A4B33ALG 2015/10

A4B33ALG 2015/10

Dynamic programming

DP is a general strategy applicable to many different optimisation
problems in diverse fields of computer science.
In this respect it is similar to Divide and conquer strategy.

Important properties

1. The desired optimal solution is composed of suitably chosen
optimal solutions of the same problem with reduced data.

2. The recursive formulation of the solution depends on many
Identical and repeated subproblems.

DP avoids unnecessary repeated computations by the method
of tabelation (memoization) of the results of the subproblems.

A4B33ALG 2015/10

Dynamic programming

Application examples:

= Optimal paths in graphs

» Longest subsequences with prescribed properties

= Knapsack problem

= Optimal scheduling of interdependent processes

= Approximate matching of patterns in text (bioinformatics)
= Longest common subsequence

= Optimal order of matrix multiplication

= Optimal binary search tree

= Optimal node/edge covering of a tree

= And many more....

A4B33ALG 2015/10

Dynamic programming

List of DP algorithms on en.wikipedia.org/wiki/Dynamic_programming

« Recurrent solutions to lattice models for protein-DNA binding

« Backward induction as a solution method for finite-horizon discrete-time dynamic optimization problems

« Method of undetermined coefficients can be used to solve the Bellman equation in infinite-horizon, discrete-time, discounted, time-invariant dynamic optimization problems
« Many string algorithms including longest common subseguence, longest increasing subsequence, longest common substring, Levenshtein distance (edit distance)

« Many algorithmic problems on graphs can be solved efficiently for graphs of bounded treewidth or bounded clique-width by using dynamic programming on a tree decomposition of the graph
« The Cocke-Younger—Kasami (CYK) algorithm which determines whether and how a given string can be generated by a given context-free grammar

« Knuth's word wrapping algorithm that minimizes raggedness when word wrapping text

« The use of transposition tables and refutation tables in computer chess

« The Viterbi algorithm (used for hidden Markov models)

« The Earley algorithm (a type of chart parser)

« The Needleman-Wunsch and other algorithms used in bioinformatics, including sequence alignment, structural alignment, RNA structure prediction

Floyd's all-pairs shortest path algorithm

Optimizing the order for chain matrix multiplication

» Pseudo-polynomial time algorithms for the subset sum and knapsack and partition problems

« The dynamic time warping algorithm for computing the global distance between two time series
« The Selinger (a k.a. System R) algorithm for relational database query optimization

.

De Boor algorithm for evaluating B-spline curves

« Duckworth—Lewis method for resolving the problem when games of cricket are interrupted

« The value iteration method for solving Markov decision processes

« Some graphic image edge following selection methods such as the "magnet" selection tool in Photoshop
« Some methods for solving interval scheduling problems

« Some methods for solving word wrap problems

« Some methods for solving the travelling salesman problem, either exactly (in exponential time) or approximately (e.g. via the bitonic tour)
« Recursive least squares method

« Beat tracking in music information retrieval

« Adaptive-critic training strategy for artificial neural networks

« Stereo algorithms for solving the correspondence problem used in stereo vision

« Seam carving (content aware image resizing)

« The Bellman—Ford algorithm for finding the shortest distance in a graph

« Some approximate solution methods for the linear search problem

« Kadane's algorithm for the maximum subarray problem

lllustrative screen copy

A4B33ALG 2015/10

Tabelation in DP - example

-)
Funeron _ (x=0) || (y=0)
efinition f(x,y) = 2.4(x, y-1) + f(x-1,y) (x >0) && (y > 0)
)
Problem f(10,10) = ?
-
def f(x, y):
Program if (x=0) or (y == 0): return 1
return 2*f(x,y-1) + f(x-1,y)
|print(£(10,10));
J
Solution [f(10,10) = 127574017 () J

A4B33ALG 2015/10

Tabelation in DP - example

Acount =0 \

def f(x, y):

global count
Em count += 1
Simple iIf (x ==0) or (y == 0):
analysis return 1
return 2*f(x,y-1) + f(x-1,y)

£(10,10) ‘
print(count)
o %
Analysis
result count = 369 511 @

Tabelation in DP - example

More detailed analysis —recursion tree

@
@
o
@2@ @
3 /3

oo
D
DD @2@

756568887908

... repetitive calculations, many of them!

Tabelation in DP - example

Detailed analysis continues — recursive calls effectivity

count: calls values

A4B33ALG 2015/10

Tabelation in DP - example

—— [x=0) Il (y=0)
(x.y) |= 24(x, y-1)|+ [f(x-1,y) (x>0) && (y >0)

Table in general

O 1 2 3 9 10 ...Z(..’
O f(o’o) f(l’o) f(2,0) --- f(1010)
1 o [ey | |
2 102 |
3 i

== . Tiaos]
°o: . (9.9 |1(109)
lo f(o’lo) - |---------------------------. f(81 10) f(g,lo) f(lo’lo)
iy

A4B33ALG 2015/10

Tabelation in DP - example

fxy) =< 1 x=0) || (y=0)
2 -[f(x,y-1)| + | f(x-1,y) (x>0) && (y >0)
Table with numerical values
0 1 2 3 4 9 10 weeteep
; : : : - e :
X : : - —
o [1 7 17 | 31 |
: : - TR
. = T »
I . 8085505
0 - 5 16807935 32978945
10 1 -- 28000257 61616127 127574017
vV

A4B33ALG 2015/10

Tabelation in DP - example

All values are precomputed

def

nitialize by constant 1 for x = 0 ory =0

ynTable(M, N):
[
= [[11*(N+1) for 1 1n range(M+1)]

d
#
t
for y in range(1, M+1):

for x in range(l, N+1):

tlyllx] = 2*tly-1]1[x] + tly]lI[x-1]

return t[M][N]

| def f(x, y):
Function call return dynTable(y, X)

10

A4B33ALG 2015/10

Optimal paths in graphs

Notation:
Graph G = (V, E), set of nodes resp. edges: V(g) resp. E(G),
= |V(G)|, M = |E(G)|, or n =|V|, m = |M]| etc.

Path in a graph
= sequence of incident edges which contains each node
at most once.

Path length in unweighted graph Path length in wighted graph

= no. of edges in the path. =sum of edge weights
In the path.
Ex. Length (B D EF C) =4. Ex. Length (AEF CG) = 14.

A
o—
j\ A 7BC 1D
f_y 4 2) 19 0
\d : =
E F G

11

A4B33ALG 2015/10

Optimal paths in graphs

Shortest paths

Problem of finding a shortest path between two given nodes
or between more nodes or between all nodes in the graph.
(E.g. Minimizing resources necessary to travel from x to y.)

Methods

The problem is solved for all practical cases of graphs.

We met earlier BFS which solves simple cases,

In more complex cases, particularly of weighted graphs,
specific algorithms are available -- Dijkstra, Floyd-Warshall,
Johnson, Bellman-Ford, etc.

Complexity

Asymptotic complexity is always polynomial in number of
nodes and edges. Typically, the complexity of finding one path
is at most O(N2), often less.

12

A4B33ALG 2015/10

Optimal paths in graphs

Longest paths

Find a longest path between two given nodes or the longest
path in the graph at whole.
(E.g. maximize the profit of temporary related processes.)

Exponential complexity
NP - hard problem
No systematic satisfactory solution has been found yet.

Possible strategies
1. Brute force -- exponential complexity, useless when N > cca 20.

2. Algorithms for approximate solutions with polynomial complexity
-- either find optimum with limited probability <1
-- or can guarantee only a suboptimal solution
-- are often non-trivial and requiring advanced impementation.

13

Optimal paths in graphs
Possible strategies
3. Some specific types of graph allow for application

of specific and effective algorithms (limited to that type of graph)

Most simple cases

3A.

Graph is a tree (both weighted or unweighted and both directed
or undirected). Optimum path can be found in time ®(N) by
easy postorder traversal modification.

Opportunity for DP approach

3B.
Graph is directed and acyclic, may be weighted or unweighted.
Standard abbreviation: DAG (Directed Acyclic Graph)

14

A4B33ALG 2015/10

Topological order of DAG nodes

Topological order od DAG is such ordering of its nodes

In which each edge points from the node with the lower order
to the node with the higher order.

Each DAG can be topologically ordered, usually in more ways.

Any directed graph which contains at least one cycle
cannot be topologically ordered.

Graphs in some DP problems are implicitely or naturally
topologically ordered from the moment of problem posing.

Topological order of any DAG (at least one) can be found
in time ®(M), i.e. In time proportional to the nuber of edges.

15

DAG and its topological order

©
o

O— @ \@ 40,

Example 1

N\
E

16

A4B33ALG 2015/10

DAG and its various topological orders

Example 2a

77777
7Y
o0:

TN 9995

e

17

DAG and its various topological orders

Example 2b

77777
77777
20:

18

DAG and its various topological orders

Example 2c

19

A4B33ALG 2015/10

Topological sort

Algorithm Complexity
0. new queue Q of Node We suppose that operation
G.removeEdge((v, w))
1. for each x in V(G): has constant complexity”.
if x.indegree == 0: #xis aroot
Q.insert(r) 0. Complexity O(N)
1. Complexity O(N)
2. while 'Q.empty(): 2. Complexity ©(M),
v = Q.pop() each edge is visited exactly
for each edge (v, w) € E(G): once and it is processed in
G.removeEdge((v, w)) constant time.
if w.indegree == 0: #w is aroot
Q.insert(w) Complexity : @(N+M)

Topological order

The order in which nodes are inserted into the queue is the topological order of DAG.

M. Often it is enough to just mark the edge as deleted, without physically deleting it.

20

A4B33ALG 2015/10

Topological sort -- example

@—7 —
O+ @&) oﬂﬁ @
@—— 0« \V »O @—— 0«
Queue: 1, 2, 3. Queue: 2, 3, 4.
© ®
@ O « O—— 0 @ O « O—— 0

Queue: 3, 4. Queue: 4.

21

Topological sort -- example

®
® @ /\@
@ O « 5) »O
Queue: 5, 6.
®
® @ ®

® o & 6

Queue: 7, 8.

®
® © ®
®@ o 6
Queue: 6, 7, 8.
® O
® O ®

®@ ©® 6

Queue: 8, 9.

22

A4B33ALG 2015/10

Topological sort -- example

“ ...;0 "‘ .:
@ © 06 @ PO ¢~ ®»®
Queue: 9. Queue: Empty.

Topological order

N\
Xy

23

A4B33ALG 2015/10

Longest path in DAG

We process nodes of DAG in their topological order.
Denote by d[x] length of the path which ends in x and its length is maximal.

Charakteristic DP view "from the end to the beginning":
-- d[x] is set when values of d are known for all previous
(= already processed) nodes in the topological order.
-- d[x] is the maximum of values
{d[y1] + w1, d[y2] +wz2, ..., d[yk] + wk},
where (y1, x), (y2, X), ... are all edges ending in X
and wl, w2, ..., are their respective weights.

Processed part of DAG Progress dlrectlon
1

-O@{o O O -

Topologlcal order

24

A4B33ALG 2015/10

Longest path in DAG

-- d[x]is the maximum of values
{d[y1] + w1, d[y2] +w2, ..., d[yk] + wk},
where (y1, x), (y2,X), ... are all edges ending in X
and wl, w2, ..., are their respective weights.

-- If all values {d[y1] + w1, d[y2] + w2, ..., d[yk] + wk}
are negative then none of them contributes to the longest path
and the value of d[x] is reset: d[x] =

-- The node yj, for which the value d[yj] + wj is maximal and non-negative,
IS set as a predecessor of x on the longest path.

-O@{o O O -

d[y1]=10 d[y2]=20 d[y3]:35 " d[x]=60
p[x]=y2

25

A4B33ALG 2015/10

Longest path in DAG

Example

Find the longest path and its length.

26

A4B33ALG 2015/10

Longest path in DAG

d=0

p=nil d = max {0+6}
=6

p=1

27

Longest path in DAG

—nil — d = max {0+-2,
P P 6+2}
=8
p=2

A4B33ALG 2015/10

28

A4B33ALG 2015/10

Longest path in DAG

29

Longest path in DAG

d = max {6+-1,
8+-1}
=7
p=3

A4B33ALG 2015/10

30

Longest path in DAG

d=9
p=2

d=7
p=3

d = max {0+5,
8+1,
9+3,
7+4}

=12

p =4

A4B33ALG 2015/10

31

A4B33ALG 2015/10

Longest path in DAG

d=0 d=6 d=8 d=9 d=7 d=12
p=nil p=1 p=2 p=2 p=3 p=4 d=max{6+7,
7+3,
12+2}
=14
p=6

32

A4B33ALG 2015/10

Longest path in DAG

d=0 d=6 d=8 d=9 d=7 d=12 d=14
p=nil p=1 p=2 =2 p=3

Length of the longest path: 14
The longest pathitself: 1--2--4--6--7

33

Longest path in DAG

0. allocate memory for distance and predecessor of each node

1. for each x in V(G):
x.dist = neglnfinity _
x.pred = null 0. Complexity ®(N)

1. Complexity ®(N)
supposing nodes are processed

#in ascending topological order 2. Complexity ©(M),
2. for each node x in V(G): each edge is visited exactly
for each edge e = (y, x) in E(G): once and it is processed in
if x. dist <y.dist + e.weight: constant time.
X. dist = y.dist + e.weight
X.pred =y
}

if Xx. dist <0: x.dist =0; # avoid negative path lengths

Complexity: @(N+M)

A4B33ALG 2015/10

34

Longest path in DAG

Variant |
2. for each node @ in V(G):

for each edge e = (y, x) in E(G):
if x.dist <y.dist + e.weight:
x.dist = y.dist + e.weight
X.pred =y

if x. dist <O0:
x.dist=0

4
order of processing
=topological order

A4B33ALG 2015/10

Variant Il
2. for each node @ in V(G):

if Xx. dist <0:
x.dist =0

for each edge e = (x, y) in E(G):
if y.dist < x.dist + e.weight:
y.dist = x.dist + e.weight
y.pred = x

order of processing
=topological order

35

A4B33ALG 2015/10

Longest path in DAG

Warning]

Algorithms presented in the literature and on the web
often solve the maximum path in DAG problem only for non-negative
edge weights and do not mention explicitely this limitation.

Those algorithms cannot handle DAG containing negative weight edges.

Incorrect result produced by algorithm
expecting only non-negative edge weights

d=-3 d=-1 d=1
-9 60—

maximal d!

O—2- (@
d=-1 d=1

Actual maximum path is 3 --5-- 7 which weight is 4.
Algorithm limited to non-negative weights finds
only suboptimal path 1 -- 2 -- 4 -- 6 which weight is 2.

36

A4B33ALG 2015/10

Longest path in DAG

Problem of reconstucting all optimal paths
-- the number of paths can be too big.

Example Each path from the root to the leaf is
optimal, its weight is N-(at+b).
0 1 2 I\
0 O-290-2903 === 290 Number of all paths is Comb(2N, N),
b b b b and it holds 2N < Comb(2N, N) < 4N,

The numbert of optimal paths thus
grows exponentially with the value of N.

b b b b
b b b b N # of optimal paths

. 1 2
- b b b b 10 184756
N a a A tawd 20 137846528820

30 118264581564861424

40 10750/7208733336176461620

37

