Full Paths in Binary Tree

In a binary rooted tree, each node is assigned one of given Q distinct colors.
A so-called regulating value D is positive a integer.
We say that a node x is (c, D)-full, if the subtree which root is x contains exactly D nodes of color c.
Furhermore, we say that a path from the root to some leaf in the tree is full if it contains at least one (c, D) full node for each color c out of given C colors.

Image 1. An example of a tree in which each node is colored by one of 3 colors: 0 - white, 1 - blue and 2 orange. Node labels are written close to the node on yellow background. The regulating value D is equal to 4 . Nodes 2,6 and 8 are all (0,4)-full, nodes 3 and 6 are (2, 4)-full and the node 0 is (1,4)-full. These noded are marked by an arrow of the corresponding color. There are 8 full paths in the tree, their edges are highlighted in grey.

The task

You are given a binary tree, the color of each node and a regulating value D. Determine the number of full paths in the tree.

Input

The first input line contains three integers N, C, D separated by spaces and representing the number of nodes in the tree, the number of node colors and the regulating value.
We assume that the nodes are labeled $0,1, \ldots, N-1$ and the colors are labeled $0,1, \ldots, C-1$. The label of the tree root is always 0 .
The next line contains N integers, separated by spaces, which represent the list of colors of particular nodes. The colors are listed in ascending order of node labes. The first integers represents the color of node 0 , the second integer represents the color of node 1 , etc.
Next, there are $N-1$ text lines, each specifies one edge in the tree. The line contains two integers a, b separated by space. Integer a is the label of the parent of the node which label is b.
It holds, $2 \leq N \leq 150000,2 \leq C \leq 10,2 \leq D \leq 20$.

Output

The output contains one text line with a single integer representing the number of full paths in the input tree.

Example 1

Input

2534
02000112002012212222202200
2023
722
820
1118
1317
1416
313
411
59
67
16
24
01
02
23
15
68
510
412
314
721
819
1415
2024

Output

8
The tree in Example 1 is depicted in Image 1.

Example 2

Input

1623
0011001101010111
01
12
23
14
45
46
07
78
89
810
711
1112
1113
1314
1315

Output

Example 3

Input
651
012344
34
35
23
12
01
Output
2

