ALG 11

Dynamic programming

Longest increasing subsequence (LIS)
Matrix chain multiplication

Longest increasing subsequence (LIS)

The longest increasing subsequence may not be contiguous.

5	4	9	11	5	3	2	10	0	8	6	1	7

Solution: 4567

Possible problem modifications
Subsequence properties:
decreasing, non-decreasing, non-increasing, arithmetic, with bounded growth rate, with weighted elements, ... etc., ... not explicitly analysed here
Standard DP approach
Transform to known problem, define appropriate DAG according to the subsequence properties, find longest path in DAG.

Longest increasing subsequence (LIS)

Standard DP approach Transformation to the earlier problem The sequence elements are DAG nodes. DAG is topologically sorted, position in sequence $=$ position in top. ordering. Edge x--> y exists if and only if order of x is lower than order of y and also $x<y$.

Find longest path in this DAG.

Algorithm is known, its complexity is $\Theta(N+M) \subseteq O\left(N^{2}\right)$. If the sequence is increasing then the complexity is $\Theta\left(N^{2}\right)$.

Longest increasing subsequence (LIS)

Original faster DP approach

Regster optimal subsequences of all possible lengths and in each step update one of them.

DP table:
k .. index of element
V .. value of element
p .. predecessor
iL .. index of the last element in an increasing optimal subsequence with length $\mathrm{d}=1,2, \ldots, \mathrm{~N}$.

For each index k :
Let d be the index of the biggest element, which satisfies
V[iL[d]] < V[k].
Set iL[d+1]:= $k, p[k]:=i L[d]$, if such d exists. Else iL[1] := k, p[k] := null.

Longest increasing subsequence (LIS)

k .. index of element
V .. value of element
p .. predecessor
iL .. index of the last element in an increasing optimal subsequence with length $\mathrm{d}=1,2, \ldots, \mathrm{~N}$.

For each index k :
Let d be an index of max. elem.
which satisfies $\mathrm{V}[\mathrm{iL}[\mathrm{d}]]<\mathrm{V}[\mathrm{k}]$.
Then iL[d+1] := k, p[k] := iL[d], if such d exists.
Else iL[1] := k, p[k] := null.

Longest increasing subsequence (LIS)

Longest increasing subsequence (LIS)

Optimal path reconstruction

The last defined element in iL is the index of the last element of one of the optimal subsequences of the whole sequence. The references in array p represent this subsequence.

Longest increasing subsequence (LIS)

Asymptotic complexity

> For each index k :
> Let d be the index of the biggest element, which satisfies V[iL[d]] < V[k].

The values $\mathrm{V}[\mathrm{iL}[\mathrm{d}]], \mathrm{d}=1,2, \ldots$ form a non-decreasing sequence.
In each step k the value $V[k]$ is fixed.
The biggest element $\mathrm{V}[\mathrm{iL}[\mathrm{d}]]$ which satisfies $\mathrm{V}[\mathrm{iL}[\mathrm{d}]]<\mathrm{V}[\mathrm{k}]$ can be found in time $O(\log N)$ by binary search.
There are \mathbf{N} steps, the resulting asymptotic complexity is $O(N \cdot \log N)$, it can be shown to be exactly $\Theta(N \cdot \log N)$.

Matrix chain multiplication

Example instance of the problem

Compute in most effective way the matrix product

$$
A_{1} \times A_{2} \times A_{3} \times A_{4} \times A_{5} \times A_{6},
$$

where the dimensions of the matrices are (in the given order) $30 \times 35,35 \times 15,15 \times 5,5 \times 10,10 \times 20,20 \times 25$.
(The dimesion of the resulting matrix D is 30×20).
Matrices dimensions depicted to scale

Matrix chain multiplication

Number of multiplications in two matrices product

b multiplications yield one element of the result matrix.

a * c elements in the result matrix

Calculating product of two matrices of sizes $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{c}$ require $\mathbf{a}^{*} \mathbf{b}^{*} \mathbf{c}$ multiplications of numbers (floats, doubles, etc.).

We do not consider summation here, it can be analysed analogously.

Matrix chain multiplication

We consider different parenthesizations and thus different orders of calculations induced by those parenthesizations.

Evaluation order	Corresponding expression	\# operations
left to right	$\left.\left(\left(\left(A_{1} \times A_{2}\right) \times A_{3}\right) \times A_{4}\right) \times A_{5}\right) \times A_{6}$	43500
right to left	$A_{1} \times\left(A_{2} \times\left(A_{3} \times\left(A_{4} \times\left(A_{5} \times A_{6}\right)\right)\right)\right.$	47500
worst	$A_{1} \times\left(\left(A_{2} \times\left(\left(A_{3} \times A_{4}\right) \times A_{5}\right)\right) \times A_{6}\right)$	58000
best	$\left(A_{1} \times\left(A_{2} \times A_{3}\right)\right) \times\left(\left(A_{4} \times A_{5}\right) \times A_{6}\right)$	15125

Matrix chain multiplication

Example: Comparison of multiplication of 3 matrices

Matrix chain multiplication
$A_{1}=3(\underset{5}{\square})$
$A_{2}=(\underset{5}{\underset{\sim}{\boxminus}} \underset{\sim}{\boxminus})$

$$
A_{3}=2(\underset{4}{\square})
$$

Product $\left(A_{1} \times A_{2}\right) \times A_{3}$ requires 54 multiplications .
Product $A_{1} \times\left(A_{2} \times A_{3}\right)$ requires 100 multiplications. Obviously, the order of parentheses is important.

Catalan numbers C_{N}

Product $A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{N}$ can be parenthesized in
$C_{N}=\operatorname{Comb}(2 N, N) /(N+1)$ different ways.
$C_{1}, C_{2}, \ldots, C_{7}=1,1,2,5,14,42,132 . \quad C_{N}>2^{N}$ pro $N>7$.
In general, checking each way of parenthesization separately leads to the exponencial complexity of the task.

Matrix chain multiplication

Illustration

All 14 different possibilities of product parenthesization of 5 factors

$$
\begin{aligned}
& A_{1} \times\left(A_{2} \times\left(A_{3} \times\left(A_{4} \times A_{5}\right)\right)\right) \\
& A_{1} \times\left(A_{2} \times\left(\left(A_{3} \times A_{4}\right) \times A_{5}\right)\right) \\
& A_{1} \times\left(\left(A_{2} \times A_{3}\right) \times\left(A_{4} \times A_{5}\right)\right) \\
& A_{1} \times\left(\left(A_{2} \times\left(A_{3} \times A_{4}\right)\right) \times A_{5}\right) \\
& A_{1} \times\left(\left(\left(A_{2} \times A_{3}\right) \times A_{4}\right) \times A_{5}\right) \\
& \left(A_{1} \times A_{2}\right) \times\left(A_{3} \times\left(A_{4} \times A_{5}\right)\right) \\
& \left(A_{1} \times A_{2}\right) \times\left(\left(A_{3} \times A_{4}\right) \times A_{5}\right) \\
& \left(A_{1} \times\left(A_{2} \times A_{3}\right)\right) \times\left(A_{4} \times A_{5}\right) \\
& \left(\left(A_{1} \times A_{2}\right) \times A_{3}\right) \times\left(A_{4} \times A_{5}\right) \\
& \left(A_{1} \times\left(A_{2} \times\left(A_{3} \times A_{4}\right)\right)\right) \times A_{5} \\
& \left(A_{1} \times\left(\left(A_{2} \times A_{3}\right) \times A_{4}\right)\right) \times A_{5} \\
& \left(\left(A_{1} \times A_{2}\right) \times\left(A_{3} \times A_{4}\right)\right) \times A_{5} \\
& \left(\left(A_{1} \times\left(A_{2} \times A_{3}\right)\right) \times A_{4}\right) \times A_{5} \\
& \left(\left(\left(A_{1} \times A_{2}\right) \times A_{3}\right) \times A_{4}\right) \times A_{5}
\end{aligned}
$$

Matrix chain multiplication

$$
\left.\begin{array}{r}
\left.\begin{array}{r}
A_{1} \times\left(A_{2} \times A_{3} \times A_{4}\right. \\
\left(A_{1} \times A_{2}\right) \times\left(A_{3} \times A_{4}\right.
\end{array} \ldots \times A_{N-1} \times A_{N}\right) \\
\left(A_{1} \times A_{2} \times A_{3}\right) \times\left(A_{4} \times A_{N}\right) \\
\left(A_{1} \times A_{2} \times A_{3} \times A_{4}\right) \times\left(\ldots \times A_{N-1} \times A_{N}\right) \\
\ldots \\
\left(A_{N} \times A_{N}\right) \\
\left(A_{1} \times A_{2} \times A_{3} \times A_{3} \times A_{4} \times \ldots\right) \times\left(A_{N-1} \times A_{N}\right)
\end{array}\right\}
$$

N-1 possible places where the expression is divided in two subexpressions, those are processed separately and finally multiplied together.

Let us suppose (as is usual in DP) that the optimum parenthesization is precomputed for all blue subexpressions.

Matrix chain multiplication

$$
\begin{aligned}
& A_{1} \times\left(A_{2} \times A_{3} \times A_{4} \ldots \times A_{N-1} \times A_{N}\right)= B[1,1] \times B[2, N] \\
&\left(A_{1} \times A_{2}\right) \times\left(A_{3} \times A_{4} \ldots \times A_{N-1} \times A_{N}\right)= B[1,2] \times B[3, N] \\
&\left(A_{1} \times A_{2} \times A_{3}\right) \times\left(A_{4} \ldots \times A_{N-1} \times A_{N}\right)= B[1,3] \times B[4, N] \\
&\left(A_{1} \times A_{2} \times A_{3} \times A_{4}\right) \times\left(\ldots \times A_{N-1} \times A_{N}\right)= B[1,4] \times B[5, N] \\
& \ldots \\
&\left(A_{1} \times A_{2} \times A_{3} \times A_{4} \times \ldots\right) \times\left(A_{N-1} \times A_{N}\right)=B[1, N-2] \times B[N-1, N] \\
&\left(A_{1} \times A_{2} \times A_{3} \times A_{4} \times \ldots \times A_{N-1}\right) \times A_{N}=B[1, N-1] \times B[N, N]
\end{aligned}
$$

Matrix $\mathrm{B}[\mathrm{i}, \mathrm{j}]$ is the product of the corresponding subexpression.
Denote by $r(X)$ resp. $s(X)$ the number of rows resp. columns of matrix X. The matrix multiplication rules say:

$$
r(B[i, j])=r\left(A_{i}\right), s(B[i, j])=s\left(A_{j}\right), \quad i \leq i \leq j \leq N .
$$

Matrix chain multiplication

Let $M O[i, j]$ be minimum number of multiplications needed to compute $B[i, j]$, i.e. minimum number of multiplications needed to compute the matrix $A_{i} \times A_{i+1} \times \ldots \times A_{j-1} \times A_{j}$.

$\mathrm{B}[1,1] \times$	$\mathrm{B}[2, \mathrm{~N}] \quad \mathrm{MO}$	$\mathrm{MO}[1,1]+r\left(A_{1}\right)^{*} \mathrm{~s}\left(\mathrm{~A}_{1}\right)^{*} \mathrm{~s}\left(\mathrm{~A}_{\mathrm{N}}\right)+\mathrm{MO}[2, \mathrm{~N}]$	
$\mathrm{B}[1,2] \times$	$\mathrm{B}[3, \mathrm{~N}] \quad \mathrm{MO}$	$\mathrm{MO}[1,2]+r\left(A_{1}\right)^{*} s\left(A_{2}\right)^{*} s\left(A_{N}\right)+\mathrm{MO}[3, \mathrm{~N}]$	
$\mathrm{B}[1,3] \times$	$\mathrm{B}[4, \mathrm{~N}] \quad \mathrm{MO}$	$\mathrm{MO}[1,3]+\mathrm{r}\left(\mathrm{A}_{1}\right)^{*} \mathbf{s}\left(\mathrm{~A}_{3}\right)^{*} \mathrm{~s}\left(\mathrm{~A}_{N}\right)+\mathrm{MO}[4, \mathrm{~N}]$	
$\mathrm{B}[1, \mathrm{~N}-2]$	$\mathrm{B}[\mathrm{N}-1, \mathrm{~N}] \mathrm{MO}[1, \mathrm{~N}$	$\mathrm{MO}[1, \mathrm{~N}-2]+\mathrm{r}\left(\mathrm{A}_{1}\right)^{*} \mathrm{~s}\left(\mathrm{~A}_{\mathrm{N}-2}\right)^{*} \mathrm{~s}\left(\mathrm{~A}_{\mathrm{N}}\right)+\mathrm{MO}[\mathrm{N}-1, \mathrm{~N}]$	
$\mathrm{B}[1, \mathrm{~N}-1] \times$	$\mathrm{B}[\mathrm{N}, \mathrm{N}] \quad \mathrm{MO}[1, \mathrm{~N}$	MO[1,N-1] + r ${ }^{\left(A_{1}\right)^{*} s\left(A_{N-1}\right)^{*} s\left(A_{N}\right)+\mathrm{MO}[\mathrm{N}, \mathrm{N}]}$	
\# of multiplications in the left subexpression \# of multiplications in $\mathrm{B}[1,.] \times \mathrm{B}[., \mathrm{N}]$			

For MO[1,N], which is the solution of the whole problem, we get $\mathrm{MO}[1, \mathrm{~N}]=\min \left\{\mathrm{MO}[1, k]+r\left(\mathrm{~A}_{1}\right)^{*} \mathrm{~s}\left(\mathrm{~A}_{\mathrm{k}}\right)^{*} \mathrm{~s}\left(\mathrm{~A}_{\mathrm{N}}\right)+\mathrm{MO}[\mathrm{k}+1, \mathrm{~N}] \mid \mathrm{k}=1 . \mathrm{N}-1\right\}$

Matrix chain multiplication

$$
M O[1, N]=\min \left\{M O[1, k]+r\left(A_{1}\right)^{*} s\left(A_{k}\right)^{*} s\left(A_{N}\right)+M O[k+1, N] \mid k=1 . . N-1\right\}
$$

When values MO[i, j] for subexpressions shorter than [1, N] is known then the problem solution (= value MO[1, N]) ,
can be found in time $\Theta(N)$. (*)
Recursive and repeated exploitation of smaller subproblems solutions
The analysis which we performed with the whole expression $A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{N}$,
can be analogously performed for each contiguous subexpression $\ldots A_{L} \times A_{L+1} \times \ldots \times A_{R-1} \times A_{R} \ldots, 1 \leq L \leq R \leq N$.

The number of these subexpressions is the same as the number of index pairs (L, R), $1 \leq L \leq R \leq N$. it is equal to $\operatorname{Comb}(N, 2) \in \Theta\left(N^{2}\right)$. A particular subproblem specified by (L, R) can be solved according to (*) in time $\mathrm{O}(\mathrm{N})$, the whole solution time is therefore $O\left(N^{*} N^{2}\right)=O\left(N^{3}\right)$.

```
Matrix chain multiplication
*
MO[L,R] \(=\min \left\{M O[L, k]+r\left(A_{L}\right)^{*} s\left(A_{k}\right) * s\left(A_{R}\right)+M O[k+1, R] \mid k=L . . R-1\right\}\)
```

Values MO[L,R] can be stored in 2D array at position [L][R].
Calcultion of MO[L,R] according to \circledast depends on values MO[$\mathrm{x}, \mathrm{y}]$ in which the difference $y-x$ is less then the difference $R-L$.

The DP table is thus filled in the order of increasing difference R - L .
0 . Calculate $M O[L][R]$, where $R-L=0$, it is the main diagonal.

1. Calculate $M O[L][R]$, where $R-L=1$, it is the diagonal just above the main diagonal.
2. Calculate $M O[L][R]$, where $R-L=1$, it is the diagonal just above the previous diagonal.
$\mathrm{N}-1$. Calculate $\mathrm{MO}[\mathrm{L}][\mathrm{R}]$, where $\mathrm{R}-\mathrm{L}=\mathrm{N}-1$, it is the upper right corner of the table.

Matrix chain multiplication

Calculation of the DP table -- progress scheme

R-L=2

Matrix chain multiplication

$$
M O[L, R]=\min \left\{M O[L, k]+r\left(A_{L}\right)^{*} s\left(A_{k}\right)^{*} s\left(A_{R}\right)+M O[k+1, R] \mid k=L . . R-1\right\}
$$

Example of one cell calculation

Matrix chain multiplication

Matrices

Matrix chain multiplication

*

MO[L,R] $=\min \left\{M O[L, k]+r\left(A_{L}\right)^{*} s\left(A_{k}\right)^{*} s\left(A_{R}\right)+M O[k+1, R] \mid k=L . . R-1\right\}$
When the value of MO[L, R] is established we store in the 2D reconstruction table RT at the position [L][R] the walue of \mathbf{k} in which the minimum in \circledast was attained.

The value $\mathbf{k}=\mathrm{RT}[\mathrm{L}][\mathrm{R}]$ defines the division of the subexpression $\left(A_{L} \times A_{L+1} \times \ldots \times A_{R}\right)$
into two smaller optimal subexpressions
$\left(A_{L} \times A_{L+1} \times \ldots \times A_{k}\right) \times\left(A_{k+1} \times A_{k+2} \times \ldots \times A_{R}\right)$.
The value $\mathrm{RT}[1, \mathrm{~N}]$ defines the division of the whole expression
$A_{1} \times A_{2} \times \ldots \times A_{N}$
into the first two optimal subexpressions
$\left(A_{1} \times A_{2} \times \ldots \times A_{k}\right) \times\left(A_{k+1} \times A_{k+2} \times \ldots \times A_{N}\right)$.
And then the reconstruction continues recursively analogously for $\left(A_{1} \times A_{2} \times \ldots \times A_{k}\right)$ and for $\left(A_{k+1} \times A_{k+2} \times \ldots \times A_{N}\right)$ and so on.

Matrix chain multiplication

Asymptotic complexity

Row index	Row sums
ヘ $\mathrm{k}=\mathrm{N}-1$	1/2 * ($\mathrm{N}-1$) * N
$\mathrm{k}=\mathrm{N}-2$	1/2 * (N-2) * ($\mathrm{N}-1$)
$\mathrm{k}=\mathrm{N}-3$	1/2 * (N-3) * $(\mathrm{N}-2)$
$k=k$	1/2 * ${ }^{\text {* }}$ (k+1)
$\mathrm{k}=3$	1/2 * 3 * 4
k $=2$	1/2 * 2 * 3
$k=1$	1/2 * 1 * 2

The complexity of calculating one cell value is proportional to the number of other cells in the table used to perform this calculation.

Total $\quad 1 / 2 * \sum_{k=1}^{N-1} k *(k+1)=1 / 2 * \sum_{k=1}^{N-1} k^{2}+1 / 2 * \sum_{k=1}^{N-1} k$

$$
=1 / 2 *(N-1) * N *(2 N-1) / 6+1 / 2 *(N-1) * N / 2 \in \Theta\left(N^{3}\right)
$$

