
0

Dynamic programming

ALG 11

A4B33ALG 2015/11

Knapsack problem unlimited

Knapsack problem 0/1

1

There are N items,
an item weight (volume) is Vi and its cost is Ci, (i = 1, 2, ..., N)

and there is a knapsack (=container) of (weight) capacity K.
The knapsack is to be loaded with items in such way that:

A. Capacity K is not exceeded.
B. The knapsack contents cost is maximized.

Unlimited variant -- Any item might be used more times.
0/1 variant -- Any item might be used at most once.

Knapsack problem
A4B33ALG 2015/11

9141630

Schematic knapsack
of capacity 10

Items and their
costs,
height ~ weight

A few possible
loads

30

14

16 14
14
14

9
9

2

9
9
9
9
9

14

14

14

16

16

9

16

14

14

30

16

14

45

30

9
9

16

9
9
9

9

14

14

9
9

9
9

41 46 42 43 44 41 48 46

Knapsack capacity = 10

N = 4
Weight 2 3 4 6
Cost 9 14 16 30

Some possible loads and corresponding costs:

Unlimited Knapsack problem

Example

A4B33ALG 2015/11

16
30

149

3

Utilise K+1 knapsacks, with capacities 0, 1, 2, 3, ..., K.

The value of the optimum load of a knapsack of capacity K
is equal to the maximum of values

-- (optimum load of knapsack of capacity K - V1) + C1,
-- (optimum load of knapsack of capacity K - V2) + C2,

...
-- (optimum load of knapsack of capacity K - VN) + CN.

Optimum load of knapsack of capacity K - Vi (i = 1..N) is the same
problem as the original one, only the data (capacity) are smaller.
The solutions can be precomputed by the standard DP
approach and stored in a 1D table.

Unlimited Knapsack problem can be viewed as a problem of
finding longest path in a DAG. The solution methods are identical.

Unlimited Knapsack problem
A4B33ALG 2015/11

4

DAG:
Nodes: Capacities 0, 1, 2, 3, ..., K.
Edges: From any node X to nodes of capac. X+V1, X+V2, ..., V+VN,

the costs of these edges are C1, C2, ..., CN, respectively

0 1 2 3 4 5 6 7 8 9 10

Unlimited Knapsack problem -- transformed to DAG

30303030

14 14 14 14 14 14

9 9 9 9 9 9 9 9

16 16 16 16 16 16

K = 10, N = 4, Vi = (2, 3, 4, 6), Ci = (9, 14, 16, 30), i = 1..4.Example

30

16

14

9

A4B33ALG 2015/11

5

Optimum load of capacity 10 = max(18 + 30, 30 + 16, 32 + 14, 39 + 9) = 48

Optimum load of capacity 8 = 39

Optimum load of capacity 7 = 32

Optimum load of capacity 6 = 30

Opt. load of capacity 4 = 18

16

4 5 6 7 8 9 10
30

6 7 8 9 10

7 8 9 10

8 9 10

14

9

0 1 2 3 4 5 6 7 8 9 10
9

16

30
14

Unlimited Knapsack problem -- transformed to DAG

Optimum load of capacity 10 = ??

A4B33ALG 2015/11

Known value:

Known value:

Known value:

Known value:

6

The longest path corresponds to the optimum knapsack load.
Two edges of cost 9 and one of cost 30, total cost = 48.

The knapsack is optimally loaded with two items of weight 2 and
cost 9 and one item of weight 6 and cost 30.

Unlimited Knapsack problem

0 1 2 3 4 5 6 7 8 9 10

30303030

14 14 14 14 14 14

9 9 9 9 9 9 9 9

16 16 16 16 16 16

A4B33ALG 2015/11

7

DAG contains K+1 nodes and (slightly) less that K*N edges.
Thus, there are V = (K) nodes and E = O(K*N) edges.
Asymptotic complexity of finding the longest path is (V+E),
therefore, Unlimited Knapsack problem complexity
is O(K + K*N) = O(K*N).

Unlimited Knapsack problem -- asymptotic complexity

0 1 2 3 4 5 6 7 8 9 10

30303030

14 14 14 14 14 14

9 9 9 9 9 9 9 9

16 16 16 16 16 16

A4B33ALG 2015/11

8

Unlimited Knapsack problem-- Asymptotic complexity

1. Literature: NP-hard problem, no effective algorithm is known.
2. ALG OI: DP solves the problem effectively in time O(N*K).

Example
Big capacity, e.g. 264 can be specified by a very short string:
Capacity = 18446744073709551616.
Let N = 3, items (weight, cost): (2, 345), (3, 456), (5, 678).
Input data fits to cca 100 bits < 16 Bytes = "two long ints"
The DP method will run over 584 years provided that it fills
109 table values in 1 second.

Apparent discrepancy?

A4B33ALG 2015/11

The time of DP solution depends linearly on capacity K.

The time of DP solution depends exponentially on the
length of the string which definines capacity K.

9

Any item can be used at most once.

A suitable subset of available items has to be chosen.
Each possible subset is specified by a characteristic 0/1-vector
of length N. The position in the vector corresponds to an item,
tha values 0 and 1 correspond to the item not being or being
present in the subset, respectively.

There are 2N 0/1-vectors of length N. Therefore, a systematic
checking of all subsets would take exponentially long time
with respect to N, it would be too slow.

DP method offers (for relatively small values) a significantly
more efficient solution method.

0/1 Knapsack problem
A4B33ALG 2015/11

10

0 9 14 16 30 23 25 39

0/1 Knapsack problem

9 14 16 30

9

14
9

16
9

30

16

14
30

14

30 16

14
9

30

14

30

16
9

30

16

14

30

16

14
9

30 44 46 39 53 55 60 69

16
9

N = 4
Weight Cost

2 9
3 14
4 16
6 30

Example All 24 = 16 subsets of 4 items and their costs:

Knapsack
of capacity 10

A4B33ALG 2015/11

16

30

14

9

11

Use K+1 knapsacks, of capacities 0, 1, 2, 3, ..., K.
Consider N+1 sets of given items.

Set 0 contains no item.
Set 1 contains item 1.
Set 2 contains items 1 and 2.
Set 3 contains items 1, 2, 3.
...
Set N contains items 1, 2, 3, ..., N.

The order of the items is arbitrary, but it is fixed.

For each capacity 0...K and for each set 0...N:
Define the same DP problem as the original one and solve
all those problems in ascending order of their sizes and capacities.

0/1 Knapsack -- solution
A4B33ALG 2015/11

12

Denote by symbol P(x, y) the problem with
the set of items 1, 2, ..., x and with knapsack capacity y.
Denote by symbol Opt(x, y) the optimal solution of P(x, y) .
To solve P(x,y), use optimal solutions of P(x-1, _):

There are just two possibilities for the item x:
Either it is included in Opt(x, y) or it is not.

If it is included then the current cost of knapsack load is equal
to the solution which considers items 1..x-1 and which knapsack
capacity is smaller by the weight of item x, plus the cost of item x.
If it is not included then the current cost of knapsack load is equal
to the solution which considers items 1..x-1 and which knapsack
capacity is equal to the current one.
The better of the costs is the current optimal solution:

Opt(x, y) = max(Opt(x-1, y-Vx) + Cx, Opt(x-1, y)).

Obvious base cases: Opt(0, y) = Opt(x, 0) = 0,for x = 0..N, y = 0..K.

A4B33ALG 2015/11

0/1 Knapsack problem -- solution

13

Opt(0, y) = Opt(x, 0) = Opt(0, 0) = 0.

For x = 1..N, y = 1..K:
Opt(x, y) = max(Opt(x-1, y-Vx) + Cx, Opt(x-1, y)).

if y-Vx < 0, set Opt(x, y-Vx) :=   (do not store it in the table).

Values Opt(x,y) are stored in 2D table of size (N+1)(K+1)
with row index x (items in any order)
and column index y (knapsacks capacities in increasing order).

A table of predecessors (previous item is or is not among the items
in the optimal solution) is the size as the main table and enables
the reconstruction of the optimal solution:
The item predecessor is in the previous row and its position
is either y (item x was not added) or y-Vx (item x was added) .

A4B33ALG 2015/11

0/1 Knapsack problem -- solution

14

0/1 Knapsack problem -- solution

0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 9 9 9 9 9 9 9 9 9
2 0 0 9 14 14 23 23 23 23 23 23
3 0 0 9 14 16 23 25 30 30 39 39
4 0 0 9 14 16 23 30 30 39 44 46

0 1 2 3 4 5 6 7 8 9 10
0 -- -- -- -- -- -- -- -- -- -- --
1 0 1 0 1 2 3 4 5 6 7 8
2 0 1 2 0 1 2 3 4 5 6 7
3 0 1 2 3 0 5 2 3 4 5 6
4 0 1 2 3 4 5 0 7 2 3 4

N = 4 Capacity = 10
Weight 2 3 4 6
Cost 9 14 16 30

Opt(x, y)

Example

Pred(x, y)

A4B33ALG 2015/11

16 30
149

030

016

15

DAG nodes are values Opt(x, y), x = 0..N, y = 0..K,
there are (N+1)*(K+1) nodes in DAG.

Edges: There are two in-edges in node Opt(x, y) (x > 0, K > 0):

-- Opt(x-1, y) --> Opt(x, y)
with cost 0 (item x not added to the knapsack),

-- Opt(x-1, y-Vx) --> Opt(x, y) (only if y-Vx  0)
with cost Cx (= the cost of added item x).

In this DAG we search for the longest (=most costly) path
using standard DP procedure.

What is the topological order of this DAG?

0/1 Knapsack problem

Expressed as optimum path in DAG

A4B33ALG 2015/11

16

Informally, imagine DAG drawn in the table, with node Opt(x, y)
in the middle of the cell with indexes x a y. Then, each edge
connects a cell in one row with a cell in the immediately next row.
Traversing this DAG in the row-by-row order (and left-to-right
order in each row), which is the same order in which the DP table
contents is calculated, respects the topological order of the DAG.
A node is processed only after both its parents were processed.

In this case, it is not
necessary to put all nodes
in topological order
on a single line.
The "table-like" (partial)
order is much more
easy to view/analyse.

0/1 Knapsack problem - DAG topological order
A4B33ALG 2015/11

17

4,104,94,84,74,64,54,44,34,24,14,0

3,103,93,83,73,63,53,43,33,23,13,0

2,102,92,82,72,62,52,42,32,22,12,0

1,101,91,81,71,61,51,41,31,21,11,0

0,100,90,80,70,60,50,40,30,20,10,0

9

14

30

16

V1 = 2

C1 = 9

V4 = 6

C4 = 30

V3 = 4

C3 = 16

V2 = 3

C2 = 14

0

0

0

0

0000
0000

000
30

30 30 30 30

16161616161616
00

000000

00

14

0
0000000

00
1414141414141414

0000000000 9 9 9 9 9 9 9 9 90

0/1 Knapsack Problem -- DAG

Ex
am

pl
e

A4B33ALG 2015/11

16

30

14

9

18

4,104,94,84,74,64,54,44,34,24,14,0

3,103,93,83,73,63,53,43,33,23,13,0

2,102,92,82,72,62,52,42,32,22,12,0

1,101,91,81,71,61,51,41,31,21,11,0

0,100,90,80,70,60,50,40,30,20,10,0

0

0

0

0000
0000

000
30

30 30 30 30

16161616161616
00

000000

00

14

0
0000000

00
1414141414141414

0000000000 9 9 9 9 9 9 9 9 9

0 1 2 3 4 5 6 7 8 9 10
0 -- -- -- -- -- -- -- -- -- -- --
1 0 1 0 1 2 3 4 5 6 7 8
2 0 1 2 0 1 2 3 4 5 6 7
3 0 1 2 3 0 5 2 3 4 5 6
4 0 1 2 3 4 5 0 7 2 3 4

Pr
ed

(x
, y

)

0/1 Knapsack problem -- reconstruction of optimal solution
using predecessor table

A4B33ALG 2015/11

16

30

14

9

19

Table ... Size ... (N+1)*(K+1)  (N*K).
Fill one table field ... (1).
Fill the entire table ... (N*K*1) = (N*K).
Optimum solution reconstruction ... (N).
Total ... (N*K + N) = (N*K).

DAG Nodes... (N+1)*(K+1)  (N*K).
Edges ... at most 2*(N+1)*(K+1)  O(N*K).
Finding optimum path ... (|nodes|+|edges|) = (N*K).

The asymptotic complexity of both variants of Knapsack problem
(0/1 and unbounded) is (N*K).

Simultaneously, it holds:
The asymptotic complexity of DP solution is exponencial with
respect to the length of the string defining the knapsack capacity K.

0/1 Knapsack Problem
Asymptotic complexity

A4B33ALG 2015/11

