
1

PRG – PROGRAMMING ESSENTIALS
1

Lecture 4 – Compound data types, Traversals
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal Reinštein
Czech Technical University in Prague,

Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

16/10/2019 Michal Reinštein, Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~reinsmic/
mailto:reinstein.michal@fel.cvut.cz

2

MEMORY
2

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

3

MEMORY
3

17/10/2019 Michal Reinštein, Czech Technical University in Prague

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

4

MEMORY
4

17/10/2019 Michal Reinštein, Czech Technical University in Prague

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

5

MORE ABOUT PYTHON
5

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

6

MORE ABOUT PYTHON
6

17/10/2019 Michal Reinštein, Czech Technical University in Prague

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

• Everything in Python is object
• Python is dynamically typed language

(type changes with reference)
• The methods and variables are created on the stack memory
• The objects and instances are created on the heap memory
• New stack frame is created on invocation of a

function / method and references are assigned & counted
• Stack frames are destroyed as soon as the

function / method returns
• Mechanism to clean up the dead objects is Garbage collector

(algorithm used is Reference Counting and immediate object
removal if count == 0)

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

7

TRAVERSAL – THE FOR LOOP
7

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Automate repetitive tasks without errors
• Repeated execution of a set of statements is called iteration

• Already explored for, now explore while
• Running through all items in a list is traversing / traversal

http://openbookproject.net/thinkcs/python/english3e/iteration.html

8

TRAVERSAL – THE WHILE LOOP
8

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

• The while statement has same meaning as in English

• Evaluate the condition (at line 5) either False or True.

• If the value is False, exit the while statement and continue

execution at the next statement (line 8 in this case)

• If the value is True, execute each of the statements in the
body (lines 6 and 7), then go back to the while statement

http://openbookproject.net/thinkcs/python/english3e/iteration.html

9

TRAVERSAL – THE WHILE LOOP
9

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

• The while loop is more work than the equivalent for loop
• Need to manage the loop variable: give it an initial value, test

for completion, update it in the body to enable termination

• Note: range generates a list up to but excluding the last value

http://openbookproject.net/thinkcs/python/english3e/iteration.html

10

TRAVERSAL – WHILE vs. FOR
10

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Use a for loop if you know how many times the loop will
execute (definite iteration — we know ahead some definite
bounds for what is needed)

• Use a for to loop over iterables (to be explored in later
classes) usually in combination with in

• Use while loop if you are required to repeat computation until
given condition is met, and you cannot calculate in advance
when this will happen (indefinite iteration — we do not know
how many iterations will be needed)

http://openbookproject.net/thinkcs/python/english3e/iteration.html

11

TRAVERSAL – BREAK vs. CONTINUE
11

16/10/2019 Michal Reinštein, Czech Technical University in Prague

Source http://www.tutorialspoint.com/python/python_loop_control.htm

• The break statement in Python terminates the current loop
and resumes execution at the next statement

• The continue statement in Python returns the control to the
beginning of the current loop

• The continue statement rejects all the remaining statements
in the current iteration of the loop …

http://www.tutorialspoint.com/python/python_loop_control.htm

12

EXAMPLE
12

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Guessing game
• This program makes use of the mathematical law

of trichotomy (given real numbers a and b, exactly one of
these three must be true: a > b, a < b, or a == b)

http://openbookproject.net/thinkcs/python/english3e/iteration.html

13

COMPOUND DATA TYPES
13

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• So far built-in types like int, float, bool
• Compound data types:

strings, lists, dictionaries, and tuples are different from the
others because they are made up of smaller pieces
(characters in case of a string, items in case of a list)

• Types comprising smaller pieces are compound data types

http://openbookproject.net/thinkcs/python/english3e/strings.html

14

PAIRED DATA
14

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Example of paired data: lists of names and lists of numbers
• Advanced way of representing data: making a pair of things is

as simple as putting them into parentheses (i.e. tuples)

http://openbookproject.net/thinkcs/python/english3e/iteration.html

15

NESTED DATA
15

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Data structure — a mechanism for grouping and organizing
data to make it easier to use

http://openbookproject.net/thinkcs/python/english3e/iteration.html

16

TUPLES
16

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/tuples.html

• The pair data example is an example of a tuple
• Tuple groups any number of items into a compound value
• Tuple is a comma-separated sequence of values

• Other languages often call it records
(some related information that belongs together)

• Important: strings and tuples are immutable (once Python
creates a tuple in memory, it cannot be changed)

• Elements of a tuple cannot be modified, new tuple holding
different information should always be made instead!

http://openbookproject.net/thinkcs/python/english3e/tuples.html

17

TUPLES
17

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/tuples.html

• Powerful tuple assignment (remember variable swapping?)

• Equivalent of multiple assignment statements
• Requirement: the number of variables on the left must match

the number of elements in the tuple

• Tuple assignment is called tuple packing / unpacking

http://openbookproject.net/thinkcs/python/english3e/tuples.html

18

TUPLES
18

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/tuples.html

• Use of tuples in functions as return value
• Function can always only return a single value, but by making

that value a tuple, as many values can be packed together as
is needed (e.g. find the mean and the standard deviation)

• Tuple items can themselves be other tuples (nested tuples)

• Heterogeneous data structure: can be composed of elements
of different types (tuples, strings, lists)

http://openbookproject.net/thinkcs/python/english3e/tuples.html

19

STRINGS
19

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• Example: upper is a method that
can be invoked on any string
object to create a new string,
where all the characters are in
uppercase

• lower, capitalize, swapcase …
• Use documentation & help!

http://openbookproject.net/thinkcs/python/english3e/strings.html

20

INDEXING
20

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• Python uses square brackets to enclose the index – indexing
operator []

• The expression in brackets is called an index
• Example: The expression fruit[1] selects character number 1

from fruit, and creates a new string containing just this one
character

• Computer scientists always start counting from zero!
• An index specifies a member of an ordered collection

(in this case the collection of characters in the string)
• Index indicates which one you want, hence the name
• Index can be any integer expression (not only value)

http://openbookproject.net/thinkcs/python/english3e/strings.html

21

INDEXING
21

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• Use enumerate to visualize indices
• Note that indexing strings returns a string: Python has no

special type for a single character (string of length = 1)
• Use index to extract elements from a list

http://openbookproject.net/thinkcs/python/english3e/strings.html

22

INDEXING
22

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• Use len to extract the number of elements (indexing from 0!)

• Negative indices count backward from the end of the string

• The expression fruit[-1] yields the last letter
• Traversals: while vs. for comparison again!

http://openbookproject.net/thinkcs/python/english3e/strings.html

23

SLICING
23

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• A substring of a string is obtained by taking a slice
• Slice a list to refer to some sublist of the items in the list
• The operator [n:m] returns the part of the string from the n’th

character to the m’th character, including the first but
excluding the last (indices pointing between the characters)

• Slice operator [n:m] copies out the part of the paper between
the n and m positions

• Result of [n:m] will be of length (m-n)

http://openbookproject.net/thinkcs/python/english3e/strings.html

24

SLICING
24

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• If you omit the first index (before the colon), the slice starts at

the beginning of the string (or list)

• If you omit the second index, the slice extends to the end of

the string (or list)

• If you provide value for n that is bigger than the length of the
string (or list), the slice will take all the values up to the end

• No “out of range” error like the normal indexing operation

http://openbookproject.net/thinkcs/python/english3e/strings.html

25

STRINGS
25

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• Comparing strings: strings are sorted in the alphabetical order
(except that all uppercase letters come before the lowercase)

• Strings are immutable
(existing string cannot be changed, new one should be
created instead)

http://openbookproject.net/thinkcs/python/english3e/strings.html

26

STRINGS
26

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• The in / not in operator tests for membership
• Method index is the opposite of the indexing operator:

it takes a character (item in case of a list) and finds the index
of the character / item (if not found then exception is raised)

• Method find works for strings in a similar way
(if the character is not found, the function returns -1)

http://openbookproject.net/thinkcs/python/english3e/strings.html

27

STRINGS
27

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• The split method:
it splits a single multi-word string into a list of individual
words, removing all the whitespace between them
(whitespace are: tabs, newlines, spaces)

• Explore the join method on your own!

http://openbookproject.net/thinkcs/python/english3e/strings.html

28

STRINGS
28

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/strings.html

• The format method substitutes its arguments into the place

holders (numbers are indexes of the arguments)

• Format specification — it is always introduced by the colon :
• Field is aligned to the left <, center ^, or right >

• Width allocated to the field within the result string
• Type conversion

• Specification of decimal places
(.2f is useful for when rounding to two decimal places.)

http://openbookproject.net/thinkcs/python/english3e/strings.html

29

LISTS
29

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• A list is an ordered collection of values
• Values of a list are called its elements or items
• Similar to strings (ordered collections of characters)

except that the elements of a list can be of any type

• Lists and strings — and other collections that maintain the
order of their items — are called sequences

• List within list is said to be nested
• List with no elements is called an empty list, and is denoted []

http://openbookproject.net/thinkcs/python/english3e/lists.html

30

LISTS
30

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• Expression evaluating to an integer can be used as an index
• Function len returns length of a list (number of its elements)
• Testing membership using in / not in
• Operators + (concatenation) and * (repetition)

http://openbookproject.net/thinkcs/python/english3e/lists.html

31

LISTS
31

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• Lists are mutable (we can change list elements)
• Use same slicing principles as for strings
• Use del to delete list elements

http://openbookproject.net/thinkcs/python/english3e/lists.html

32

REFERENCES – STRINGS vs. LISTS
32

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• Variables a and b refer to string object with letters "banana”
• Use is operator or id function to find out the reference
• Strings are immutable

Python optimizes resources by making two names that refer to
the same string value refer to the same object

• Not the case of lists: a and b have the same value (content)
but do not refer to the same object

Strings

Lists

http://openbookproject.net/thinkcs/python/english3e/lists.html

33

LISTS – ALIASING, CLONING
33

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• If we assign one variable to another, both variables refer to
the same object

• The same list has two different names we say that it
is aliased (changes made with one alias affect the other)

• Recommendation:
Avoid aliasing when you are working with mutable objects!

• If need to modify a list and keep a copy of the original use the
slice operator (taking any slice of creates a new list)

http://openbookproject.net/thinkcs/python/english3e/lists.html

34

LIST PARAMETERS
34

16/10/2019 Michal Reinštein, Czech Technical University in Prague

source http://openbookproject.net/thinkcs/python/english3e/lists.html

• Passing a list as an argument passes a reference to the list,
not a copy or clone of the list!

• So parameter passing creates an alias!

http://openbookproject.net/thinkcs/python/english3e/lists.html

35

LIST METHODS
35

16/10/2019 Michal Reinštein, Czech Technical University in Prague

Explore list methods on your own!
Source by Tomas Svoboda PRG 2016/2017

36

LIST PARAMETERS
36

16/10/2019 Michal Reinštein, Czech Technical University in Prague

• Concept: pure functions vs. modifiers
• Pure function does not produce side effects!
• Pure function communicates with the calling program only

through parameters (it does not modify) and a return value
• Do not alter the input parameters unless really necessary
• Programs that use pure functions are faster to develop and

less error-prone than programs that use modifiers
Source by Tomas Svoboda PRG 2016/2017

37

REFERENCES
37

16/10/2019 Michal Reinštein, Czech Technical University in Prague

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Meyers)

• Source repository is at https://code.launchpad.net/~thinkcspy-rle-
team/thinkcspy/thinkcspy3-rle

• For offline use, download a zip file of the html or a pdf version
from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

