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Previously ... on multi-agent systems.

Extensive-Form Games

Transformations between representations



Strategies in EFGs

(2,10) (1,0)
What are actions and strategies in this game?
S1 = {(A,G),(A, H), (B,G), (B, H)}
Sy ={(C,E),(C,F), (D, E), (D, F)}
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(A, H)
(B,G)
(B,H)




Nash Equilibria in EFGs

(C.E) | (C.F) | (D,E) | (D, F)
(A,6) | 3,8 [ (3.8 | (83 | (83
(A H) | (3,8) | (3,8) | (83) | (83)
(B,G) | (5,5) [ (2,10) | (5,5) | (2,10)
(B,H) | (5,5) | (1,0) | (5,5 | (1,0)




Nash Equilibria in EFGs - threats

(C.E) | (C.F) | (D,E) | (D, F)
(A,6) | 3,8 [ 3.8 | (83 | (83
(A H) | (3,8) | (3,8) | (83) | (83)
(B,G) | (5,5 [(2,10) | (5,5) | (2,10)
(B,H) || (5,5) | (1,0) | (5,5 | (1,0)




Nash Equilibria in EFGs

Not all Nash strategies are entirely “sequentially rational” in EFGs.
Off the equilibrium path, the players may use irrational actions.

We use refinements of NE in EFGs to avoid this. The best known
(for EFGs with perfect information) is Subgame-perfect
equilibrium.

Definition (Subgame)

Given a perfect-information extensive-form game G, the subgame
of GG rooted at node h is the restriction of G to the descendants of
h. The set of subgames of GG consists of all of subgames of G
rooted at some node in G.



Subgame-Perfect Equilibrium (SPE)

Definition (Subgame-perfect equilibrium)

The subgame-perfect equilibria (SPE) of a game G are all strategy
profiles s such that for any subgame G’ of G, the restriction of s
to G’ is a Nash equilibrium of G’.

function BACKWARDINDUCTION(node h)
if h € Z then
return u(h)
end if
best_util <+ oo
for all a € x(h) do
util_at_child <~ BACKWARDINDUCTION(p(h,a))
if util_at_child,) >best_util,) then
best_util + util_at_child
end if
end for
end function



Subgame-Perfect Equilibrium (SPE)

This is the same algorithm (in principle) that you know as
Minimax (or Alpha-Beta pruning, or Negascout) and works (in
general) for n-player games.

Corollary

Every extensive-form game with perfect information has at least
one Nash equilibria in pure strategies that is also a
Subgame-perfect equilibrium.

Is this correct? We have seen examples of games that do not have
pure NE.

Not every game can be represented as an EFG with perfect
information.



EFGs with Chance

We introduce a new “player” termed chance (or Nature) that plays
using a fixed randomized strategy.

Formal Definition:

players N = {1,2,...,n}U{c}

actions A

choice nodes (histories) H

action function y : H — 24

player function p: H — N

terminal nodes Z

successor function p: H x A—HUZ

stochastic transitions v : A{x(h) | h € H,p(h) = ¢}
utility function u = (uq,ug,...,up); u; : 2 - R



EFGs with Imperfect Information

When players are not able to observe the state of the game
perfectly, we talk about imperfect information games. The states
that are not distinguishable to a player belong to a single
information set.

Formal Definition:

mG=WN,AH, Z x,p, p,7,u) is a perfect-information EFG.

m Z=(11,2s,...,1,) where Z; is a set of equivalence classes
on choice nodes of a player ¢ with the property that
p(h) = p(') =1 and x(h) = x(h'), whenever h, ' € I for
some information set I € Z;

m we can use x([) instead of x(h) for some h € I



Strategies in EFGs with Imperfect Information

Player 1

Player 2

What are actions and strategies in this game?
A ={2-0,1-1,0-2}; $={2-0,1-1,0—2}

Az = {no,yes}; Sz = {no, yes}



Strategies in EFGs with Imperfect Information

There are no guarantees that a pure NE exists in imperfect
information games.

Every finite game can be represented as an EFG with imperfect
information.
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Strategies in EFGs with Imperfect Information

Mixed strategies are defined as before as a probability distribution
over pure strategies.

There are also other types of strategies in EFGs, namely behavioral
strategies:

m A behavioral strategy of player i is a product of probability
distributions over actions in each information set

gi: I A1)

IeT;

There is a broad class of imperfect-information games in which the
expressiveness of mixed and behavioral strategies coincide — perfect
recall games. Informally, no player forgets any information she
previously knew in these games.



Perfect Recall in EFGs

Definition

Player i has perfect recall in an imperfect-information game G if
for any two nodes h,h’ that are in the same information set for
player i, for any path hg, ag, ..., Ay, an, h from the root of the
game tree to h and for any path hg, ay,. .., h;,,al,, b’ from the
root to i’ it must be the case that:

n=m

forall 0 < j <n, h;j and h;- are in the same equivalence class
for player i

forall 0 < j <m, if p(h;) =1, then a; = a;»

Definition
We say that an EFG has a perfect recall if all players have perfect
recall. Otherwise we say that the game has an imperfect recall.



Solving Imperfect Information Extensive-Form Games

Backward induction does not work, there is a dependence between
the information sets.

The algorithms (typically) need to consider the game as a whole:
m We can solve an EFG as a normal-form game.

m We can use so-called sequence form to formulate a linear
program that has a linear size in the size of the game.

State-of-the-art algorithms:
m Double Oracle for Extensive-Form Games (DOEFG)
[Bosansky et al., 2014]
m Counterfactual Regret Minimization (CFR)
[Zinkevich et al., 2008, Tammelin, O. 2014]
m Excessive Gap Technique (EGT)
[Hoda et al., 2010, Kroer et al., 2018]



LP Algorithms for Extensive-Form Games

Algorithms based on linear programming



Imperfect Information EFG




Induced Normal-Form Game

| [ XZ[XW [YZ][YW ]

ACE 3 3 1 1
ACF 3 3 1 1
ADE -2 -2 3 3
ADF —2 -2 3 3
BCE 2 0 2 0
BCF 1 3 1 3
BDE 2 0 2 0
BDF 1 3 1 3

Normal form representation is too verbose. The same leaf is stated
multiple times in the table.

We can avoid it by using sequences.



Sequences in Extensive-Form Games

An ordered list of actions of player i executed from the root of the

game tree to some node h € H is called a sequence o;. Set of all
possible sequences of player i is denoted ;.



Sequences in Extensive-Form Games

An ordered list of actions of player i executed from the root of the

game tree to some node h € H is called a sequence o;. Set of all
possible sequences of player ¢ is denoted ;.



Extended Utility Function

We need to extend the utility function to operate over sequences:
g: 21 X 22 — R,

where g(o1,09) =

m u(z) iff z corresponds to a leaf (terminal history) represented
by sequences o1 and o9

m 0 otherwise



Extended Utility Function

In games with chance a combination of sequences can lead to
multiple nodes/leafs. g(o1,09) =
m ) 2 C(2)u(z) iff Z'is a set of leafs that correspond to
history represented by sequences o1 and o2, and C(z)
represents the probability of leaf z being reached due to
chance

m 0 otherwise



Extended Utility Function

Examples:
mg(0,W)=0
m g(AC, W) =0
m g(BF, W) 3
m g(A,X) =



Realization Plans

We need to express a mixed strategy using sequences. We need to
be prepared for all situations.

Let's assume that the opponent (player 2) will play everything and
assign a probability that certain sequence o1 will be played.

A realization plan (r;(c;)) is a probability that sequence o; will be
played assuming player —¢ plays such actions that allow actions
from o; to be executed.



Realization Plans
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Best Response

LAEY) [ v(Z) |

AC
AD
BE
BF

oy}
(NI PO S

m We now have almost everything — a strategy representation
and an extended utility function.

m We will have a maximization objective and need a best
response for the minimizing player.

m A player selects the best action (the one that minimizes the
expected utility) in each information set.

m An expected utility after playing an action in an information
set corresponds to a sum of (1) utility values of leafs and (2)
information sets that are immediately reached.



Sequence Form Linear Program (SQF)

We are now ready to state the linear program:

max v(root) (1)

s.t 1 (@) =1 (2)
0<ri(o1) <1 Vo1 € 1 (3)
> ri(owa) =ri(o1) VI €Ty,o1 =seqy(I1) (4)

acA(I7)

Z o(I') + Z g(o1,02a)r1(o1) > v(I) VI € Iy, 02 = seqy(1I),Va € A(I)

I'€Iz:00a=seqy(I’) 01€X1
(5)

m seq,(]) is a sequence of player ¢ to information set,
m [ €7, vy is an expected utility in an information set,

m inf;(0;) is an information set, where the last action of o; has been
executed,

m o;a denotes an extension of a sequence o; with action a



Sequence Form LP - Example

IPI?I)}(U(infg(X)) + v(infa(Z)) (6)

r1(0) = L;r1(A) +r1(B) = r1(0) (7)

r1(AC) +r1(AD) = r(4), (8)

ri(BE) +ri(BF) = r1(B) (9)

v(inf2(X)) < 0+ g(AC, X)r1(AC) + g(AD, X)r1(AD) (10)
v(inf2(Y)) < 0+ g(AC, Y)ri(AC) + g(AD, Y )r1(AD) (11)
v(inf2(2)) < 0+ g(BE, Z)r1(BE) + g(BF, Z)r1(BF) (12)
(inf2(W)) < 0+ g(BE,W)ri(BE) + g(BF, W)ri(BF) (13)



Sequence Form LP - Example

+ g(Ac Vra(y) (18)
+ g(AD,Y)r2(Y) (19)

+ g(BE,W)ra(W) (20)
+ g(BF,W)ra(W) (21)



Simple Network Security Scenario — Flip-It Game

Flip-it Game in a network

m players aim to gain control over the hosts in the
network

‘ m the defender initially controls all hosts
®‘® m both players choose which node to

attack/protect simultaneously (in case of a tie,
the control of the node does not change)

@ @ m players only observe the result of their last move
m there are different rewards/costs for each node



Simple Network Security Scenario — Flip-It Game

SQF for Flip-it Game in a network

“ Depth | Size (# Nodes) | Time [s] | LP Time [s]
@ @ 3 15,685 | 1 1
‘ 4 495,205 23 8

5 16,715,941 - -




Advantages/Disadvantages of SQF

(4) the fastest exact algorithm (if the LP fits into memory)
(4+) quite easy to implement

(—) scales poorly due to memory limitations
(—) very difficult to make it domain-specific



Incremental Strategy Generation

Large linear programs can be solved by an incremental construction
of the LP. In game theory, the method has been known as
double-oracle algorithm. There are 4 steps that repeat until
convergence [Bosansky et al., 2014]:

create a restricted game — a simplified game where the
players are allowed to choose only from a limited set of
sequences of actions,

solve the restricted game — formalize the restricted game as
a sequence-form LP and solve it,

compute the best response — each player computes a best
response in the original game to the strategy from the
restricted game,

expand the restricted game — if the best responses strictly

improve the expected value, they are added as possible actions
into the restricted game.



Double Oracle Algorithm for EFGs

The original game. Sequences that form the restricted game will
be highlighted.

]
y

L

< D: /X & {f

W |
C) Sodhodede




Double Oracle Algorithm for EFGs

Sequences AC' and xz are added to the restricted game (as default
sequences of actions).




Double Oracle Algorithm for EFGs

Sequence yu is added to the restricted game as a best response of
the minimizing player.




Double Oracle Algorithm for EFGs

Sequence BE is added to the restricted game as a best response
of the maximizing player.




Double Oracle Algorithm for EFGs

There is no action defined for the node with history ByFE. The
algorithm turns that node into a temporary leaf and assigns a
temporary utility value for that leaf.




Double Oracle Algorithm for EFGs

The algorithm turns the temporary leaf into a node when an action
s or t is added into the restricted game.




Characteristics of DOEFG

Generalization of the double oracle principle to structured strategy
spaces (such as sequences/realization plans).

Creating a valid restricted game is more complicated than adding a
single strategy (one may need to create temporary leaves).

DOEFG converges in at most linear number of iterations in the size
of the game tree (compared to the exponential number of
iterations when using strategies).



Simple Network Security Scenario — Flip-It Game

DOEFG for Flip-it Game in a network

Depth # Nodes | SQF [s] | SQF LP [s] | DOEFG [s]
3 15,685 1 1 1

4 495,205 23 8 9

5 16,715,941 - - 508




Advantages/Disadvantages of DOEFG

(4) can solve much larger domains compared to SQF

(4+) in a domain-independent way, the algorithm identifies
necessary strategies to consider in a large EFG

(4) best-response algorithms can be significantly improved for
specific domains/problems

not that easy to implement

the sequence-form linear program of the restricted game can
be a bottleneck



Simple Network Security Scenario — Flip-It Game

DOEFG with ordered moves for BR algorithm for Flip-it
Game in a network

Depth # Nodes | SQF [s] | SQF LP [s] | DOEFG [s] | DOEFG ordered [s]
3 15,685 1 1 1 1

4 495,205 23 8 9 5

5 16,715,941 - - 508 168

For depth 6 (size ~ 4 x 10° nodes), DOEFG with ordered moves for BR
reached error 0.1 in 2 hours.



Approximate Algorithms for Extensive-Form Games

Algorithms based on Counterfactual Regret Minimization



Approximate Algorithms for Extensive-Form Games

Instead of computing the optimal strategy directly, one can employ
learning algorithms and learn the strategy via repeated (simulated,
or self-) play.

The algorithm minimizes so called regret and these algorithms are
also known as no-regret learning algorithms.

Main idea:

m in each iteration, traverse through the game tree and adapt
the strategy in each information set according to the learning
rule

m this learning rule minimizes the (counterfactual) regret
m the algorithm minimizes the overall regret in the game

m the average strategy converges to the optimal strategy



Regret and Counterfactual Regret

. . . , . .
Player i's regret for not playing an action a; against opponent's
action a_;

uiaj, a—;) — ui(ag, a_;)

In extensive-form games we need to evaluate the value for each
action in an information set (counterfactual value)

v, 1) = 3 w2 D L ui(2),
ZEZT
where
m Z; are leafs reachable from information set 1
m z[]] is the history prefix of z in I

m 77 (h) is the probability of player i reaching node h following
strategy s



Regret and Counterfactual Regret

Counterfactual value for one deviation in information set I;
strategy s is altered in information set I by playing action

a:vi(S7—a, 1)

at a time step ¢, the algorithm computes counterfactual regret for
current strategy
ri(I,a) = vi(s1-sa, 1) — vi(s1, )
the algorithm calculates the cumulative regret
T
Rl = "rl(I,a), R (1,a) = max{R!(I,a),0}
t=1
strategy for the next iteration is selected using regret matching
R (1,a)
SEH(I, a) = { Zaeaw Ry (La)

1
A

if the denominator is positive

otherwise



Simple Network Security Scenario — Flip-It Game

CFR for Flip-it Game in a network!
0.12
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!With the game tree pre-built in memory (took 1088s).



Extensions of Counterfactual Regret Minimization

There are many variants of the vanilla CFR algorithm:

m MCCFR - CFR updates are not performed in the complete
game, but using outcome sampling (faster iterations)
[Lanctot, 2013, Brown and Sandholm, 2016]

m CFR-BR - the second player performs a best-response (BR)
update instead of a CFR update (ideal for games where a
domain-specific BR algorithm is available)

[Johanson et al., 2011]

m CFR-D — decomposition of CFR updates by subgames
(helpful if the game is too large to keep all information sets in
memory) [Burch et al., 2014]

m CFR+ — main modification of the baseline CFR algorithm
that significantly improves convergence [Tammelin, O. 2014]



Extensions of Counterfactual Regret Minimization (CFR+)

CFR+ differs from CFR in three aspects:
m only positive regrets are kept in cumulative regrets RiT
m players are alternating in the updates

m in the computation of the average strategy, first d iterations
are ignored, later iterations are more important compared to
first iterations

Sometimes, even the current strategy reaches low exploitability.



Extensions of Counterfactual Regret Minimization (CFR+)

5120 -
& 2560-
[ =
<
£ 1280-
g
g 510 Algorithm
£ CFR
5 320-
2 CFR+avg
E 160- — CFR+ avg >250
g 80 - CFR+ current
B J
[=%
x \
W - \Y
N\
\\
0- N
10 ~
=
5-
' ) | \
1 2 4 8 16 32 64 128 256 2 1024
Iterations
Figure 2: No Limit Texas Hold’em flop subgame 2

?Figure from [Tammelin, O. 2014].



Advantages/Disadvantages of CFR

(4) practical optimization algorithm
(+) easy to implement [Lanctot, 2013, p.22]

(+) memory requirements can be reduced with domain-specific
implementation (or CFR-D)

(=) CFR converges very slowly if a close approximation is required
(CFR+ is better)

(—) performance in other domains than poker is largely unknown
(in some cases slower than DOEFG)



Continual Resolving and Deepstack

Is there no hope for a provably algorithm that behaves similarly to
perfect information games?

Recently, new methods that allow limited-lookahead algorithm for
imperfect information games for poker
[Moravcik et al., 2017, Brown and Sandholm, 2017].

Key properties:
m Use (a more complex) heuristic function to evaluate positions
at the end of the depth-limited game tree
m Solve an EFG with a limited lookahead (e.g., using CFR or
other algorithm)
m Use a specific gadget construction when advancing to next
turn of the game.
One cannot assign a heuristic value just to a state (as in perfect
information games), but to all states players consider possible.



Continual Resolving and Deepstack

Action history

= \ Agent's range
@-\ Opponent counterfactual values

Current public state

\ Public tree
Agent's possible actions
')\ Lookahead tree
Neural net [see B]

\ Subtree

*Picture from [Moravcik et al., 2017].

e [
Sampled poker %
situations

/\

Values



Generalization of Continual Resolving

Adaptation of continual resolving technique to other (security)
domains is not straightforward:

m the actions are generally not observable (the defender does
not know which host the attacker infected)
m the size of information sets (in number of possible states)
increases exponentially with number of turns in the game
m the size of the information sets is changing for the
heuristic/neural network

m the size of the information sets becomes impractical for large
horizon

m the number of turns can be very large (e.g., Advanced
Persistent Threats (APTs))
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