Normal-Form Games

October 24, 2017

Outline

- Scope of MAS in Game Theory
- Game representations
 - Normal-form games
- What are the problems compared to, e.g., planning
- Analysis of a game
- Properties and computation of Nash equilibrium
- Game modeling

Noncooperative Game Theory

- Single round games
 - Normal-form games
 - Extensive-form games
 - MAIDS, Congestion games
- Multiple round games
 - Repeated games
 - Stochastic games

Types of games

- Two-player vs n-player
- Zero-sum games vs general-sum games
- Sequential vs one-shot
- Perfect-information vs imperfect-information
- Finite vs infinite

Types of games

- Two-player vs n-player
- Zero-sum games vs general-sum games
- Sequential vs one-shot
- Perfect-information vs imperfect-information
- Finite vs infinite

Normal-form games

- Players set $\mathcal{N} = \{1, ..., n\}$
- Actions set $A = A_1 \times ... \times A_n$
- Utility functions $u = \langle u_1, ... u_n \rangle$, where $u_i : \mathcal{A} \to \mathbb{R}$

Normal-form games

- Represented as n-dimensional matrix
- Every entry is n-dimensional tuple of utilities for every player

Strategies

- A pure strategy a_i in normal-form games represents the choice of specific action $a_i \in A_i$ for player i
- A mixed strategy s_i is a strategy distribution over pure strategies
- Strategy profile a/s is a set of pure/mixed strategies, one for every player
- Overloading of utility function $u(a_i, a_{-i})$, $u(s_i, s_{-i})$, u(s)

Why GT

• Why do we need Game Theory?

Approaches for reasoning about games

- Studying game structure/properties
 - Social welfare optimality
 - Pareto optimality
- Stable strategies (solution concepts)
 - Maxmin
 - Minmax
 - Nash equilibrium
 - Stackelberg equilibrium
 - Correlated equilibrium
- Computation helpers
 - Dominance

Social welfare

Defined as

$$WF = \sum_{i \in \mathcal{N}} u_i(s) \tag{1}$$

- Not stable against deviations
- Cooperative players

Pareto optimality

- Reasoning about outocomes
- Outcome o pareto dominates outcome o' iff

$$\forall i \in \mathcal{N}o_i \geq o'_i \text{ and } \exists i \in \mathcal{N}o_i > o'_i$$
 (2)

 Outcome o is pareto optimal if it is not pareto dominated by any other outcome o'

Dominance

- Strict dominance
 - Strategy a_i strictly dominates a'_i iff

$$\forall a_{-i} \in \mathcal{A}_{-i} : u_i(a_i, a_{-i}) > u_i(a'_i, a_{-i})$$
 (3)

- Weak dominance
 - Strategy a_i weakly dominates a'_i iff

$$\forall a_{-i} \in \mathcal{A}_{-i} : u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i}) \text{ and } \tag{4}$$

$$\exists a_{-i} \in \mathcal{A}_{-i} : u_i(a_i, a_{-i}) > u(a'_i, a_{-i})$$
 (5)

- Very weak dominance
 - Strategy a_i very weakly dominates a'_i iff

$$\forall a_{-i} \in \mathcal{A}_{-i} : u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i}) \tag{6}$$

Nash equilibrium

• A strategy s_i^* is the best response to strategies s_{-i} , written as $s_i^* \in BR(s_{-i})$ iff

$$\forall s_i \in \mathcal{S}_i u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i}) \tag{7}$$

- Nash equilibrium
 - Strategy profile $s = \{s_1, ..., s_n\}$ is a Nash equilibrium iff

$$\forall i \in \mathcal{N} s_i \in BR(s_{-i}) \tag{8}$$

- Stable against deviations of players as every player plays his best response to the strategies of the rest
- Assumes self-interested rational players
- Every finite game has a non-empty set of Nash equilibria
- Examples

Properties of NE

- Values in NE might differ
- Strategies not interchangeable
- Mistake of the opponent might hurt me

Properties of NE in zero-sum games

- All NE have the same value for *i* (value of the game)
- The value is guaranteed (mistakes of the opponent only increase my expected outcome)
- Strategies are interchangeable between NE
- minmax = maxmin = NE = SE