PRG — PROGRAMMING ESSENTIALS

Michal Reinstein

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~reinsmic/
mailto:reinstein.michal@fel.cvut.cz

MEMORY

X =119
print(type(x))
y =X

if (id(x)==1id(y)):
print(“x and y refer to the same object”)

x=x+1
if (id(x) != id(y)):
print(“x and y refer to DIFFERENT objects!")

z =10
if (id(y)==1id(z)):

print("“y and z point to the SAME memory!!")
else:

print(” y and z point DIFFERENT objects!")

<class 'int'> Output Window

x and y refer to the same object
x and y refer to DIFFERENT objects!
y and z point to the SAME memory!!

Everything is object in Python

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

MEMORY

x = 10
print(type(x))
y =X

if (id(x)==1id(y)):
print(“x and y refer to the same object"”)

X=x+1
if (id(x) != id(y)):
print(“x and y refer to DIFFERENT objects!"”)

z =10
if (id(y)==id(z)):

print("y and z point to the SAME memory!!")
else:

print(” y and z point DIFFERENT objects!")

z = Car() #some user defined class
print(type(z))

<class 'int'> Output Window

x and y refer to the same object

x and y refer to DIFFERENT objects!

y and z point to the SAME memory!!

<class '__main__.Car'>

Python is a dynamically typed
language

Everything is object in Python

source https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

MEMORY

Stack Memory

f2()

y = f2(x) " .
. 0S, Other processes, applications and shared memory

Shadows name 'y' from outer scope less... (88F1)

This inspection detects shadowing names defined in outer scopes.
A

X

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

il MORE ABOUT PYTHON @ [l

5

I O Y

Statement x=10 int x=10;

Data type declaration =~ Not needed. Dynamically Mandatory. Statically typed.

typed.
What is 10? An Object created on heap A primitive data stored in 4 byte
memory.
What does x contain? Reference to Object 10 Memory location where 10 is stored
X=x+1 x starts referring to a new x continues to point to the same
object whose value is 11 memory, with value equal to 11
x=10 Both x and y will refer to x and y are two variables pointing to

y=10 the same object. different memory locations.

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

MORE ABOUT PYTHON @

Everything in Python is

Python is language

(type changes with reference)

The methods and variables are created on the

The objects and instances are created on the

New is created on invocation of a

function / method and references are assigned & counted
Stack frames are destroyed as soon as the

function / method returns

Mechanism to clean up the dead objects is

(algorithm used is and immediate object
removal if count == 0)

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

Ao

TRAVERSAL - THE FOR LOOP

def mysum(xs):

" Sum all the numbers in the Llist xs, and return the total. ""

running total =
for x in xs:

running total = running_total + x
return running_total

Add tests Like these to your test suite ...

test(mysum([1, 2, 3, 4]) == 10)

test(mysum([1. 25 2.5, 1.75]) == 5.5)

test(mysum([1, -]) == 2)

test(mysum([]) == 6)

test(mysum(range(11)) == 55) # 11 is not included in the List.

Automate without errors
Repeated execution of a set of statements is called

Already explored for, now explore
Running through all items in a list is /

http://openbookproject.net/thinkcs/python/english3e/iteration.html

TRAVERSAL — THE WHILE LOOP @

def sum_to(n):
""" Return the sum of 1+2+3 ... n """
ss =0
v =1
while v <= n:
SS = SS + V
vVv=vVv+1
return ss

For your test suite
test(sum_to(4) == 10)
test(sum_to(1000) == 500500)

The statement has same meaning as in English
Evaluate the condition (at line 5) either or :

If the value is , exit the while statement and continue
execution at the next statement (/ine 8 in this case)

If the value is , execute each of the statements in the
body (lines 6 and 7), then go back to the statement

http://openbookproject.net/thinkcs/python/english3e/iteration.html

@ TRAVERSAL — THE WHILE LOOP @

def sum_to(n):

""" Return the sum of 1+2+3 ... n """
ss =0
v =1 def sum_to(n):
while v <= n: """ Return the sum of 1+2+3 ... n """
SS = SS + V ss =0
v=v+1 for v in range(n+l):
return ss SS = SS + V
return ss
For your test suite
test(sum_to(4) == 10)
test(sum_to(1000) == 500500)
 The while loop is than the equivalent for loop
* Needto . give it an value,

, update it in the body to enable

* Note: range generates a list up to but excluding the last value

http://openbookproject.net/thinkcs/python/english3e/iteration.html

e

TRAVERSAL — WHILE vs. FOR @

10

e Usea loop if you know how many times the loop will

execute (— we know ahead some definite
bounds for what is needed)

Use a for to loop over (to be explored in later
classes) usually in combination with

Use loop if you are required to repeat computation until
given condition is met, and you cannot calculate in advance
when this will happen (— we do not know
how many iterations will be needed)

http://openbookproject.net/thinkcs/python/english3e/iteration.html

/% TRAVERSAL — BREAK vs. CONTINUE @

while True:
play the game once()
response = input("Play again? (yes or no)")
if response != "yes":
break
print("Goodbye!")

for i in [12, 16, 17, 24, 29, 30]: 12
ifi% 2 ==1: # If the number is odd 16
continue # Don't process it 24
print(i) 30
print("done") done
* The statement in Python terminates the current loop
and resumes execution at the next statement
* The statement in Python returns the control to the
beginning of the current loop
 The statement rejects all the remaining statements

in the current iteration of the loop ...

11

http://www.tutorialspoint.com/python/python_loop_control.htm

@%ﬁ EXAMPLE @

12

import random # We cover random numbers in the
rng = random.Random() # modules chapter, so peek ahead.
number = rng.randrange(l, 1000) # Get random number between [1 and 16060).

guesses = @
msg - nn

while True:
guess = int(input(msg + "\nGuess my number between 1 and 1000: "))
guesses += 1
if guess > number:
msg += str(guess) + " is too high.\n"
elif guess < number:
msg += str(guess) + " is too low.\n"

else:
break
* Guessing
* This program makes use of the mathematical law
of (given real numbers a and b, exactly one of

these three must be true: a>b, a<b, or a == b)

http://openbookproject.net/thinkcs/python/english3e/iteration.html

@ COMPOUND DATA TYPES @

13

[e example_06.py

/opt/local/bin/python3.6 "/Users/mi
HELLO, WORLD!
hello, world!
__name__ hELLO, WORLD!
example >
print(example.upper()) Process finished with exit code 0
print(example. lower())
print(example.swapcase ()}

e So far built-in types like
 Compound data types:
)) ,and are different from the
others because they are made up of smaller pieces
(characters in case of a string, items in case of a list)

* Types comprising smaller pieces are

http://openbookproject.net/thinkcs/python/english3e/strings.html

il PAIRED DATA @ Qs

14
celebs = [("Brad Pitt", 1963), ("Jack Nicholson", 1937),
("Justin Bieber", 1994)]
print(celebs) [("Brad Pitt", 1963), ("Jack Nicholson", 1937), ("Justin Bieber", 1994)]

print(len(celebs) 3

for (nm, yr) in celebs:
if yr < 1980:
print(nm)

Brad Pitt
Jack Nicholson

* Example of paired data: lists of names and lists of numbers
* Advanced way of representing data: making a pair of things is
as simple as putting them into parentheses (i.e.)

http://openbookproject.net/thinkcs/python/english3e/iteration.html

NESTED DATA @

students = [

("John", ["CompSci", "Physics"]),
("Vusi", ["Maths", "CompSci", "Stats"]),

("Jess", ["CompSci", "Accounting", "Economics", "Management"]),
("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),
("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]
John takes 2 courses
Print all students with a count of their courses. Vusi takes 3 courses
for (name, subjects) in students: Jess takes 4 courses
print(name, "takes", len(subjects), "courses” Sarah takes 4 courses

Zuki takes 5 courses

Count how many students are taking CompSci

counter = 0
for (name, subjects) in students:

for s in subjects: # A nested Loop!
if s == "CompSci”:
counter += 1 The number of students taking CompSci is 3

print("The number of students taking CompSci is", counter)

Data structure — a mechanism for and
data to make it easier to use

15

http://openbookproject.net/thinkcs/python/english3e/iteration.html

il TUPLES @

>>> julia = ("Julia", "Roberts", 1967, "Duplicity", 2009, "Actress"”, "Atlanta, Georgia")

16

>>> julia[2] >>> julia[e] = "X"
1967 TypeError: 'tuple' object does not support item assignment

* The pair data example is an example of a
* Tuple groups any number of items into a
 Tupleisa

e Other languages often call it
(some related information that belongs together)
* Important: strings and tuples are (once Python
creates a tuple in memory, it cannot be changed)
* Elements of a tuple cannot be modified,
should always be made instead!

http://openbookproject.net/thinkcs/python/english3e/tuples.html

TUPLES @

(name, surname, b_year, movie, m_year, profession, b_place) = julia 17
>»> b = ("Bob", 19, "CS") # tuple packing
>>> b = ("Bob", 19, "CS")
>>> (name, age, studies) = b # tuple unpacking
>>> name
"Bob'
>>> age
»>>> (a, b, ¢, d) = (1, 2, 3)
ValueError: need more than 3 values to unpack
Powerful (remember variable swapping?)
Equivalent of
Requirement: the number of must match
the in the tuple

Tuple assignment is called tuple /

http://openbookproject.net/thinkcs/python/english3e/tuples.html

/@ TUPLES @

def f(r):
""" Return (circumference, area) of a circle of radius r """
c = 2 * math.pi * r
a = math.pi *r * p
return (c, a)

18

e Use of tuples in functions as
* Function can always only return a single value, but by making

that value a tuple, as many values can be as
is needed (e.qg. find the mean and the standard deviation)
e Tuple items can themselves be other tuples ()

: can be composed of elements
of different types (tuples, strings, lists)

http://openbookproject.net/thinkcs/python/english3e/tuples.html

il STRINGS C

19

 Example: is @ method that
can be invoked on any string
object to create a new string,
where all the characters are in
uppercase

([]
V4 V4

e Use documentation & help!

http://openbookproject.net/thinkcs/python/english3e/strings.html

il INDEXING @

20

>>> fruit = "banana” >>> m = fruit[o]
>>> m = fruit[1] >>> print(m)
>>> print(m) b
* Python uses to enclose the index —

* The expression in brackets is called an
* Example: The expression fruit[1] selects character number 1

from fruit, and creates a new string containing just this one
character

 Computer scientists always start !
* Anindex specifies a

(in this case the collection of characters in the string)
* Index indicates which one you want, hence the name
* |[ndex can be any (not only value)

http://openbookproject.net/thinkcs/python/english3e/strings.html

il INDEXING C

>>> fruit = "banana"
>>> list(enumerate(fruit))

[(0) 'b‘)J (1J 'a').’ (21 'n')’ (31 lal)) (4) ln‘).’ (5.’ ‘a')]

>>> prime_nums = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

>>> prime_nums[4]

11

>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]

>>> friends[3]
"Angelina’

e Use to visualize indices

* Note that indexing strings returns a string: Python has no
special type for a single character (string of length = 1)

e Use to extract elements from a list

21

http://openbookproject.net/thinkcs/python/english3e/strings.html

il INDEXING @

22
>>> fruit = "banana" .
i sz = len(fruit) - len(fruit
> len(fruit) last = fruit[sz] # ERROR! lact f:l,(,u;ﬁsl_l]
IndexError: string index out of range.
e Use to extract the (indexing from 0!)

* Negative indices count backward from the end of the string
* The expression fruit[-1] yields the last letter
* Traversals: VS. comparison again!

ix = 0

while ix < len(fruit):
letter = fruit[ix]
print(letter)
ix += 1

for ¢ in fruit:
print(c)

http://openbookproject.net/thinkcs/python/english3e/strings.html

e

SLICING @
23

>> s "Pirates of the Caribbean”
>>> print(s[0:7]) ..
Pirates fruft — " b anana .
>>> print(s[11:14])
the . - .
>>> print(s[15:24]) Idsx 0 1 2 3 4 3 6
Caribbean
>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
>>> print(friends[2:4])
['Brad’', 'Angelina’]

e A of a string is obtained by taking a

* Slice a list to refer to some of the items in the list

* The operator returns the part of the string from the n’th

character to the m’th character,

(indices pointing between the characters)
Slice operator [n:m] out the part of the paper between
the n and m positions
Result of will be of

http://openbookproject.net/thinkcs/python/english3e/strings.html

SLICING @

24

>>> fruit = "banana"
>>> fruit[:3]

"ban’

>>> fruit[3:]

'ana'

>>> fruit[3:999]
'ana'

If you (before the colon), the slice starts at
the beginning of the string (or list)

If you , the slice extends to the end of
the string (or list)

If you provide value for n that is bigger than the length of the
string (or list), the slice will take all the values up to the end
No like the normal indexing operation

http://openbookproject.net/thinkcs/python/english3e/strings.html

@ STRINGS

if word < "banana":

print("Your word, " + word + ", comes before banana.")

elif word > "banana":

print("Your word, " + word + ", comes after banana.")

else:
print("Yes, we have no bananas!")

greeting = "Hello, world!"
greeting[@] = "J° # ERROR!
print(greeting)

* Comparing strings: strings are

greeting = "Hello, world!"
new_greeting = "J" + greeting[1l:]
print(new_greeting)

in the alphabetical order

(except that all uppercase letters come before the lowercase)

e Strings are

(existing string cannot be changed, new one should be

created instead)

25

http://openbookproject.net/thinkcs/python/english3e/strings.html

@ STRINGS @

def find(strng, ch):

Find and return the index of ch in strng.
Return -1 if ch does not occur in strng.

>>> "p" in "apple"

ix = 0
True".'l c " ;zile ix < len(strng):
>>> 1" in “apple if strng[ix] == ch:
False return ix
>>> "ap" in "apple" ix += 1
True return -1
— = le"
;;isepa Hoappse test(find("Compsci”, "p") == 3)
test(find("Compsci”, "C") == @)
test(find("Compsci”, "i") == 6)
test(find("Compsci”, "x") == -1)
e Thein/ operator tests for
 Method is the opposite of the indexing operator:

it takes a character (item in case of a list) and finds the index

of the character / item (if not found then exception is raised)
e Method works for strings in a similar way

(if the character is not found, the function returns -1)

http://openbookproject.net/thinkcs/python/english3e/strings.html

@ STRINGS @

»>> ss = "Well I never did said Alice"
>>> wds = ss.split()
>>> wds

['Well', 'I', 'never', 'did', 'said', 'Alice']

* The method:
it splits a single multi-word string into a list of individual
words, removing all the whitespace between them
(whitespace are: tabs, newlines, spaces)

* Explore the method on your own!

Python 3.6.9 (default, Sep 7 2019, 20:25:26)
words = ['What', 'is', 'your', 'name', '?']
sentence = ' '.join(words)

e § print(sentence)
What is your name ?
+

http://openbookproject.net/thinkcs/python/english3e/strings.html

il STRINGS @

28
sl = "His name is {@}!".format("Arthur")
print(sl)
name = "Alice"
age = 10 His name is Arthur!
s2 = "I am {1} and I am {0} years old.".format(age, name) I am Alice and I am 10 years old.
print(s2) 2*%*10 = 1024 and 4 * 5 = 20.000000
nl =4
n2 =5
s3 = "2*%*19 = {0} and {1} * {2} = {3:f}".format(2**10, nl, n2, nl * n2)

print(s3)

* The method substitutes its arguments into the place
holders ()

 Format specification — it is always introduced by the colon

* Field is aligned to the <, A or >

* Width allocated to the field within the result string
* Type conversion
e Specification of
(.21 is useful for when rounding to two decimal places.)

http://openbookproject.net/thinkcs/python/english3e/strings.html

e

LISTS @

>>>
>>>
>>>
>>>

vocabulary = ["apple"”, "cheese", "dog"]
numbers = [17, 123]

an_empty list = []

print(vocabulary, numbers, an_empty list)

["apple"”, "cheese", "dog"] [17, 123] []

e A IS an

* Values of a list are called its or
e Similar to strings ()
except that the elements of a list can be of

— and other collections that maintain the

order of their items — are called

is said to be
is called an list, and is denoted

29

http://openbookproject.net/thinkcs/python/english3e/lists.html

@ LISTS

students = [
("John", ["CompSci", "Physics"]),
("Vusi", ["Maths", "CompSci", "Stats"]),
("Jess", ["CompSci", "Accounting"”, "Economics", "Management"]),
("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),
("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]

Count how many students are taking CompSci
counter = 0
for (name, subjects) in students:
if "CompSci” in subjects:
counter += 1

print("The number of students taking CompSci is", counter)

>>>
>>>
>>>
>>>

[1,

>>>
[,
>>>
[1,

30
a=[1, 2, 3]
b =1[4, 5, 6]
c=a+b
C
2, 3, 4, 5, 6]

[e] * 4

e, 0, 0]

[1, 2, 3] * 3

21 3.’ 11 21 3.’ 1.’ 2.’ 3]

e Expression evaluating to an integer can be used as an index
* Function returns (number of its elements)
* Testing membership using in /

Operators + () and * (

http://openbookproject.net/thinkcs/python/english3e/lists.html

Ao

LISTS

@

>»> a_list = ["a", "b",
>>> a_list[1:3]

['b", 'c']

>>> a_list[:4]

['a’, 'b', 'c’, 'd']
>>> a_list[3:]

['d", 'e’, 'f']

>>> a_list[:]

[lal, lbl, Ici, ldl, le

>>> my_string = "TEST"
>>> my_string[2] = "X"

"C", UIdll, |Ie||’ II_FUI]

>>> a_list = ["a", "d",

wgn)

>>> a_list[1:1] = ["b", "c"]

>>> a_list

[lal, |bl’ .C" ldl, I_Fl]
>>> a_list[4:4] = ["e"]

>>> a_list
[lal, |bl, |CI, ldlj]

>>> a_list - [llallJ llbll’ ||C||,

Traceback (most recent call last):
File "<interactive input>", line 1, in <module>

TypeError: 'str' object does not support item assignment

e Lists are
e Use same
e Use

, '] >>> a_list[1:3] = []
>>> a_list
[lal, |dl, le|, I.Fl]

FI5

31

||e||, llf'l]

>>> my_list — [IITII, IIEIIJ llSllJ

>>> my list[2] = "X"
>>> my_list
['Tl, IE!, lx!, ITI]

(we can change list elements)

as for strings

to delete list elements

wpn

http://openbookproject.net/thinkcs/python/english3e/lists.html

il REFERENCES — STRINGS vs. LISTS | (@
32
a = "banana” 'au_‘” . >»> ais b
b = "banana" > Danand True
>»»> a = [1, 2, 3]
>»> b = [1, 2, 3]
>»> a==>b a—[1, 2, 3]

True
>>> a is b
False

b_’[lf 2, 3]

Variables 2 and b refer to string object with letters "banana”
Use is operator or ic function to find out the

Strings are

Python optimizes resources by making two names that refer to
the same string value refer to the same object

Not the case of lists: @ and b have the same value (content)

but do not refer to the same object

http://openbookproject.net/thinkcs/python/english3e/lists.html

Ao

LISTS — ALIASING, CLONING @

33

>»> a = [1, 2, 3] . >>> b[@] = 5
>>> b = a \[1’ 2, 3] >>> a
>>> ais b b/ [5, 2, 3]
True
>> a = [1, 2, 3]

a—>»[1, 2, 3 >>> b[@] =5
>>>E=a[:] [] o> a[]
>>> b—»(1l, 2, 3]
[1, 2, 3] S [0 20 21

If we assign one variable to another, both variables refer to

the same object
The we say that it

is (changes made with one alias affect the other)

Recommendation:

Avoid aliasing when you are working with mutable objects!

If need to modify a list and keep a copy of the original use the
(taking any slice of creates a new list)

http://openbookproject.net/thinkcs/python/english3e/lists.html

Ao

LIST PARAMETERS @

def double stuff(a_list):

""" Ooverwrite each element in a Llist with double its value. ""'
for (idx, val) in enumerate(a_list):
a_list[idx] = 2 * val

things = [2, 5, 9]

double_stuff(things) __main___ |3 list|
print(things) i (2.5, 9]
double_stuff|things‘
[4, 10, 18]
* Passing a passes a to the list,

of the list!

* So parameter passing creates an

34

http://openbookproject.net/thinkcs/python/english3e/lists.html

LIST METHODS

>>> mylist

>>> mylist.
>>> mylist.

>>> mylist

>>> mylist.

>>> mylist
[5, 27, 3,

>>> mylist.

>>> mylist
[5, 12, 27
>>> mylist
2

>>> mylist
>>> mylist
[5, 12, 27
>>> mylist
6

>>> mylist
>>> mylist
[11, 5, 9,
>>> mylist
>>> mylist

g & Wy 55 O

=[]
append(5)
append(27)
.append(3)
append(12)

12]

insert(1, 12) # Insert 12 at pos 1, shift other items up

» 3, 12]

.count(12) # How many times is 12 in mylist?

.extend([5, 9, 5, 11]) # Put whole List onto end of mylist
5, 11])
.index(9) # Find index of first 9 in mylist
.reverse()

5y 2y 8y 27
.sort()

12, 5]

[3, 5, 5, 5, 9, 11, 12, 12, 27]

>>> mylist
>>> mylist

.remove(12) # Remove the first 12 in the List

[3, 5, 5, 5, 9, 11, 12, 27]

35

Ao

LIST PARAMETERS @

def double stuff(a_list):

""" Return a new List which contains
doubles of the elements in a_List.

new_list = []
for value in a_list:
new elem = 2 * value for (idx, val) in enumerate(a_list):
- i ; — *
new_list.append(new_elem) a_list[idx] = 2 * val

def double_stuff(a_list):

return new list

Concept: VS.

Pure function does not produce |
Pure function communicates with the calling program

(it does not modify) and a

Do not alter the input parameters unless really necessary
Programs that use pure functions are and

than programs that use modifiers

36

""" ogverwrite each element in a_list with double its value. """

REFERENCES @

37

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under)

Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers
(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Mevyers)

Source repository is at

For offline use, download a zip file of the html or a pdf version
from

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

