
Algorithms
Hashing II

Jiří Vyskočil, Marko Genyk-Berezovskyj

2010

Algoritmizace
2 / 18

Coalesced hashing

� Approximate no. of elements is known.

� Store colliding elements elsewhere, typically the collision is produced
by non-synonym in the table, ie. by other key which itself collided
sometime earlier.

� Equip each table position by a single reference to colliding key if
such exists.

� => Colliding elements are stored in the same table. eferences
create chains which are subject to so called coalescence.

� LISCH (late insert standard coalesced hashing)

� EISCH (early insert standard coalesced hashing)

� using additional cellar space

� LICH (late insert coalesced hashing)

� EICH (early insert coalesced hashing)

� VICH (variable insert coalesced hashing)

Algoritmizace
3 / 18

Late insert standard coalesced hashing - LISCH

0 5

1 1

2

3

4

� h (k) = k mod 5

� sequence: 1, 5, 21, 10, 15

keys
references

Method:

1. i = h(k);

2. Search the chain

starting at position i.

3. If k is not found store it

at the table end pointer

and also append it to

the end of the collision

chain.

Pointer to the first

free place at the

end of the table.

Update it after

each insert with

collision.

Algoritmizace
4 / 18

Late insert standard coalesced hashing - LISCH

0 5

1 1

2

3

4 21

� h (k) = k mod 5

� sequence: 1, 5, 21, 10, 15

keys
references

Method:

1. i = h(k);

2. Search the chain

starting at position i.

3. If k is not found store it

at the table end pointer

and also append it to

the end of the collision

chain.

Algoritmizace
5 / 18

Late insert standard coalesced hashing - LISCH

0 5

1 1

2

3 10

4 21

� h (k) = k mod 5

� sequence: 1, 5, 21, 10, 15

keys
references

Traverse the

chain.

Insert at

table end

pointer.

Method:

1. i = h(k);

2. Search the chain

starting at position i.

3. If k is not found store it

at the table end pointer

and also append it to

the end of the collision

chain.

Algoritmizace
6 / 18

Late insert standard coalesced hashing - LISCH

0 5

1 1

2 15

3 10

4 21

� h (k) = k mod 5

� sequence: 1, 5, 21, 10, 15

Postup:

1. i = h(k);

2. Prohledej řetězec

začínající na místě i a

pokud nenajdeš k,

přidej ho do tabulky na

první volné místo od

konce tabulky a připoj

ho do řetězce na

poslední místo.

Table is full.

Algoritmizace
7 / 18

Early insert standard coalesced hashing - EISCH

0 5

1 1

2

3

4

� h (k) = k mod 5

� sequence: 1, 5, 21, 10, 15

keys
references

Method:

1. i = h(k);

2. Search the chain

starting at position i.

3. If k is not found store it

at the table end pointer

and also append it just

behind the first element

of the collision chain.

Algoritmizace
8 / 18

Early insert standard coalesced hashing - EISCH

0 5

1 1

2

3

4 21

� h (k) = k mod 5

� sequence: 1, 5, 21, 10, 15

keys
references

Method:

1. i = h(k);

2. Search the chain

starting at position i.

3. If k is not found store it

at the table end pointer

and also append it just

behind the first element

of the collision chain.

Algoritmizace
9 / 18

Early insert standard coalesced hashing - EISCH

0 5

1 1

2

3 10

4 21

� h (k) = k mod 5

� sequence: 1, 5, 21, 10, 15

keys
references

Traverse the

chain.

Insert at

table end

pointer.

Method:

1. i = h(k);

2. Search the chain

starting at position i.

3. If k is not found store it

at the table end pointer

and also append it just

behind the first element

of the collision chain.

Algoritmizace
10 / 18

Early insert standard coalesced hashing - EISCH

0 5

1 1

2 15

3 10

4 21

� h (k) = k mod 5

� sequence: 1, 5, 21, 10, 15

Method:

1. i = h(k);

2. Search the chain

starting at position i.

3. If k is not found store it

at the table end pointer

and also append it just

behind the first element

of the collision chain.

Table is full.

Algoritmizace
11 / 18

Standard coalesced hashing – LISCH, EISCH

Algoritmizace
12 / 18

Coalesced hashing with added cellar space

� To reduce the coalescing the table is expanded by non-
addressable space - cellar.

� The cellar is at the end of the table and has the same
structur as the table.

� Algorithms LICH a EICH are analogous variants of
algorithms LISCH a EISCH expanded by the cellar.

� Algorithm VICH (variable insert coalesced hashing) adds
the colliding key to the end of collision chain if the chain
ends in the cellar. If the chain ends in outside the cellar
the key is inserted into the chain at the point where the
chain leaves the cellar.

Algoritmizace
13 / 18

Coalesced hashing with added cellar space

Algoritmizace
14 / 18

Coalesced hashing with added cellar space

α – load factor

α = N/M’

β – address factor

β = M/M’

K = M’ – M = cellar size

N – inserted keys

M’ – table size

M – addressable table size

Algoritmizace
15 / 18

Comparison of coalesced hashing

� If cellar is used VICH performs the best. Recommended β is 0,86.

� If cellar is not used EISCH performs the best.

