use	sort method)
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• Named	tuple	is	still	a	tuple,	can	be	used	everywhere	where	
tuple	can

• In	addition	to	indexing	by	numbers	it	has	the	ability	to refer	to	
tuple	items	by	names

• Other	languages:	struct or	record
• Function namedtuple creates a	customized	tuple	data	type:
• Argument	1:	The	name of	the	new	data	type
• Argument	2:	String	with	space-separated	names,	one	for	
each	item	in	our	customized	tuple
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• EXAMPLE:	Search	algorithm	– to	find	the	index	where	a	
specific	item	occurs	within	in	a	list	of	items	
(return	the	index	of	the	item	if	it	is	found,
or	return	-1	if	the	item	doesn’t	occur	in	the	list)
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• Searching	all	items	in	a	sequence	from	first	to	last	is	called	
linear	search

• Check	whether v == target is	called	a probe
• Count	probes	as	a	measure	of	how	efficient the	algorithm	is	
(indication	of	how	long	the	algorithm	will	take	to	execute)

• Linear	searching	is	characterized	by	the	fact	that	the	number	
of	probes	needed	to	find	some	target	depends	directly	on	the	
length	of	the	list
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• Test	every	item	in	the	list	from	first	to	last	such	that	the	result	
is	returned	by	the	function	as	it	is	found	(early	return)

• NEGATIVE:	If	searching	for	a	target	that	is	not	present	in	the	
list,	then	go	all	the	way	to	the	end	before	we	can	return	the	
negative	value

• Search	has linear performance
• Interested	in	the scalability of	our	algorithms
(million	or	ten	million	items?)
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This	lecture	re-uses	selected	parts	of	the	OPEN	BOOK	PROJECT
Learning	with	Python	3	(RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available	under	GNU	Free	Documentation	License Version	1.3)

• Version	date:	October	2012
• by	Peter	Wentworth,	Jeffrey	Elkner,	Allen	B.	Downey,	and	Chris	Meyers

(based	on	2nd	edition	by	Jeffrey	Elkner,	Allen	B.	Downey,	and	Chris	
Meyers)	

• Source	repository	is	at https://code.launchpad.net/~thinkcspy-rle-
team/thinkcspy/thinkcspy3-rle

• For	offline	use,	download	a	zip	file	of	the	html	or	a	pdf	version	
from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/


